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Abstract—This paper proposes a new family of bivariate, non-
separable splines, called hex-splines, especially designed for hexag-
onal lattices. The starting point of the construction is the indicator
function of the Voronoi cell, which is used to define in a natural
way the first-order hex-spline. Higher order hex-splines are ob-
tained by successive convolutions. A mathematical analysis of this
new bivariate spline family is presented. In particular, we derive
a closed form for a hex-spline of arbitrary order. We also discuss
important properties, such as their Fourier transform and the fact
they form a Riesz basis. We also highlight the approximation order.
For conventional rectangular lattices, hex-splines revert to classical
separable tensor-product B-splines. Finally, some prototypical ap-
plications and experimental results demonstrate the usefulness of
hex-splines for handling hexagonally sampled data.

Index Terms—Approximation theory, bivariate splines, hexag-
onal lattices, sampling theory.

I. INTRODUCTION

D IGITAL image processing systems require a sampling
strategy to represent two-dimensional (2-D) data. The

common approach is to take the samples on a rectangular
lattice. Another possibility is to use hexagonal sampling, which
provides several advantages [1], [2]. For instance, a hexagon
has a twelve-fold symmetry as compared to the eight-fold of a
square. Due to the improved packing density, hexagonal lattices
are better suited for representing isotropically bandlimited
signals. The higher degree of symmetry can also be used
to design more isotropic filters to be applied on hexagonal
lattices [2]–[4]. The six neighbors of a hexagonal cell and their
connectivity is well-defined [5] and has been used for better
edge detection [6], [7] and pattern recognition [8]–[11].

An important issue in image processing is the link between
the discrete and the continuous domain. A discrete/continuous
model is essential for computational tasks such as interpolation
and resampling. B-spline models are especially popular and
have been succesfully applied to image processing on rectan-
gular lattices using tensor-product basis functions. This paper
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introduces a novel spline family, the so-called hex-splines,
which provide a discrete/continuous model suitable for hexag-
onally sampled data. These new bivariate splines take into
account the shape of the Voronoi cell and build up higher order
splines by successive convolutions. For rectangular lattices,
these splines revert to the classical tensor-product B-splines.
The hex-splines were first introduced in our paper [12] from an
application point of view (without an analytical expression).
This paper presents a mathematical analysis of the hex-splines
which contributes to a better understanding of their properties.
Additionally, we discuss the algorithms that are needed to use
these splines in practice.

The presentation is organized as follows. In Section II, we
review the fundamental properties of lattices, cells, and one-
dimensional (1-D) B-splines. Next, we introduce and derive the
hex-splines and discrete hex-splines. In Section V, we present
some basic applications of the hex-splines to image processing.

There are some notational conventions we apply throughout
this paper. Vectors are denoted in bold and lowercase, e.g.,

, while a matrix is bold and uppercase, e.g., . The
Fourier transform of a function is defined as

. The complex conjugate is indicated
by . The inner product of two functions and is de-
noted as and the convolution as .

II. SPLINES FOR HEXAGONAL LATTICES

A. Lattices

2-D periodic lattices are characterized by two (linearly in-
dependant) vectors and . Any integer combination

of these vectors points to a lattice site. It is often
convenient to group the lattice vectors and in a matrix

(1)

such that the lattice sites are given by , where .
A well-defined and unique tiling cell is the Voronoi cell,

which contains all points that are closer to their lattice site than
to any other site. The indicator function for the Voronoi cell of
the origin is defined as

(2)

where is the number of lattice points to which is adjacent.
Note that tiles the plane by definition.

The dual or reciprocal lattice is specified by
. The reciprocal lattice vectors therefore satisfy
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Fig. 1. (a) The regular hexagonal lattice of the second type and its Voronoi
cell. (b) The dual lattice.

the relation , where is the kronecker-delta
sequence. We mention two useful relationships where the dual
lattice becomes important. Assume we have a function and
its Fourier transform . Let . Then it is
well known that

(3)

Likewise, the Poisson sum formula on a lattice is (see Ap-
pendix A for the proof)

(4)

The case of special interest in this article is the regular hexag-
onal lattice of the second type, which is characterized by ma-
trices

(5)

Fig. 1 shows the lattice vectors and the Voronoi cell of and
. The reciprocal Voronoi cell can be considered as the “natural

Nyquist region”; in other words, the effect of sampling a signal
on a lattice is to replicate its spectrum on the lattice sites

. For more details about lattices and cells, we refer to [13],
[14].

B. Sinc-Function for Hexagonal Lattices

In this section, we extend the sampling theorem for hexag-
onal lattices. For a given lattice characterized by a matrix ,
we define the sincH-function of the corresponding reciprocal
lattice as the Fourier transform of the indicator function of
the Voronoi cell

(6)

where we introduce the normalization by the surface area of the

Voronoi cell . By definition, the function
tiles the plane when replicated on the lattice sites of . So we
have

(7)

Fig. 2. The function sincH (!!!=(2�)) corresponding to the regular
hexagonal lattice.

When we plug in this condition into the Poisson sum formula of
(4), which holds for all , we obtain

(8)

where we have used as defined in (6). This function takes
the value 1 at the origin and 0 at the reciprocal lattice sites, as
we expect from a properly defined sinc-function. By duality, it
follows that the sincH-function corresponding to the lattice ma-
trix satisfies the interpolation property in the spatial domain.
An explicit formula for the sincH-function is derived in Sec-
tion IV-A. This function is shown in Fig. 2.

C. Hex-Splines

We define the first-order hex-spline as . Hex-
splines of higher orders are constructed by successive convolu-
tions

(9)

Some examples of hex-splines are shown in Fig. 3. An impor-
tant property, which is satisfied automatically due to (7) and the
construction rule of (9), is the partition of unity

(10)

which holds for any order .
The hex-spline basis functions are obtained by shifting to

each lattice site . The corresponding signal space is

(11)

This means that each signal is characterized by its coeffi-
cients (discrete/continuous representation), which are
square-summable on the lattice . A common way to deter-
mine the spline coefficients is to impose the interpolating
condition, which requires that at the sampling
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Fig. 3. Hex-splines. (a) First order (p = 1). (b) Second order (p = 2). (c) Third order (p = 3). (d) Fourth order (p = 4).

sites. Here, is the original signal we want to represent
using the splines. For the first and second order splines, this
condition is trivially satisfied by choosing ;
higher orders require an inverse filtering operation to obtain the
correct values for . This operation is often called the direct
spline transform [15].

If we apply the hex-splines construction to rectangular lat-
tices, i.e., and , we obtain the square
indicator function as the first-order hex-spline. Consequently,
the hex-splines revert to separable tensor-product B-splines. In
particular for , we have

(12)

with the notation of [15] where the B-splines are indexed by
their degree . Here instead, we will index the functions
by their order and stick to our subscript notation.

III. EXPLICIT CONSTRUCTION

In this section, we present a construction algorithm for hex-
splines of any order, which allows us to determine their closed
form. Although the derivation is general and can be applied to
any (irregular) hexagonal Voronoi cell of a periodic lattice, our
running example will be the regular hexagon introduced in Sec-
tion II-A.

A. B-Spline Refresher

Our construction is inspired by the properties of 1-D B-splines.
It is well-known that B-splines can be generated by using a suit-
able linear combination of shifted one-sided power functions.
For instance, the first-order B-spline can be expressed as

(13)

(14)

where denotes the central finite difference filter
and where is the unit step function. The ap-

plication of the finite difference to the step function, which is
infinitely supported, produces a compactly supported function.
Fig. 4 graphically illustrates the generation of . We now ex-
amine the convolutional properties of the components and

. The -fold convolution of the localization operator re-
sults into the th order finite difference

(15)

which is conveniently specified by its Fourier expression. Anal-
ogously, successive convolutions of the step function yield the
one-sided power functions

(16)

which are the generating functions of higher order splines.
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Fig. 4. (a) The 1-D first-order B-spline � (x). (b) Construction of � (x) by
the step function (x) and the finite difference �.

Relations (15) and (16) are especially useful for deriving the
following explicit formula, starting from the convolutional def-
inition of B-splines:

The corresponding 2-D B-splines on a rectangular lattice are
obtained by simple application of the tensor-product:

. Due to the separability, the generating function
becomes and the localization operator

. So for , a generating function (which fills
the upper right quadrant of the plane) is placed on each corner
of a square with an appropriate weight.

B. Construction of the First-Order Hex-Spline

Now, we aim at a similar construction for hex-splines. Let us
start by putting together the first-order hex-spline in a graph-
ical way. We want the generating function to resemble but
we also need to consider that the edges of the hexagon have
three different orientations (i.e., , and ). There-
fore, we introduce the two generating functions and ,
shown in Fig. 5. The next step is to localize these functions in
order to obtain the (compactly supported) indicator function of
the hexagon, as shown in Fig. 6. First, in Fig. 6(a), we place
both generating functions on the outer left vertex of the hexagon.
Second, in Fig. 6(b), we create the horizontal edges by sub-
tracting at the upper left vertex and at the lower left
vertex. Third, in Fig. 6, we form the right-hand edges by sub-
tracting this time at the upper right vertex and at the
lower right vertex. Finally, in Fig. 6(d), we need to compensate
for the dark region of Fig. 6(c) that has become , by putting
both generating function at the outer right vertex.

Fig. 5. Left: The generating function (x) for the first-order 2-D tensor-
product spline. Right: The generating functions (x) and (x) for the first-
order hex-spline. The functions are unity inside the light gray region. The
curved border means the function extends infinitely in that direction.

Fig. 6. Construction of the first-order hex-spline step-by-step. The light gray
and dark gray regions correspond respectively to +1 and �1.

Theorem 1: The first-order hex-spline is obtained by local-
izing the generating functions and , as shown by the
construction above. As such, we obtain an equivalent form of
(13) for the hex-splines

(17)

where each generating function has been placed on four vertices
through the application of localization operators and .

C. Construction of Higher Order Hex-Splines

The higher order hex-splines are constructed by successive
convolutions. As for the classical B-splines, we need formulas
for the multiple convolutions between the localization operators
on one side, and the generating functions on the other side. First,
we introduce the vectors indicating the vertices of the hexagon
as shown in Fig. 7

These allow us to derive the following properties for the local-
ization operator.
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Fig. 7. Vectors e ; e , and e are introduced to indicate the vertices of the
hexagon. In order to build up the first-order hex-spline, the two generating
functions need to be placed at four vertices each, with the weights indicated.

Fig. 8. The 2-D generating function. The vectors u and u make up the
borders of the support. The polynomial degree increases along the reciprocal
vectors û and û for higher order generating functions.

Proposition 1: The Fourier transforms of the -fold convo-
lution of the operators and are given by

where is the classical 1-D
B-spline localization operator.

For the generating functions, we first introduce a way to de-
scribe them more precisely. For instance, consider the gener-
ating function . If the vectors and are along the border
of the support, we can define this function as

.
(18)

The vectors and are the reciprocal ones of and (i.e.,
), see Fig. 8. Now, a more general generating

function is proposed which builds up higher polynomial degrees
along the reciprocal directions

(19)

We also use the shorthand notation for .
Note that this generating function can be derived from the or-
thogonal case by the coordinate transformation given by the
matrix . For convenience, we have included
the normalization by inside the definition of the gener-
ating function. Next we choose and such that

; i.e., the vertical component of needs to be

due to initial choice of . That way, we can describe
and as

where

These vectors may also be expressed in terms of , and
as follows:

(20)

Next, we give the convolution rules for these generating func-
tions (cf. proof in Appendix B).

Proposition 2: The generating functions, as defined before,
satisfy the following recurrence equation:

(21)

Crossterms, such as

(22)

are denoted as . Although this notation has
no direct (spatial) interpretation in the sense of (19), it can be
studied in the Fourier domain as we will show in Section IV-A.
For now, we only mention how they can be computed in a re-
cursive way

(23)

This can be applied recursively until the second or third power of
a generating function equals , in particular

and .

Notice that the generating functions and
are homogeneous 2-D polynomials of degree ; i.e., they
satisfy the equation . Consequently, the
crossterms are homogeneous polynomials as well. For example

(24)

is a homogeneous polynomial of degree 2.
Theorem 2: The higher order hex-spline is obtained by ap-

plying the construction rule of (9)–(17)

for , where generating functions to the power “neu-
tralize” the convolution, i.e., .
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To facilitate the computation of these formulas for any order
, we have made available on the web an implementation for the

Maple mathematical software package (see Appendix D).

IV. HEX-SPLINE PROPERTIES

A. Fourier Transform

From distribution theory, we know the Fourier transform of
the one-sided power function

(25)

where is the -th derivative of the Dirac -function. There
is also a “two-sided” generating function

(26)

Both generating functions are equivalent with respect to the
localization operators (finite difference), i.e., the localization
operator cancels the polynomial represented by the Dirac of
the one-sided function, so leaving the two-sided version. This
mechanism is well known in 1-D and it is often used to allow
simpler Fourier domain manipulations.

For the 2-D extension by the tensor-product we obtain

(27)

The sign version of can be defined by considering

(28)

which corresponds to a coordinate transformation of the left-
hand side of (27) by the matrix

(29)

Therefore, the Fourier transform of such a generating function
is given by

(30)

since due to the proper choice of and .
We refer to Appendix C for a precise explanation of how the
sign version of the generating function gets localized in two
dimensions.

The localization process is a convolution which corresponds
to a product in the Fourier domain. Putting the pieces together,
we get the Fourier transform of the first-order regular hex-spline

(31)

where we have used

Equation (31) also provides us with an explicit expression for
the sincH-function introduced in Section II-B.

Due to the simple recipe of (9), the Fourier transform for a
hex-spline of order can be derived from as

(32)

B. Riesz Basis Property

An important condition for the hex-splines to provide a sen-
sible continuous/discrete model is to be stable (i.e., a small vari-
ation of the coefficients results into a small variation of the func-
tion) and unambiguous (i.e., each set of coefficients represents
a unique function). Therefore, the basis functions should form a
Riesz basis, which requires the existence of two strictly positive
constants and such that

(33)

using the Euclidean norm. This expression is equivalent to

(34)

where the central term is the Fourier transform of the sampled
autocorrelation function

(35)

and can be rewritten as .
Next, we explicitly demonstrate that such constants

can be found for the case of a regular hexagon. The upper bound
is obtained from

where we have used the positivity of the hex-splines, the parti-
tion of unity of (10) and (9).

The derivation of the lower bound is slightly more involved.
First, since is periodic on , we can concentrate our
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attention on the reciprocal tiling cell (i.e., the Nyquist region,
characterized by ). As such, we obtain

Indeed, the sincH-function decreases monotonically from the
origin to the border of the Nyquist region (see also Fig. 2). At the
outer vertices it reaches its minimum, e.g., at ,
which yields .

C. Relation to Other Spline Families

To the best knowledge of the authors, the hex-splines have not
been proposed before. Nevertheless, there is a connection with
bivariate box-splines [16].

2-D box-splines are a family of bivariate splines. They are
composed out of basic elements that can be regarded as a causal
B-spline along a vector; i.e., in Fourier, a basic element along a
vector can be expressed as

(36)

In the spatial domain, such an element corresponds to

for normalized and perpendicular to . For example, for
, we obtain . A general box-spline

can be obtained by performing convolutions of these basic ele-
ments (so multiplications of (36) in the Fourier domain). For
instance, the box-spline (where and are linearly
independant) corresponds to the indicator function of the rhom-
boid spanned by and , scaled by the reciprocal of its surface
area. Adding any direction by introducing a third vector, creates
a “slope” (i.e., linearly increasing/decreasing) in that particular
direction. It is therefore not possible to construct the first-order
hex-spline in this way. Nevertheless, the hex-spline can be con-
structed as the sum of three box-splines using vectors along the
borders of the hexagon, as follows:

(37)

where .
Fig. 9 shows how the box-splines, each one corresponding to
the indicator function of a gray rhomboid, sum up to the regular
hexagon, a case where , and .

For the regular case, the box-spline equivalence automati-
cally implies that the function is a polynomial within each tri-

Fig. 9. Construction of the regular first-order hex-spline by the sum of three
box-splines.

Fig. 10. Triangular mesh for the second-order hex-spline. There is one
polynomial expression inside each triangle. Due to the twelve-fold symmetry,
the computation can be restricted to three triangles.

angle inside the triangular mesh spanned by , and [17].
This property tells us that we only need to determine the ana-
lytical form of the hex-splines in a limited number of regions.
Fig. 10 shows the triangular mesh for the second-order hex-
spline, which separates the piecewise polynomial regions.

Sablonnière et al. [18] introduced other families of splines,
one of them with a hexagonal support. Higher order splines were
also constructed by repeated convolutions. However, our first-
order hex-spline is excluded from their definition since their el-
ementary building blocks are required to be continuous in the
first place.

D. Discrete Hex-Splines

Most generally, a spline signal model is specified by the
spline coefficients as

(38)

where the coefficients are determined by

(39)

Here, is the original function in the continuous domain and
the so-called prefilter. A common way to select the prefilter
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Fig. 11. As the order of the hex-splines increases, the support can be easily determined. Lattice sites are indicated and numbered. The hex-spline value at those
sites are listed in Table I.

TABLE I
COEFFICIENTS OF THE DISCRETE HEX-SPLINES. THE LATTICE SITES ARE INDICATED IN FIG. 11

is by imposing the interpolation condition, i.e., we require the
signal model to coincide with the original function at the lattice
sites

(40)

We can derive the equivalent prefilter in the Fourier domain
as

(41)

A convenient way to present this prefilter operation is by
using the discrete hex-splines. Discrete hex-splines are made out
of the values of the hex-splines at the lattices sites

(42)

Table I shows the coefficients of up to the sixth order for
the regular case. Now, (40) is rewritten as

(43)

which can be interpreted as a discrete convolution between
and the coefficients ; i.e., corresponds

to a digital filter. Clearly, can be obtained by filtering with
. It is convenient to specify these filters in the -transform

domain. As an example, we provide the -transform of the
fourth-order discrete hex-spline
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where we have the notation . The Fourier transform
of is given by

(44)

Appendix E explains how this inverse filtering operation is per-
formed in practice.

E. Approximation Properties

Approximation theory is useful to quantify to what extent we
can expect a given function to be approximated by a signal
model . If we consider the (hypothetical) function to
be known in the continuous domain, and the model to be
the spline interpolation of the sample values on the lattice

(45)

(with a scaling factor enabling to refine the lattice), then we
can examine how approaches as we make smaller
and smaller. The order of approximation is the power of the
sampling step according to which the approximation error
decreases

(46)

Note that this is a purely theoretical question, since in practice
is not known.

A simple, yet powerful way to quantify the approximation
error is to use the following formula in the Fourier domain [19]:

where is the so-called error kernel. In our case, the ex-
tended form of the error kernel for a periodic lattice with matrix

is

(47)

where is the reconstruction function (i.e., the hex-spline )
and the prefilter (e.g., the interpolation prefilter ). By ap-
proximating around (thus, for ), we can de-
termine the order approximation ; i.e.,
around the origin. The interpolation prefilter is given in (41).
Next, we can make use of the Fourier expression of the recon-
struction function

(48)

which has zeros of order at the reciprocal lattice sites; more
precisely, we have ,
for (see also (8)). As such, we obtain the following
approximation for

with . This proves that the hex-spline in-
dexing does indeed correspond to the order of approximation:
for .

Fig. 12. The eye of “Lena,” magnified using hex-splines. (a) First order.
(b) Second order. (c) Third order. (d) Fourth order.

V. APPLICATIONS

In this section, we apply the hex-splines to some prototypical
image processing tasks.

A. Representation

Most naturally, the hex-splines provide a valuable tool to con-
struct a continuously-defined function that interpolates sample
values available on a hexagonal lattice. For demonstration pur-
poses, we first resampled the “Lena” test image on a regular
hexagonal lattice, and next used the hex-splines to represent
the hexagonally sampled data. The direct spline transform (for
its computation see Appendix E was used to compute the hex-
spline coefficients. The hex-spline signal model, specified by
these coefficients, can be evaluated using (11) at arbitrary lo-
cations, e.g., to zoom on the eye of “Lena.” Fig. 12 shows the
results for first to fourth order. Clearly, as the order increases,
the image appearance improves. Notice the small difference be-
tween the third and fourth order.

B. Resampling

For image data acquired directly on hexagonal lattices, the
representation by hex-splines can be of direct use. Using the
hex-splines, new sample values can be computed on any new lat-
tice, e.g., to obtain an image representation on a classical Carte-
sian lattice. Possible applications include imaging from sensors
that acquire data on a hexagonal capture grid [20], [21].

C. Hex-Spline Processing

Once the hex-spline coefficients are determined, several inter-
esting operations can be applied directly in “hex-spline space”
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Fig. 13. (a) The first derivative in the u -direction of the second-order hex-spline. (b) Applied to the eye of “Lena.”

Fig. 14. To demonstrate the principle of resampling by the least-squares
approach, consider the rectangular source lattice (Voronoi cell on the left) and
the coarser hexagonal target lattice (Voronoi cell on the right).

similarly as for classical B-spline processing [15]. Some exam-
ples are differentiation, filtering, and smoothing.

As an example, we describe the corresponding differentiation
operation. Unlike for the classical B-splines, there is no direct
formula to express a derivative in terms of lower order splines.
Nevertheless, the derivative of a hex-spline can be found an-
alytically by using the derivative of the sign-generating func-
tions. In particular, since the derivative along the direction
corresponds to multiplying the Fourier transform by ,
we obtain

(49)

As an example, we show the first derivative in the -direc-
tion of the second-order spline in Fig. 13(a) and apply it to the
eye of “Lena” in Fig. 13(b).

A possible application of hex-spline processing is the mod-
eling of a primate’s vision system using hexagonal arrange-
ments: the cones on the retina are organized in a hexagonal
fashion [22], [23]. Also magnetic field computations can make
use of the hex-splines since many real magnetic materials has a
microscopic hexagonal structure [24], [25].

D. Least-Squares Resampling

Resampling from one lattice to another using a discrete/con-
tinuous model for the source lattice (such as proposed in Sec-

tion V-B) does not take into account the properties of the target
lattice. Consequently, resampling artefacts such as moiré pat-
terns due to aliasing might arise, in particular when the target
lattice is much coarser and when the original image contains
many high-frequency components. Fortunately, the use of spline
models allows to elegantly incorporate information of the target
lattice as proposed in [26]. We briefly describe here how this
procedure can be extended to resample between 2-D periodic
lattices in general.

Suppose that we have appropriate spline models, both for the
source and the target lattice (which might be either orthogonal
or hexagonal). We denote quantities related to the target lattice
by an accent

Now, we want to determine the spline coefficients on the
target lattice, such that the squared error between both signal
representations and (in the continuous domain) be-
comes minimal. This can be accomplished with the following
algorithm, which is an adaptation of the algorithm in [26] for a
hexagonal lattice.

• Determine the spline coefficients on the source lattice
by the direct spline transform, i.e., prefiltering by .

• Resample the spline coefficients to

(50)

with .
• Obtain the spline coefficients on the target lattice by

post-filtering with .
This algorithm can be used to resample between hexagonal lat-
tices or to/from hexagonal and rectangular lattices. In general,
the function can be quite cumbersome to determine an-
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Fig. 15. Function �(x) used to resample the spline coefficients from the rectangular to the hexagonal lattice by the least-squares approach. (a) First order.
(b) Second order.

Fig. 16. (a) Part of the test image “shirt.” (b) Result after resampling using the interpolative approach (cubic B-spline interpolation on the source lattice). (c) Results
after resampling using the least-squares approach, first order (p = 1). (d) Results after resampling using the least-squares approach, second order (p = 2).

alytically, but in practice it can be approximated numerically.
For example, consider resampling from a rectangular lattice to
a much coarser hexagonal lattice. The corresponding Voronoi
cells are shown in Fig. 14. Fig. 15(a) and (b) depict the func-
tions for first and second order. For the first order ,
no pre- or post-filters are required. For the second order ,
only the post-filter is required and is identical to the prefilter for
the fourth-order hex-spline . The results are shown in
Fig. 16 for a part of the test image “shirt”. Clearly, the classical
interpolative approach of Fig. 16(b) (using cubic B-spline in-

terpolation on the rectangular source lattice) does not take into
account the target lattice and produces moiré artifacts due to
aliasing. On the other hand, resampling by the least-squares ap-
proach significantly improves the quality. The first order case of
Fig. 16(c) corresponds to so-called “surface projection,” i.e., the
contribution of an original sample value to a new one depends
on the relative overlap between the corresponding Voronoi cells.
The second order case of Fig. 16(d) provides a sharper result.
For higher order least-squares resampling, the function can
be approximated quite well by a Gaussian function.
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TABLE II
COMPARISON BETWEEN CLASSICAL TENSOR-PRODUCT B-SPLINES AND HEX-SPLINES

The least-squares approach to resampling is powerful and
can be useful to many applications. In [12], we applied the
hex-splines to a gravure printing application. Another applica-
tion is a moiré-suppressing prefilter for color printing, as pro-
posed in [27]. Those papers did not use the current implemen-
tation (by (50)), which is more efficient and does not require to
approximate a function with infinite support.

VI. CONCLUSION

In this paper, we proposed and studied a novel family of
bivariate, nonseparable splines for hexagonal lattices. These
splines are defined in a natural way, starting from the Voronoi
cell definition. We studied the mathematical foundations and
presented the algorithmic tools required to make full use of the
hex-splines. As a summary, we show in Table II the comparison
of the most important properties and features of B-splines and
hex-splines.

APPENDIX A
POISSON SUM FORMULA

To derive the Poisson sum formula for a hexagonal lattice,
we start with the classical formula for an orthogonal lattice with

(51)

Introducing the function , we obtain

(52)

Finally, we substitute , which yields the Poisson sum
formula for an hexagonal lattice

(53)

APPENDIX B
RECURRENCE FORMULA FOR GENERATING FUNCTIONS

The recurrence equation of (21) can be demonstrated by using
the Fourier transform of their sign-version [see (30)].

The recursive relationship (23) for the case of crossterms, is
also proved using the sign-version. Consider the first-order gen-
erating functions using respectively the vectors and

, and and . The Fourier
transforms correspond to

with

(54)

The crossterm of both generating functions, corre-
sponds to the following Fourier expression, which can be sepa-
rated using partial fractions and

which gives us

Applying this equation to a general crossterm results in (23).
This recursive equation can also be used to compute some

derivative generating functions. For example, when computing
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the derivative in the direction of , the Fourier transform of
one of the generating functions can get a in the nom-
inator. This can be undone by applying

APPENDIX C
LOCALIZATION OF TWO-SIDED GENERATING FUNCTIONS

We briefly show how the sign-version of
gets localized by . We start with the following lemma.

Lemma 1: Given a one-sided generating function
and the corresponding , we have

(55)

(56)

Proof: The Fourier transforms of the one-sided generating
functions and are, respectively

Using this result, the remaining terms of the difference between
the right and left hand side of (55) can be “neutralized” using
the localization of , which equals zero

where , according to the definition of
.
Next, we write the two-sided generating function in

terms of one-sided generating functions using (26) and applying
(55) and (56)

(57)

This corresponds to a symmetrized version of the “interme-
diate” part of the hex-spline (this can easily checked by applying

the construction algorithm of Section III-B to ). Analo-
gously, we can obtain

(58)

Adding up both parts, i.e., (57) and (58), results into the first-
order hex-spline.

APPENDIX D
IMPLEMENTATION: THE ANALYTICAL FORM

To obtain the analytical expression of the hex-splines, it is
safer to rely on a mathematical software package for symbolic
manipulations.1 In particular, we assume the following lattice
matrix is given, corresponding to the general class of semi-
regular hexagonal lattices of the second type [14]

(59)

with . The values and can be passed to the pro-
gram. Hexagonal lattices of the first type can easily be obtained
by exchanging and .

The package makes use of two auxiliary functions.

• hexlocalization: Computes the localization oper-
ator given the vectors . The arguments and

indicate the power to which both localization opera-
tors are raised.

• hexbuilding: Computes a generating function given
the vectors . The argument pow is a vector con-
taining the powers of a general term. In the
implementation, the powers correspond to the powers of
the Fourier terms. The coordinates and are used
for the Heaviside terms which delineate the support of the
generating functions. This allows us to compute the ana-
lytical form inside a triangular patch of the hex-splines.

These auxiliary functions are called by the main routine
diffhexspline that composes a general hex-spline with
lattice parameters and , a given order, and eventually deriva-
tives in one of the three main directions. The other functions
initialize some parameters for common cases: hexspline
omits the derivative, diffrhexspline is for a regular
hex-spline, and rhexspline computes the regular hex-spline
without derivatives.

APPENDIX E
IMPLEMENTATION: THE DIRECT SPLINE TRANSFORM

The direct spline transform computes the spline coefficients
for a hex-spline representation given the sample values.
As shown in Section IV-D, this corresponds to the inverse
filter operation of the corresponding discrete hex-spline.
For 1-D B-splines (and higher dimensional versions by the
tensor-product extension), a fast recursive algorithm exists [28].
Unfortunately, the discrete hex-splines cannot be separated in a
series of causal and anti-causal recursive filters. In this paper,

1We have made an implementation available for MAPLE at http://bigwww.
epfl.ch/demo/hexsplines/. This software is also able to obtain the analytical form
of irregular hex-splines, using the same construction technique as explained in
this article.
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Fig. 17. (a) A square image, sampled on a hexagonal lattice, is embedded by a rectangular support. The light gray regions are redundant. (b) An example for the
test image “Lena.” Mirror boundary conditions are applied. (c) The test image “Lena” in the integer coordinate system (k ; k ).

we propose an equivalent implementation of the inverse filter
in Fourier domain by .

There are two approaches to compute the Fourier coefficients
of samples taken on a hexagonal grid. First, one can make
use of a true hexagonal discrete Fourier transform [29], [30].
Second, the hexagonal data is embedded in a rectangular
support spanned by the lattice vectors, i.e., the index

relates to . Here,
we have preferred the second approach which can make use of
widely available FFT-algorithms on a rectangular lattice. First,
the data is embedded as shown in Fig. 17. Regions outside the
support of the original image is extended by mirror boundary
conditions. The result, i.e., the image of Fig. 17(c), is indexed
as . Next, the Fourier coefficients is computed
by a regular FFT-algorithm. Taking into account (3) and (44),
filtering needs to be done by

(60)

where .
Finally, the inverse FFT provides the spline coefficients.
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