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Wavelet Theory Demystified

Michael Unser Fellow, IEEE,and Thierry Bly Member, IEEE

Abstract—In this paper, we revisit wavelet theory starting from ~ 5. (k)

the representation of a scaling function as the convolution of a ﬁH(z")—b@L@ \/EH(Z)
B-spline (the regular part of it) and a distribution (the irregular 5;(k) :
or residual part). This formulation leads to some new insights on
wavelets and makes it possible to rederive the main results of the S dy, (k)
classical theory—including some new extensions for fractional V2G(z™) V2G(2)
orders—in a self-contained, accessible fashion. In particular, we
prove that the B-spline component is entirely responsible for five
key wavelet properties: order of approximation, reproduction _
of polynomizéls, vani?‘hing n(womelnts, )mufltishcaleb di_ﬁe;entiation fI(Z_I)H(z)+G(z")G(Z)=1

roperty, and smoothness (regularity) of the basis functions. =~ = . _
\F;Vepalsg investigate the interac?ion o)f/ wavelets with differential H(z)H(-2)+ G(z7)G(-2) =0
operators giving explicit time domain formulas for the fractional ] ] ) )
derivatives of the basis functions. This allows us to specify a Fig. 1. Block diagram of the two-channel filterbank that forms the basis for
contesponding dual wavelet bass and helps us undersiand why [ APV T SO, Fiom 8 el it S pioceang o
the.wa.velet transform prowdgs a stable qharacterlzatlon of ;he reconstruction equations.
derivatives of a signal. Additional results include a new peeling
theory of smoothness, leading to the extended notion of wavelet ) . .
differentiability in the L,-sense and a sharper theorem stating Per se and their fundamental properties. To gain a deeper
that smoothness implies order. understanding, one needs to consider the continuous-time in-

Index Terms—Approximation order, Besov spaces, Holder terpretation_ of the transform thgt is favored b_y mathemati.cians
smoothness, multiscale differentiation, splines, vanishing mo- [4]-[6]. This representation involves continuously-defined
ments, wavelets. basis functions (wavelets) that are rescaled and shifted versions
of each other; it also gives rise to a filterbank implementation
that is equivalent to the block diagram in Fig. 1—Mallat's
fast wavelet algorithm [4], [7]. However, one of the important

HE mechanics of the wavelet transform are usually welloints of the continuous-time formulation is that the filters

understood by engineers working in signal processing. dannot be completely arbitrary. A key constraint is that the
essence, the system boils down to a two channel filterbankle&pass filter H(z)—also called therefinement filter—must
shown in Fig. 1 [1], [2]. In the decomposition (or analysis) stefpe factorizable a#/ (z) = 277 (1 + 3—1)7 Q(z), which is an
the digital signals;(k) is split into two half-size sequencesexpression that involves some number of “regularity” factors
siv1(k) andd;;1(k) by filtering it with a conjugate pair of (1+ 2~!) as well as a stable residual ter@\(z) satisfying
lowpass and highpass filterdi(z~") and G(z~!), respec- the lowpass constrair(1) = 1. A nontrivial factorQ(z) is
tively) and down-sampling the results thereafter. The signalggnerally necessary for obtaining orthogonal or biorthogonal
then reconstructed (synthesis step) by up-sampling, filteringavelets that can be implemented by means of FIR filters [8],
and summation of the components, as shown on the right-h4e}} The presence of the regularity terfh -+ 2—1)7 is essential
side of the block diagram; note that the analysis and synthefjs theoretical reasons. It is responsible for a number of key
procedures are flow-graph transposes of each other. A standasdelet properties such as order of approximation, vanishing
analysis shows that this kind of two channel decompositianhoments, reproduction of polynomials, and smoothness of the
is one-to-one and reversible provided that théransforms basis functions. If one excepts the vanishing moments, these
of the filters satisfy the perfect reconstruction (PR) equatioase aspects of wavelets that are often not so well understood by
also given in Fig. 1 [1], [3]. In the tree-structured wavelegignal processing practitioneers, mainly because the connection
transform, the decomposition step is further iterated on thth the digital filterbank interpretation is not obvious. This
lowpass componen; 1 (k). is rather unfortunate as many consider these properties as the

While the block diagram in Fig. 1 constitutes a valid descriprery core of wavelet theory (cf. [6, Ch. 7]); they are almost
tion of the algorithm—different transforms simply correspondnavoidable if one wants to give precise explanations as to why
to different sets of PR filters—it tells us little about waveletgvavelets work so well for approximating piecewise-smooth

signals and why they are such a nice tool for characterizing
singularites [10].
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in all the desired mathematical properties. Although the effe&t Continuous Function Spaces and Notations
of the regularity factors is well understood by mathematicians the continuous-time version of the wavelet transform applies

working with wavelets, we are not aware of any deliberate effqg functionsf(z), = € R that are square integrable. The space

to explain these properties from the perspective of B-splings;.ihose functions is denoted Hy; it is the Hilbert space that
While it could be argued that this is essentially a matter of i”teébrresponds to the inner product

pretation (regularity factors are equivalent to B-splines), we be-

lieve that the present formulation makes the whole matter more Foo
transparent and accessible. Our only prerequisite here is to have {f, 9>L2 = /

a complete understanding of the properties of B-splines, which

is much easier than for other wavelets, since these are the oaljere the integral is taken in Lebesgue’s sense. The energy of
ones that have explicit formulas. We then use relatively simpefunction f(z) is given by its squared.,-norm: ||f]|7 =
manipulations to show that these properties carry over to &l f),; thus, the notatiorf € L, is equivalent to the state-
scaling functions through the convolution relation. ment that||f||i_) is finite. More generally, one defines tleg,
spaces foil < p < +oco (WhereL stands for Lebesgue) as the
set of functions whosé,,-norm

f(@)g(x)d 1)

J —00

A. Scope and Organization of the Paper

)

have a basic knowledge of wavelets and filterbanks and who

would like to improve their understanding of the more theoret-

ical aspects of wavelets that are usually confined to the matd-finite. These are Banach spaces; there is no corresponding

ematical literature. The paper is largely self-contained but dgner product, except, of course, for= 2.

sumes some familiarity with Mallat's multiresolution formula- The Fourier transform of (z) is denoted byf (w). If f € Ly,

tion of the wavelet transform that rests on the fundamental nib4s given by fff: f(z)e~7“sdz. This definition can be ex-

tion of scaling function [4]. From a theoretical point of view, théended for functiong € L,, as well as for generalized func-

scaling function is more important than the wavelet becausdiins . € S’, whereS’ stands for Schwarz’ space of tempered

provides the elementary building blocks for the decompositioglistributions orR [12].

itis responsible for the key properties of the transform—and thisIn wavelet theory, one usually considers some wavelet func-

is precisely what this paper is all about. tion ¢ (z) that generates a basis bf. What is meant here is
The presentation is organized as follows. In Section II, wigat every functionf € L, can be represented in a unique and

recall the main definitions and mathematical concepts that &t@ble fashion using the expansion

required for theL, formulation of the wavelet transform. We

also spend some time describing the fractional B-splines, which Fl@) =3 di(k)ir(). 3)

play a central role in our formulation. In Section Ill, we red- i€Z kez

erive—and often extend—the key theorems of wavelet theor , , —i/2 ; .
starting from the B-spline factorization of the scaling functioﬁ’%ere the basis functions; .(z) = 27""(x/2" — k) are
Btalned by dilation (index) and translation (index) of the

Finally, in Section IV, we investigate the smoothness issue a letw(a). Th let ticientd. (& biained b
the interaction of wavelets with fractional differential operator: vavele (). The wavelet coefficientd; (k) are obtained by

An important aspect of our formulation is that it allows for non'°"™M"9 the (double infinite) sequence of inner products

This paper is written for researchers in signal processing who Foo 1/e
151, = ([ 15 ac)

— 00

integer ordersy, which are not covered by traditional wavelet B ~
theory. This brings in two novelties: di(k) = <f’ 1/”7’“>L2 )
1) the extension of the theory for fractional wavelets such as - ) ) )
those introduced in [11]; where {wi’k}iez_kez is the biorthogonal basis of

2) a new “peeling” theory of smoothness which genera ”

: . : . : N LN such that{v; . v:;) = & - 6. The
izes an interpretation of integer orders of differentiability . *liez kez o Vi i o Tkl

. iorthogonal basis is also generated by a single template
given by Strang [6]. ~

1 (x)—the so-called biorthogonal wavelet [8]. In practice, the

The motivation here is to come up with a more intuitive—anghner products are never evaluated literally as in (4). They are

perhaps even more general—understanding of the conceptginputed much more efficiently using Mallat's algorithm,

wavelet smoothness. Another important goal of this paper is\hich is based on a hierarchical application of the filterbank

clarify the notion that the wavelet representation is stable Wigfscomposition in Fig. 1 [4]. The wavelet transform specifies

respect to (fractional) differentiation. the choice of a particular set of perfect reconstruction filters,
and vice versa [cf. (6) and (8)].

Il. SCALING FUNCTIONS AND WAVELETS IN Lo B. Scaling Functions

The continuous-time interpretation of the wavelet decompo-
This section presents a brief review of theformulation and  sition algorithmin Fig. 1 is based on the fundamental concept of
interpretation of the wavelet transform. It also contains a shataling function [4]. The scaling functiop(x) is either given
primer on fractional B-splines. explicity—as is the case with the B-splines—or it is derived
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Fig. 2. lllustration of the key properties for the Haar cager) = 3% (=) (B-spline of degree zero). (a) Orthogonality. (b) Two-scale relation. (c) Wavelet
relation. (d) Partition of unity.

indirectly from therefinement filter H(z) as solution of the Condition i) ensures that generates a stable basis for the basic
two-scale relation [9]. The difficulty with the latter approach isunction space
that not all filters do generate valid scaling functions [13], [14].
The mathematical requirements are the following. Vioy = {S(J;) - Z c(k)p(z — k), ce 12} )

Definition: ¢(x) is anadmissible scaling functioof L, if kez
and only if it satisfies the following three conditions: In other words, there is an equivalence betweenth@orm of

i) Riesz basis criterion; there exist two constaits- 0 and the functions inV,y and the/,-norm of their coefficients

B < +o0 such that 9

Veely, A- el < |3 clkye(z - k)
k

2
< Bl

A<D [p(w+2mn)|* < B )
nez

Lo
where A and B are the Riesz bounds ¢f. The basis is or-
thonormal if and only ifA = B = 1, as is precisely the case
with the example in Fig. 2(a).
T The two-scale relation (6), which is equivalentar/2) €
v (5) =2 h(k)p(z — k) (6) V), is the key to the multiresolution structure of the transform.
kez It allows us to define the coarse-to-fine sequence of embedded
N ) subspace$0} C --- C V(5 C - C V(1) € Vjo) C V(1) C
i) Partition of unity .- C Ly such thatfi(z) € Vi) & fi(2'x) € V).
The last, more technical partition of unity condition is neces-
Z oz —k)=1. (7) sary and sufficient (under mild conditions) for the approxima-
keZ tion error to vanish as the wavelet size approaches zero [15]. It
ensures that the multiresolution decomposition is dende in
These three conditions are satisfied by the Haar functionWe can prove that the above specification of a valid scaling
B9 (z)—or B-spline of degree zero—as illustrated in Fig. 2function is equivalent to the axiomatic definition of a multires-

i) Refinability
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olution analysis ofl., given by Mallat [7]. Hence, we have the
guarantee that there exists some corresponding way¢let

that generates a Riesz basisief The wavelet is expressed as
a linear combination of shifted versions of the scaling functioro . g

v (5) =22 9kyele — k) 8 0.6
kez
0.4

where the weightg(k) correspond to the impulse response o
the wavelet synthesis filter in Fig. 1. The dual scaling functio 0-2
@ and wavelet) are defined in a similar fashion using the dua
versions of (6) and (8), respectively; these involve the analys
filters A andg in Fig. 1. 5 ; 3 3 i G ¢

C. Fractional B-Splines Fig. 3. Fractional B-splineg$ (x) for « > 0. The polynomial oneso(
. . o . integer) are represented using thicker lines.
The simplest example of a scaling function is the B-spline of
degree 0 (cf. Fig. 2). This function can be constructed by taking

the difference of two step functions shifted by one. This yieldghere Z) =lu+1)/(T(v+ DI (u—v+1));T(ut+1)is

the following mathematical representation: Euler's Gamma function, which interpolates the factorial, i.e.,
0/ . 0 100 — A0 [(k + 1) = k! for k integer. If we specialize these formulae
Ar(z) :=ay — (2 — 1)} = Ay _ for the more standard integer case= n), then (10) yields the
¥ N 1— e_]w . . . . _ .
PN /33(‘0) _ < . ) 9) classical finite difference formula for the polynomial B-splines
jw (cf. [17)).

o . . The fractional B-splines are shown in Fig. 3; they provide a
where z¢ denotes the one-sided power functiod = . i . ;
. . T . progressive transition between the polynomial oreseger)
max {0,z}"; A, is the causalfinite difference (convolution) " o . . :
displayed in thicker lines. These functions have a number of in-

operator whé)se_ ”"?p“'se rgsponseé(s;) — 8z = 1). By_ teresting properties that are briefly summarized here—for more
convolving 37 with itself » times, one generates the Class'ca}fetails see [11]

B-splines which are piecewise polynomials of degrge6]. .
These are also valid scaling functions simply because the con-* They generate valid Riesz bases for> —1/2. In par-
volution of two scaling functions is a scaling function as well. It~ ficular, this means that they are square integrable, i.e.,
is still possible to go one step further by considering fractional B € Ly, Vo > —1/2.

convolution products that yield the fractional B-splines [11]:  * They belong td.,, forall p > 1 whenever > 0, and for
all <p<1l/—aifa<0.

ASHlge o 1— e—dw\*tt » They satisfy the convolution relations{' = g&* =
A aly — . . + + :
pi(z) = m%’/ﬁ(w) = < T ) (10) p%17e=F1. This comes as a direct consequence of their
definition.
The right-hand side of this formula is easy to understand: Itis « They reproduce polynomials of degree= [«], where
the (@ + 1)th power of the Fourier transform in (9). The corre-  [«] denotes the ceiling af. In particular, they satisfy the
sponding definition of the fractional power of a complex number  partition of unity fora: > —1.
zis 2% = [z e?* () with arg(z) € [—w,7[. The time-do-  « They satisfy the two-scale relation. Their refinement filter

main formula on the left-hand side can be obtained by inverse s the generalized binomial. This is established easily by
Fourier transformation (cf. [11]). The key operator here is the  expressing the two-scale relation in the Fourier domain
fractional causal finite differencAf’l, which is best defined and evaluating the following ratio:

in the Fourier domain

o Br2w) 1 1—e 2w\t

@ 3 _ioyatl QL wy — +( _(2.2—-°“ "

A @) (1= ) ). A B ) = e ) <2 1_e—jw)

To obtain its time domain representation, we expand (14 ot 13)
(1—e=7%)"*! using Newton’s generalized binomial the- B 2

orem and perform an inverse Fourier transform ) ) )
In fact, the fractional B-splines share all the properties of the

wtl = polynomial ones (cf. [18]) with two notable exceptions: They
AT (@) =) aapa (k) f(z — k) are not strictly positive nor compactly supported uniess in-
k=0 teger. For noninteger, they decay like 2 whenz — +oc.

With a1 (k) =(—1)* ( Q ;cr 1 ) (12) Their lack of compact support is also apparent if we look at their

1the subscript 4-” is used to signify that the corresponding function or con- | dwh . . |
volution operator is causal; this is to distinguish them from the centered verstfllY SUPPOrted wheneveris noninteger, alt
of these operators which are often used in spline theory. k_(“+2), k — +oo.

refinement filterh (k) = 2~ (et a;: ! 2 which is infin-
oughitdecays like
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D. Differentiation and Smoothness A. Order of Approximation

Our primary mptivation for_ considering fractional splines in- A fundamental idea in wavelet theory is the concept of mul-
stead of conventional ones is that the enlarged family happ‘?f?ésolution analysis. There, one usually considers a sequence

to be closed under fractional differentiation. This will prove exs¢ o010 qded subspaces with a dyadic scale progression, i.e
tremely useful for understanding and characterizing the smooth-_ i .~ Specifically, the approximation space at scélé v

ness properties of scaling functions and wavelets. 0= 2 (or at resolution level) is defined as
Our fractional derivative operator’ is defined in the Fourier

domain
. Vo =< sq.(2) = clk z_ k) :clk Ir b 16
7 f ()2 (jw) f(w). (14) { ()= _el )‘P(a ) (k) € 2} (16)

kez

It coincides with the usual derivative operator wheis integer. - Because of the two-scale relation, the subspaces have the fol-
Applymg th_e_op(_erator to t_he fractional B-splines yields the fO\'owing inclusion property¥s, C V. Given some input func-
lowing explicit differentiation formula tion f € L, one considers its approximation ify. The best
. e approximation in the least-squares sense (MminimiAmorm)
P () = ALBY (@) (15) s given by the orthogonal projection inig,

where A7 is the fractional finite difference operator defined
by (12). Thus, the fractional derivative of a B-splines happens
to be spline with a corresponding decrease of the degree. The

derivation of this result is rather straightforward if we work iBBecause of the Riesz basis property, the approximatighof
the Fourier domain fin V, is always well-defined and unique (Projection theorem).
i a1 A necessary condition for being able to construct wavelet bases
l—e™ ) of L, is that the approximation improves as the scalgets
Jw closer to zero. In other words, we want to be able to approxi-
oy (1= a+1=v  mate anyL,-function as closely as desired by selecting a scale
= (1 —e’ ) <7> - (orsampling step) that is sufficiently small. Itis therefore crucial
to understand and characterize the rate of decay of the approxi-
Again, this is an extension of the well-known differentiatiomnation error as a function of the scale. This leads to the notion
formula for the polynomial B-splines. of order of approximation, which plays a fundamental role in
Thus, if we differentiate3? (z) o times, we end up with wavelet theory [6], [21], [22].
a functiong*gg = A% 4°(z) that is piecewise constant and Definition: A scaling functionp has order of approximation
bounded (because, (k) € [; for a > —1). The boundedness if and only if
of the derivative is an indication thag is a-Holder continuous.
In fact, 3% («) is infinitely differentiable everywhere except at Vie Wy, |If = Pufll,, <C-a” |07 fl,, (18)
the knots (integers), where it has discontinuities of ordee.g., ’ :
(x — k) ). Holder smoothness is a pointwise measure of coni-

nuity that is often used to characterize wavelets [19]. In this co\r’1v-hereo Is a constant that may depend prbut not onf; the

e y
text, the Sobolev smoothness, which is a more global measCondltlon f € Wy (Sobolev space of ordey) ensures that

[ S s .
of differentiability in the L,-sense, is also important [6], [14],H(f/f”L2’ which is theL;-norm of the~th derivative off, is
o . . "finite so that the bound is well defined.

[20]. The critical Sobolev exponent for the fractional B-splines __ . - .

IS Smax = 0+ 1/2. In Other words3 (z) hass .. derivatives Th|s definition means that forsmooth signals, fheapprox-

in the Lo-sense, i.e.|,|8sﬂﬁ‘(_ < 4oofor0<s<atl/2. imation erro.rlshould decay like thgh power qf the scale: All
popular families (Daubechies, Battle-Lemarié, etc.) satisfy the

order constraint (29) and are indexed by their orgerhich is

always a positive integer. The least sophisticated transform—

Our goal in this section is to reformulate wavelet theory usingaar with¢(z) = 3% (z)—has a first order of approximation

a nontraditional point of view. Our argumentation is entirel¢y = 1), which is enough for the approximation error to vanish

based on a B-spline factorization theorem (Section IlI-B), whidsa — 0. However, one usually prefers to work with higher

is intimately related to the crucial notion of approximation ordearder approximations which result in much faster convergence;

We will use this representation to derive the most importatypically, v = 4 (e.g., the 9/7 Daubechies and cubic spline

wavelet properties using relatively straightforward manipulavavelets). While traditional wavelet theory requireto be in-

tions. In other words, we will show that the order of approximaeger, our definition is also valid for noninteger orders R+

tion of the transform (Section 11I-A), the reproduction of poly-and applicable to the recent fractional extensions of wavelets

nomials property (Section I1I-C), the vanishing moments of tHa 1].

wavelet (Section IlI-D), and the multiscale differentiation prop- The way in which the order of approximation translates into

erty of the wavelet (Section IlI-E) can all be attributed to thélter design constraints is made explicit by the following the-

B-spline that lies hidden within. orem.

VI € Ly, Puf =arg min If = sallp, € Ve (A7)

03 () () - (

Jw

Iz

I1l. W AVELET THEORY REVISITED
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k3% (« — k) for various values ofv. (a) « = 0 (piecewise constant). () = 0.5 (fractional spline). (c)j» = 1 (linear spline). (d)
a = 3 (cubic spline). This illustrates the property that the B-splines are able to reproduce a first order polynomial asxspoh @€., cases b, ¢, and d, but not

a).

Theorem 1: A valid scaling functionp(z) has ayth-order of whereﬁ;l(w) is the Fourier transform of a fractional B-spline
approximation if and only if its refinement filtef/ (z) can be as given by (10), ang(w) is a true function ofv bounded
factorized as on every closed interval. Because of our assumptions, ¢his

1421\ corresponds to a well-defined convolution product in the time
H(z) = ( - ) . Q(z) (19) domain
2 N~
N=———~——" distributional part 1 .
spline part (p(x) = (ﬂl_ * (po) (.ZU) with wo € S/ and /QDO(.’IZ')d:E = 1.
whereQ(z) is stable, i.e.|Q(e/*)| < C. ' (20)

The restricted version of this theorem fprcompactly sup- Itis therefore always possible to express a scaling function as the
ported—or equivalentlyf () FIR—with v integer is a standard convolution between a B-spline and a distribution. What The-
result in wavelet theory (cf. [6]). The important point here is thatrem 2 also tells us is that the B-spline part is entirely respon-
the present version holds for any reat> 0 with minimal re- sible for the approximation order of the transform. We will now
striction ony (Riesz basis). The proof is technical and will be&!se the convolution relation (20) to show that the B-spline part
published elsewhere [23]. brings in three other very useful properties.

B. B-Spline Factorization Theorem C. Reproduction of Polynomials

The idea here is to interpret Theorem 1 in terms of B-splines.We have already mentioned that the B-splines of degree
If we were to consider the first term of the factorization alondvave the ability to reproduce polynomials of degree lesser or
then the refinement filter would generate a fractional B-splirequal ton = [«]. Practically, this means that we can gen-
of degreecx = v — 1 [cf. (13)]. TheQ(=z) filter alone, on the erate all polynomials by taking suitable linear combination of
other hand, would generate some distributigne S’, which  B-splines. In particular, one can construct the following series
is typically not a true function (in fact, we will see later on thabf polynomials forp = 0,...,n = [a]:
it cannot have any Sobolev regularity at all). The only thing we
can say aboup is that it is lowpass (becaugg 1) = 1). Thus, Z KBS (x — k) = apox? +--- +app Witha, o =1 (21)
because of the convolutional nature of the two-scale relation, weez

obtain the following corollary, which constitutes the main result ) )
on which we will build our wavelet theory. which form a basis of the polynomials of degreebecause

Theorem 2 (B-Spline Factorization)y is a valid scaling @0 # 0. The ability of B-splines to reproduce a straight line

function of ordery if and only if its Fourier transfornp can (P = 1) is illustrated in Fig. 4. _
be factorized as The fact that (21) holds for the conventional case= n,

with rn integer, is not too surprising because the B-splines are

P(w) = Brl(w) -~ @o(w) themselves piecewise polynomial of degreeThe noninteger
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case [cf. Fig. 4(b)] is less intuitive but is only truly relevant for s 8
fractional wavelets, which exhibit a few exotic properties [11]. ~° Z(p(x -k)=1
The main point of this section is that the polynomial repro 1 .25 =0
duction property is preserved through the convolution relatio .
(20).
Proposition 3:Let ¢, be any distribution such that -5
J wo(z)dz =1 and [ 2'po(z)dz < +00,i =1,...,n. Then,
o(z) = BS * @o(z) reproduces the polynomials of degree 0.5
lesser or equal to = [«]. 0.25
When- is integer, Proposition 3 is a B-spline reformulation
of a standard result in wavelet theory [5], [6]. What is hovel her

is the extension foy = « + 1 noninteger, which is nontrivial. 2 4 6 8 RO
Proof: We assume that the residual filtehas sufficient -0.25¢ y
(inverse polynomial) decay for the moments @f to be _g.5

bounded up to ordet. In other words, we wanp,(w) to ben

times differentiable at the origin. This mild technical require- 19

ment—which is much weaker than compact support—ensur 8

that the convolutions and manipulations below are well-define 2 — ~

in the distributional sense. 8 kp(x—k)=x+b
We start by showing that the convolution betwegnand the

monomialz? produces a polynomiay,(z) of degreep 6

k=0

+o0o
wo(z) *x 2P = / (x — u)Ppo(u)du

:go@) xp—k(—mk/_:o i oo () du )
- ,

&
Moo

—a? + biaP " e 4 by = g,(x) > T 6 g F

; k(D k
with by, = (_ 1) < k > Mg, Fig. 5. lllustration of the reproduction of polynomials of degree 0 and 1 using
Daubechies scaling functions of ordee= 2.

The leading coefficient is one becaugél) = 1 & ml =

J wo(x)dz = ¢o(0) = 1. We then use this result to evaluate thgroof that is more accessible to an engineering audience is avail-

sum able in [26]. Note that Theorem 4—the converse part of Propo-
» oy » o o sition 3—is only applicable in the conventional framewogk:

D Kelw—k) =) K (voxf5) (@ k) compactly supported, and= ~ — 1. We have already encoun-

tered some counter examples with the fractional B-splines (i.e.,

P
=0 * Z ap,a?~* [using (20)and (21) ™= [v — 1] # v — 1), which are not compactly supported.
k=0

kezZ kez

In addition, note that the results in this section do not require
P the two-scale relation. As such, they are also applicable outside
=Y aprgpr(z) = 2" + 127" +---+¢,. the wavelet framework—for instance, in the context of interpo-
k=0

lation [27].
In addition, here, the leading coefficient is one implying that the L
sequence of these polynomials for= 0, . ..,n is a basis for D- Vanishing Moments
the polynomials of degree. O A wavelet transform is said to have + 1 vanishing mo-

This polynomial reproduction property is illustrated in Fig. Snents if the analysis wavelet is such that/ JYP’LZJ(JZ)d:L‘ =0,
for the Daubechies scaling function of order 2. Although no one= 0, ..., n. These vanishing moments are undoubtedly one of
will question the fact that the linear B-splines reproduce the cottie better known and most useful properties of wavelets [10]. In
stant and the ramp, it is much less obvious that the fractal-liparticular, they give the transform the ability to kill all polyno-
Daubechies functions are endowed with the same property. mials of degree [5], [21]. This property translates into a sparse
For sake of completeness, we mention the existence of a cogpresentation of piecewise smooth signals because the wavelet
verse implication which goes back to the Strang—Fix theory obefficients will be essentially zero over all regions where the
approximation. signal is well approximated by a polynomial, e.g., the first few
Theorem 4: If a functiony(x) reproduces the polynomials ofterms of its Taylor series. This will produce streams of zero co-
degreen and is compactly supported, thefw) = 7 x po(x).  efficients that can be coded with very few bits [28], [29]. The
This result was first conjectured by Strang in [24] and wagnishing moments also allow the characterization of singular-
later proven by Ron in a more abstract framework [25]. A receities based on the decay of the coefficients across scale—the
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so-called persistence across scale property of the wavelet trans- Proof: Let us denote byD(z) andD(z) the determinant
form [10], [30], [31]. The study of this decay plays an importantf the matricesM(z) and M(z) in (22), respectively. Then,
role in the analysis of fractal and multifractal signals [32].  clearly, D(z2=1)D(z) = 1. By invertingM (z~1)T, we get

The vanishing moments are nothing but an indirect manifes- : H(—21) :
tation of the ability of the scaling function to reproduce polyno- G(z) = D) = H(—z1)D(2). (24)
mials.

Proposition 5: If the scaling functionp(z) reproduces the As a result, imposing (19) yields (23), wittP(z) =
polynomials of degree, then the analysis wavelgéthasn + 1 277Q(—z"')D(z), which is bounded on the unit circle by the

vanishing moments. stability hypothesis. Conversely, sinfz) = G(—z"1)D(z),
This is a standard result in wavelet theory (cf. [5], [6]) that ignposing (24) with the assumption th&(z) is stable implies
rederived here for sake of completeness. (19) with Q(z) = 27 P(—271)D(z), which is stable as well.

Proof: The polynomial reproduction property is equivFinally, because/r < |(1 — e™/%)/jw| < 1forw € [-=, 7],
alent to saying that the polynomials are in the linear spave note that the factorization (23) wifP( 2) stable is equivalent
of {¢(x — k)},cz- Since the waveley) is perpendicular to to the conditionG(e’*) < C'- |w|” = O(Jw|"). O
{¢(z — k)},cz by construction (cf. the general biorthogonal To get a better feel for this result, we consider (23) and take
wavelet formulation of Cohen-Feauveau-Daubechies [8]), it fige limit to obtain the asymptotic form of the filter as— 0.
therefore perpendicular to the polynomials; in particular, tHésing the fact that — ¢/ = —jw + O(w?) and assuming that

monomialsz? withp =0, ..., n. O P(e’?) is continuous, we obtain

. .Thus, by cpmbining Propositions 3 gnd 5, we can claim that G(e3%) = By(—jw)”, asw — 0 (25)

it is the B-spline component once again that is entirely respon-

sible for the vanishing moments ¢f The above argument canwhere B, = P(1) = —277Q(-1)/G(-1) # 0 because
also be applied to the synthesis side of the transform. In othg(—1) < oo (stability) and@Q(—1) # 0 (¢ is of maximum
words, if the dual scaling function can be factorizedsés) = ordervy).

B~ 1« o (x)—meaning thap is of ordery—then the synthesis  The transfer function of the analysis wavelet is obtained by
wavelets) will have exactlyn + 1 = [4] vanishing moments taking the Fourier transform of (8) with= g andy) = 4.
(general biorthogonal case). When the analysis and synthesis ~ S el A (W

spaces are identical (orthogonal and semi-orthogonal cases), the h(w) = G(™7) - (5) ‘ (26)

number of vanishing moments are the same on both sides. |5 |ow-frequency response obviously depends on the behavior

of G(e’*) near the origin.
E. Multiscale Differentiator Theorem 7:Let ¢ and¢ be two valid biorthogonal scaling
functions withg(w) andg(w) continuous atv = 0. Then,p is

We will now show that another consequence of the B-spling ordery (i.e., 0 = A1+ o) if and only if
e.,p =01

factor is that the analysis wavelgt essentially behaves like K
a yth-order differentiator. The proof of this property rests al- 1[,(&)) =0 (|w|").

most entirely on the perfect reconstruction property of the fil- o ] )

terbank in Fig. 1. In the sequel, we will assume that the fodi"€ Proof is given in the Appendix. If we now assume that
filters 1 (2~1), H(z), G(2~1), andG(z) are stable in the sensep(?w) is continuous as well, we can eas!Iy obtain the asymp-
that their Fourier transforms are bounded. We also recall that fQUC version of the result by plugging (25) into (26) and making
perfect reconstruction property has an equivalefiormulation  US€ of the propertjim.. .o ¢(w) = 1. This yields

that is expressed by four biorthogonality relations between the ’lZ(w) —C,, - (—jw)", asw — 0

various filters pairs, which can be written in matrix form, cf. v ’

[33] with C, =277P(1) = —2‘27@ £ 0. 27)

G(-1)
Gz G(-z7Y T G(z) G(—=2) The practical implicatiqn of Thgorem _7 is that th_e_ wavelet
H(z"') H(-z7") g(z) g(_z) =L (22) transform act_s_as a mult|scale differentiator. Specifically, the
~ ~ -~ ~ wavelet coefficients will correspond to the samples of ttie
M(z-H)T M(2) derivative of a smoothed version of the input sigfiét):
These are strong constraints that have a direct implication on the (f(x),d(z —u)) =07 {p= f} (u)
form of the wavelet filter(z). where the smoothing kernel is defined by its frequency response

Proposition 6: Under the constraint of a stable perfect reconq;(w) _ ~*(w)/(jw)ﬂ,; it is necessarily lowpass and bounded

ecause of (27) and Theorem 7. This kernel essentially limits the
bandwidth of the signal being analyzed with two practical ben-
. efits. First, it regularizes the differentiation process by reducing
G(z) =(1—2)" P(2) (23)  its noise amplification effect, and second, it attenuates the signal
components above the Nyquist frequency so that the differenti-
where the filterP(z) is stable, i.e.,|P(ej‘“)| < C. Another ated signal is well represented by its samples (or wavelet coef-
equivalent formulation i€/(e/~) = O (|w|"). ficients).
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In the classical case whete= L is an integer, there is anwith a new subscript notation that makes the order of the func-
equivalence between (27) and the vanishing moment propettyns explicit, e.g.¢ = ¢,. We then use this relation to compute

This can be shown by determining the Taylor seriegjaf) therth derivative ofip for 0 < <~

arogrldw =0: ’l/NJ('w) =C -.(—jw)L + O(w”l_), whereCr, = "o (x) = "B x ().

J &™) (x)dz/L! is proportional to the magnitude of the first _ .

nonvanishing moment. Using (15) withy = r anda = r — 1 and noting tha~!(z) =
In the fractional case, there is no Taylor series of ofdand, (%), which is consistent with (10), we get

therefore, no direct equivalence with the vanishing moments 0" (x) = Ay o(2). (30)

property. The unique property of this kind of wavelets is that
they give access to fractional orders of differentiation, whichhis explicit time-domain differentiation formula is known for
can be very useful in some applications [34], in particular, wheninteger, but its extension for arbitraryis new to the best

dealing with fractal-like signals. of our knowledge. This result indicates that the functjon_,.
generates a basis for representing the fractional derivatives of
IV. WAVELET DIFFERENTIABILITY AND INTEGRABILITY the scaling function and of the wavelet; indeed, by linearity, we

have tha” {¢(z/2} = 23, g(k)0"¢(x — k). The question

) . - ; . - At then arises is the following: How far can we differentiate,
of wavelets is their stability with respect to differentiation an

) ) ; ) , r equivalently, how much B-spline can we “peel off” before
integration. In the conclusion of his classical monograph, Meygl, <, cajied residue in (29) really blows up? What we
writes: “everything takes place as if the wavel¢ts: /a) were S '

: ; : ; .~ mean by “blowing up” can be made mathematically precise by
e!genvectors of the d|fferer_1t|al operatdt, with cqrrespond_lng requiring that somé ,-norm of the residue.,_,. remains finite.
eigenvalue:™*” [35]. We will now use our B-spline formalism ;s haticular interpretation turns out to be intimately related

to shed some light on this important aspect of wavelet theoryto the concept of smoothness in a gendrakense and leads to

As starting point, we use the B-spline faCtor'z""t'o'?hefollowing smoothness characterization theorem.
(20) together with the B-spline convolution property Theorem 8: If ¢ (z) = ﬂi‘l % o (z) With ., € L,,

y—1 _ v—1—s s—1 . . .
]SﬂJr : _b' ﬂ+h * Iﬂ+ )I to manlflljllate .the basic Sca“ngthenf)’“% € L,, i.e.,p, hasr derivatives in thel, sense.
unction biorthogonality relation as follows: Proof: First, we rewrite (30) as

One of the primary reasons for the mathematical succes

<95(‘17> 50(*77 - k)> :<(ﬂi71 * (Z))(”E)( 1_1_3 * (,00)(517 - k)> ar(p‘/(w) = A:-(Pﬂ/—r(il;) = Z ar(k)‘p’y—r(x - k)
Pi+s Py—s kez
=0y, (28) where the coefficients of the finite difference operator are given

_ _ by (12). We also recall that. (k) ~ O(1/k"+1), which implies
where/32 (z) = (% (—=) denotes the anticausal B-spline of dethat the sequence. (k) is absolutely summable (i. ez, € I;
greec. This formula suggests that the new pair of functiongr » > 0). We then use the above formula in conjunction with

(¢5-+s, p—s) should also generate a valid biorthogonal basis. Minkowsky’s inequality to obtain the following bound for the
the sequel, we will show that these scaling functions play a crg- -norm of the derivative

cial theoretical role for they provide the building blocks for the

fractional integrals and fractional derivatives of the analysis afid” |, <Y lar (k)| lloy—r(z = k)l =llarlly, -llo-rll,,
synthesis wavelets, respectively. For this purpose, we will first kez

investigate the extent to which (or equivalently:)) is differ-  which proves the desired results. O
entiable and propose a peeling formulation of smoothness thatheorem 8 provides an explicit link between the smoothness
provides some new insights on the various notions of wavelsioperties of wavelets and the B-spline factorization. It is also
regularity. We will also prove that the B-spline component is efteresting because it yields a general and coherent approach
tirely responsible for the smoothness of the basis functions. kdirthe concept of smoothness, i.e., fractional differentiability in
nally, in Section IV-C, we will specify the biorthogonal wavelethe 7.,,-sense. Fop = 2, the present definition of smoothness is
basis that is associated with the fractional differentiation opesquivalent to the widely used Sobolev regularity [36]. Another

ator. interesting case is — oo because it penalizes the worst case
_ (max norm); this is very close to Holder regularity, even though
A. Smoothness: Peeling Theory the latter is a measure of continuity rather than of differentia-

In this subsection, we characterize the fractional derivativedity [19], [37].

of the scaling function and show that the presence of theOur peeling theory of smoothness is illustrated in Fig. 6 for

B-spline component is absolutely necessary for these to the case of Daubechies’ scaling function of order 2. It is clear

well-defined. The argument is entirely based on the convolfiom the graph that the residue,_, becomes rougher as a

tion property of B-splines (cf. Section 1I-C). Specifically, wehigher order B-spline component gets pulled out. These various

rewrite the B-spline factorization (20) in terms of the functioflots were obtained by running a Fourier version [38] of the cas-

¢~ that are already encountered in (28): cade algorithm with ten levels of iteration on the residual factor

of the refinement filter corresponding ¢o,_,- in (29). Past the

¢y () = B % @y (z) Wherep.,_,.(z) = /ﬂ_”_l «@o(z) limiting case ¢ = 0.55) [37], ¢.,—, is no longer bounded, and it

(29) does not make much sense to attempt to represent it graphically.
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Fig. 6. Residual factop._..(x) in (29) as a function of for Daubechies’ scaling function of order= 2. The critical valuer.., = 0.55 corresponds to the
limiting case wherep, .(x) is bounded« derivatives inL .. -sense). It also yields the Holder exponent.

Note that there are computational techniques for determinif@lows from the Sobolev inequality (for compactly supported
this critical Holder exponent (cf. Section IV-B). functions)smax —1/2 < a < Spmax, Wherea > m is the Holder
To get some further insight on oulr, notion of smoothness, exponent ofp. In fact, our bound is sharp, as demonstrated by
we now consider the example of the fractional B-splines. Tliee example below.
borderline cases here are the B-splines of negative degree; thedghe B-splines of ordey are very regular, but they fall short of
can be shown to belong to the following functional spaces: the maximum possible Sobolev smoothness by 1/2. Yet we can
1 perturb the B-splines to achieve the maximum possible smooth-
B1%(x) € Ly, forp > — and0 < u < 1. ness by taking)(z) = (1+¢+27") /(2 +¢) in (19), where
w 0 < ¢ < 1is small but nonzero. Since we are dealing with a
For the fractional splines, we have= o + 1, so that we can two-tap residual, the Holder (alids.,) and Sobolev (aliag.;)
write (29) asg¢ = f’[l * 397", where]™" = ¢,_, isthe exponents can be computed explicitly using the technique out-
corresponding residue. Applying Theorem 8, we conclude tHated in [19] and [37]. Specifically, we find that
B has up tos(p) = « + 1/p derivatives in thel,-sense with

the strict equality only being reached for= co. Indeed, we a =7 — log, (22-:_2;>
have already mentioned thatt 3¢ () is boundedd derivatives c N
in L), which is consistent with the fact that' is a-Holder =Y~ 5m3 O(e”), for0<e <1
continuous. _ o 1 2+ 2 + &2
There is also a converse part to Theorem 8, albeit only within Smax =V~ 5 log, <2 : W)
the restricted framework of wavelets. )
Theorem 9:If ¢ is a valid scaling function such th&ty € =y — < + O(e*), ase — 07.

Lo, theng(z) = 351 % po(z) with g € Lo. 81n2

The proof is more technical and is given in the AppendixThus, by lettings tend to 0", we are able to saturate the above
Since the order of the B-spline factg¥~! in Theorem 9 is inequalities such that = s,... = a, which proves that the
s, the above statement is equivalent to saying that the orderund in Theorem 9 is sharp. If we now push it a little further
of a valid scaling functiorp is necessarily greater or equal tdoy lettinge = 0, we increase the B-spline factor by one which
its critical Sobolev exponent,,,x. In other words, we have makes us jump t6,,.x = 7 + 1/2, while the Holder continuity
that9®p € Ly = v > 8, Vs < Smax. ThiS iS @ new re- remains atv = s(co) = v, but atthe same time, the order is also
sult that extends a classical theorem in wavelet theory statimgreased by one when compared with the previous degenerate
thatC"-continuity ¢n integer) implies some minimum approx-case.
imation order:p € C™ = ~ > m [5]. Note that our re-  The functions that saturate the inequality (isg,.x = y) are
sult is slightly more generous (i.e., it yields more order); thigie only ones for which the residual in (29) can bé.in Indeed,
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if oo would have some residual Sobolev smoothness, it would (89) for fractional differentiation, which is specific to scaling
possible, by Theorem 9, to factor out a larger order B-spline th@tr refinable) functions.

would contradict the assumption thatis of maximum order

~. For all other casesy is not in L, and is typically only a C. Biorthogonal Wavelet Basis for Fractional Differentiation

distribution; for instancepy(z) = §(x) € S in the case of  The stability of wavelets with respect to differentiation is a

the B-splines. We can therefore safely state thain (20) has prerequisite for using them to characterize smoothness spaces,

no Sobolev regularity at all, which also means that there is §pparticular, for proving that they provide unconditional bases

smoothness possible without the B-spline part of the waveletor Sobolev, Holder, and Besov spaces [35]. Although these
While smoothness implies approximation order, there is géfinctional aspects of wavelet theory are beyond the scope of

erally no such implication in the reverse direction [39]. In othghs paper, we want to make an interesting connection by iden-

words, the presence of the B-spline factor is not enough to gugfying and characterizing the biorthogonal wavelet basis asso-

antee that the scaling function isin, not to mention its differ- cjated with the fractional differentiation operator.

entiability. Indeed, one can conceive of very irregular wavelets The jgea is simple and is based on the following manipulation

where the distributional patt, is so rough that it counterbal- of the wavelet biorthogonality relation:

ances the inherent smoothness of the B-spline factor. This is the )

reason why smoothness is relatively difficult to control when (y(x), ¥(z — k)) = (0" (), O°¢Y(x — k)) = 6, (31)

applying conventional filter design procedures; it is a property

that is usually checked posteriori whered”*® «—— (—jw)~* denotes the anticausal fractional in-
tegration operator; it is the adjoint 6f * «—— (jw)~*, which
B. Determining Wavelet Smoothness is the inverse of the fractional differentiation operaiérBased

The peeling theory provides an interpretation of wavelé’P the r(_aSliItsm Section IV-A, we obtain the explicit form of the
erivative” wavelet

smoothness that is appealing intuitively. However, we shoul

not be fooled by the apparent simplicity of the argument. D) () . 9s, _ . A

Wavelet smoothness is and remains one of the most difficult V(e) = 0(e) = 2 ng(k)tp%s@x k)

theoretical aspects of wavelet theory. While Theorem 8 pro-

vides a mathematical criterion for testing differentiability in thavherep., _, is defined by (28), and(z) = 2°(1—271)*G(=).

L,-sense, it does not give a numerical method for determiniige now close the loop by showing that the biorthogonal pattner

the critical exponents(p) for a given filter H(z). As far aswe 0f ¢, in (29), that is, the scaling function

know, an exact computation is only possible for determining the . 1 -

Sobolev index (i.e..Ls-smoothness) of compactly supported Pits = P27 % 95

basis functions. The preferred method is based on the deterg}i—
Y

kez

. . . ovides the complementary basis for expanding, which
nation of the spectral radius of the so-called transition operat " y b ngy

in practice, this amounts to computing the maximum eigenval

of a reduced transition matrix associated with the residual filt

Q(z) [6], [20]. Various techniques have also been propos

to estimate the Holder exponent (alids,-smoothness) [37], B°H(w/2)

[19]. These methods are not exact anymore (except whisn m
— €

'the s-order fractional integral of the analysis wavelet. This
H’Fanipulation is performed in the Fourier domain starting from
6)

symmetrical) but can provide tight upper and lower bounds. ;-s b() S, 9-s ’

Determining fractional orders of smoothness in norms (_%)S
other thanL, is more challenging mathematically, especially w27 /2 (@
since there is no single universal definition of fractional X (1—€] ) P(e’%)p <§>

differentiation in the time domain. Mathematicians have turneci1 kev h is th It of ition 6. which all
the difficulty by testing the appartenance of the function td"€ K€Y ire |s|t € resutlg Pfroposmor; » whic af?ws us
some “smoothness” spaces. Villemoes [20] proposed to stu xtract t ere evant B—sp Ine factor as opgsag 7. After -
wavelet smoothness using Besov spaces, which leads to jYgrse Fourier transformation, we end up with a stable, explicit

determination of a critical Besov exponent that is qualitativefjrPresentation
similar to the notion of.,,-smoothness that we have considered 7 (_s s T - -

here. His approach is IE)ased on the fact that wavelets provide v )(x) =0 (@) =2 Z 9—s(k)P54r(20 = k)
unconditional bases for Besov spaces [35]. More recently,

Micchelli and Sauer have proposed to extend the HoldahereG_,(z) = 27°(1 — z)7 *P(z). Indeed, we can invoke
notion of continuity toL,-space by introducing what theyYoung’s convolution inequality (cf. [42])

call generalized Lipschitz spaces [40]. Their formulation is

general but also rather involved—about 90 pages of dense 1Gslly, <18, - ey,

mathematics. By contrast, our approach to measuring wavelet R ~ _ 1
smoothness is much closer to a classicalSobolev analysis, Which proves thap, € L, = ¢,4s € L, (sincefZ™" ¢
except that the traditional method fpr # 2 is restricted to 1, s > 0). Hence, we have established that the new wavelet
integer orders of differentiation. What makes the SObOIeVzThis is a suggestive denomination that we are happy to borrow from
technique applicable here is our explicit time-domain formublaidyanathan [41].
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Sobolev smoothness Unconditional bases
o pel, — for Besov spaces

IRER IAND__> h

B-spline factorization: Approximation order: Multi-scale differentiator
=B * g, = L =0(a") S | J(0) = (-jo)’, ©—0

U ﬂ. generalcase: n<y<n+1
compact support: Y =n+1 (Strang-Fix, 1971)

Polynomial reproduction
degree: n=[y-1]

g

Vanishing moments:
J.x”ﬁl(x)dx =0, p=0,...,n

Fig. 7. Summary of wavelet theory: main properties and equivalences.

pair ;)(~*), ¢(*)) generates a biorthogonal basis that igjn V. CONCLUSION
provided that*y € L, andy € L,. Note that it is essential
here to work with wavelets because the fractional integral of;
scaling function is generally not ih, (sinceg(0) # 0).

Finally, by using the rescaling proper®® {f(z/a)} =
a=*0°{f}(z/a), we obtain the differentiation formulas for
the basis functions:

In this paper, we proposed a new spline-based interpretation
hd derivation of some fundamental wavelet properties. Our
argumentation entirely rests on the representation of a scaling
function as the convolution between a B-spline and a distribu-
tion: ¢, = 71 x ¢y. The B-spline constitutes the regular part
of the Wavelet, and its presence is necessary (and sufficient) for
the transform to have approximation order- 0 (cf. Theorem
0° {ihix} = 279" ando~* {Jhk} =2is7*)  (32) 2).In particular, this implies that one cannot build a multireso-
’ ’ lution wavelet basis of., without any B-spline factor. We have
also shown that the key properties of B-splines (smoothness,
which are the “eigen-relations” to which Meyer was alludinggifferentiability, reproduction of polynomial, etc.) get carried
even though he did not write them down explicitly. Of coursever to the scaling function in an essentially mechanical fashion
the qualifying statement is not rigorously correct—the imehrough the convolution relation. These results and the various
portant point is that there are basis functions with the saraquivalences that have been established are summarized in
wavelet structure on both sides of the identity. The practicRlg. 7. The advantage of approaching the problem from this end
relevance of these “differential” wavelets is that they give usig that these basic properties are relatively easy to understand
direct way of gauging the fractional derivative of a signal basédr the B-splines because of their simple analytical form in
on its wavelet coefficients in the original basis. Specnﬁcall;both the time and frequency domain. This particular point of
we have that f, ;. k) = (0°f,0Z S k) = 2”(8Sf 1/1 )), view leads to the conclusion that the primary mathematical
which implies that the original wavelet coefficients d|V|ded byvavelet properties—order of approximation, reproduction
2ZS are the coefficients 0° f in the modified wavelet basis of polynomials, vanishing moments, and smoothness of the
{1/; k} This provides a strong hint as to why the Sobolebasis function—are entirely due to the B-spline component.
norm of a signal can be measured from thenorm of its Another interesting property that has been explained from the
rescaled wavelet coefficients. The Besov case is analogdsspline perspective is the stability of the wavelet basis with
with /,-norms being used instead; the argument there is moespect to fractional differentiation. Our key observation is
involved and relies on some Riesz-typg-norm equivalences that there is a direct correspondence between the process of
[35]. In addition, note that the wavelets that have just beenoving a B-spline factor from one side to another in a pair of
specified are fractional ones, which, in themseves, may sehierthogonal scaling functions and the exchange of fractional
as ama posteriorijustification for our extended formulation.  integrals/derivatives on their wavelet counterparts.



482 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 2, FEBRUARY 2003

If these fundamental properties are to be attributed to thdiere we have define@o(z) = 2°H(z)/(1 + z=1)°. In par-
B-spline part exclusively, then what is the purpose of thcular, this implies that
distribution g corresponding to the residual filté€}(z)? This Y
part is essential for imposing additional propert(ie)s—such as |Qo(¢”*)PB(w) < B(2w).
orthonormality—and, more important, to balance the localve now prove thaf3(w) is integrable over{r, ).
ization properties (size) of the analysis and synthesis filters inFirst, we observe thaB(w) is integrable over any closed
Fig. 1. B-splines are optimal in terms of size and smoothnessibset! of [—, ] that does not include 0. This is because
but they are not orthogonal. To construct a pure spline wave]et_ e~7¥|~2 is bounded ovef, which implies thatB(w) is
transform, one needs to orthogonalize the B-splines [43jounded by> ez lw + 2k7|?%|p(w + 2kx)|? up to a multi-
[44] or to specify a dual pair of spline functions [45]-[47];plicative constant. Now, becauge|*|p(w)| is in Ly
in both cases, this is equivalent to selecting a distributional sel )
part of the formpg(z) = 3,7 p(k)8(x — k), wherep(k) is > lw + 2k **|p(w + 2k))|
an appropriate digital filter. However, the implementation of kez
these (semi-orthogonal) spline transforms requires IR filteris,in L, ([—=, 7]) and, thus, is inL (1).
which is often considered a handicap. Early on, DaubechiesSecond, the continuity ¢f{ (e/)|—and of|1+e 7 |*—at 0
and others [8], [9] have shown that the only way to construghplies that for any: > 0—here, we choose < 1/2—we can
wavelets and basis functions that are compactly supportiitt 0 < w, < 7 such that for allw| < wy, |Qo(e™7*)| > 27°.
on both sides (analysis and synthesis) is by careful selectioonsequently
of the factorQ(z), eventually moving it to the analysis side, o
which yields biorthogonal spline wavelets [8]. This explains Viw| < wo, 27T B(w) < B(2w).
why all popular wavelet families (Daubechies, CoifletsThen, we defing,, = [, B(w) dw, wherel, = 27wy x
Cohen-Daubechies-Feauveau, 9/7, etc.) include nontrivigl1 —1/9] U [1/2,1]). b, are bounded quantities because the

distributional factors@bo(ﬂi’) and/or QO()(ZL’), which we like to In’s are closed subsets p‘f'ﬂ-77r] \ {0} We thus havén_,’_l <
view as the price to pay for the additional but more cIassicg?e—lbm i.e.,b, < 22" "p, or, by summing up all the contri-

filter design constraints (e.g., FIR filterbank and orthogonalityly,tions

b
/ B(w)dw < %
APPENDIX lw/wolE[1/27 1] 1 =2%=
PROOFS which is bounded, independentlyofLettingn tend to infinity,
A. Proof of Theorem 7 we conclude thaB(w) is integrable in Fwg, wo] (Fatou’s the-

] . - orem), in particular, in the neighborhood of 0. Thui¥w) is
If ¢ is of ordery, thenG(e?*) = O(|w|”) by Proposition 6. fully integrable in [, 7].

This, together with the wavelet scaling (26) and the bounded-|; is now a simple matter to state that the functiy{w) =
ness ofp(w) (consequence of the Riesz condition), implies th%(w)/[}s—l(w) is in L,. This is because

P(w) = O(lwl")

Conversely, ifp(w) = O(Jw|?), then G(e/)p(w) = / |20 (w)|? dsz/ |po(w2k)|? dw:/ B(w) dw<oo
O(|w|"). Now, using the assumption that(w) > 0ina kez ” T -
neighborhood ol = 0 (consequence of the continuity gfw) where B(w) is the same as defined by (33) and has just been
atw = 0 sincep(0) = 1) and the stability of the filtetz(z), shown to be integrable in{r, 7]. 0
we can claim tha&(e’*) = O(|w|"). This is also equivalent to
(23), whereP(z) is stable, as seen in the proof of Proposition REEFERENCES
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