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ABSTRACT

High-speed is an essential requirement for many applications
of image registration. However, existing methods are usu-
ally time-consuming due to the difficulty of the task. In this
paper, different from usual feature-based ideas, we convert
the matching problem into an algebraic optimization task. By
solving a series of quadratic optimization equations, the un-
derlying deformation (rotation, scaling and shift) between im-
age pairs can be retrieved. This process is extremely fast and
can be performed in real-time. Experiments show that our
method can achieve good performance at a much lower com-
putation cost. When used to initialize our earlier parametric
Local All-Pass (LAP) registration algorithm, the results ob-
tained improve significantly over the state of the art.

Index Terms— Image registration, Algebraic optimiza-
tion, Local All-Pass filters.

1. INTRODUCTION

Image registration is the progress of estimating the geomet-
ric transformation between two images[22]. It is an essen-
tial topic in many fields, such as biomedical imaging, com-
puter vision, remote sensing, and cartography. Although im-
age registration has been studied for decades, still no algo-
rithm is able to solve the problem consistently in all settings.
In addition, many application scenarios of image registration
put higher requirements on the calculation speed of the reg-
istration algorithm. For example, video stabilization requires
real-time registration of high-definition images[17], Further-
more, remote sensing requires faster algorithms because satel-
lite images are usually quite large.

The geometric distortion model is usually chosen to be,
either global, typically involving parametric transformations
with relatively few degrees of freedom (e.g., affine transfor-
mations), or local/elastic, typically involving transformations
with many degrees of freedom. Elastic methods estimate the
displacement field pixel-by-pixel and are suitable when the
image pairs are related through a complex distortion. Various
optimization criteria have been considered to address image
registration[15]. Feature-based methods, for instance, esti-
mate the displacement between the image pairs by identifying
an optimal relationship between the extracted features of the

image, such as minimum relative motion entropy [16], match-
ing guided by locality preservation [9] and local linear trans-
formations [10]. These approaches can reduce computational
complexity, but the accuracy of feature extraction limits their
effectiveness. Furthermore, there is even a risk that images
without enough features cannot be registered.

Global registration methods establish a global paramet-
ric geometric relationship between images like, for instance,
symmetric block-matching [13], DIRECT-type global opti-
mization [21] and enhanced affine transformation [12]. How-
ever, these methods tend to use increasingly more parameters
to represent more complex transformations. This complex-
ity renders the computational load very heavy, and may not
always lead to reliable results. Due to the need for speed
in practical applications, we believe that a complete global
model should be constructed using few parameters, so as to
minimize the computation time.

To solve the problems mentioned above, we propose an
algebraic optimization approach for global image registra-
tion(AR). More precisely, we express the image gradients
using complex numbers (Wirtinger gradients, or Fourier-
Argand gradients [20]) and solve several global optimization
problems that will provide us, successively, with the rotation
angle between the images, then their scaling factor and shift.
It is worth noting that the optimization problems that we
consider have closed-form solutions, hence that their imple-
mentation is very efficient. Furthermore, combining AR with
our Local All-Pass (LAP)[4, 19] registration algorithm, can
not only solve possible initialization issues, but also better
take advantage of its ability to precisely estimate the dis-
placement fields at the pixel level. The proposed method
does not require any learning process and can be as fast as
real-time image registration. The experimental results show
that our method not only achieves highly accurate registration
of images from global to local displacements but also runs in
real-time.

2. METHOD

We first formulate the task using vector fields. Then, we de-
sign multiple optimization targets and estimate the similarity
transformation according to the relationship between the opti-
mal values. Finally, we combine it with the LAP[3] to obtain



the elastic registration results.

2.1. Problem formulation

Consider two 2D continuous function I1(x) and I2(x) that
represent the source and target image. We formulate the prob-
lem as finding a similarity transformation that characterised
by A ∈ R2×2 and b ∈ R2, such that,

I2(x) = I1(Ax+ b) (1)

Where x = (x1, x2)
T ∈ R2 is the pixel coordinates, b is the

translation and A = s×
[
cos θ sin θ
− sin θ cos θ

]
is the matrix contain-

ing rotation and scaling. We then express the gradient of the
images as complex images (Wirtinger gradient)

g1(z) = ∇IT1

[
1
i

]
and g2(z) = ∇IT2

[
1
i

]
,

where z = x1+ ix2 ∈ C. Note that we do not assume that, as
a function of the complex variable z, these complex functions
are analytic. When the images are noisy, we can alternatively
use more robust gradients calculated from the Fourier-Argand
representation [20]. The linear geometric transformation be-
tween the two images can also be expressed using complex
variables, and their Wirtinger gradients satisfy the following
relationship,

g2(z2) = s−1e−iθg1(z1)

z2 − z0 = s−1e−iθ(z1 − z0) + t

d2z1 = d2z2 × s2
(2)

Where g2 is rotated by θ ∈ R and scaling by s ∈ R, around
the center point z0 ∈ C, followed by translate t ∈ C pixels.
d2 is the differentiation notation over two dimension.

2.2. Optimization-based rotation acquisition

This subsection aims to estimate two images’ rotation an-
gles without knowing the scaling factor and translation rela-
tionship. So the estimation algorithm should be rotation-
covariant under the premise of translation-invariant and
scale-invariant. We propose to minimize a quadratic crite-
rion J 0

g (w) =
∫
Re{wg(z)}2d2z under the constraint that

|w| = 1 for the vector field g(z) defined in eq. (2). This is a
constrained optimization problem format as follows,

min
w∈C

∫∫
Re{wg(z)}2d2z

s.t. |w|2 = 1, angl(w) ∈ [−π

2
,
π

2
)

(3)

This optimization problem can be expressed in algebraic
terms when the integral is discretized as a sum over all pixels.
More specifically, since

2Re{(wg(z)} = wg(z) + wg(z) (4)

We have,

min
x

||Ax||2F , A = [g(z), g(z)] ∈ CN×2

s.t. ||Bx||2F = 1, B = diag(
√
2

2
,

√
2

2
), x = [w, w̄]T

(5)
Solve this equation by Lagrangian Multiplier, we have,

L = tr(xTAHAx)− tr(ΛT (xTBHBx− I)) (6)

where Λ ∈ Rd×d is the Lagrange multiplier matrix. Equating
the derivative of L to zero gives:

∂L
∂x

= 2AHAx− 2BTBxΛ
set
= 0 (7)

This shows AHAx = BHBxΛ, Which is a generalized
eigenvalue problem for Ã = AHA and can be solved using
singular value decomposition (SVD). This equation has two
independent solutions, corresponding to two different real
values of λ, The minimum of eq. (5) is obtained by choosing
the smallest of these values. And the associated eigenvector
should be multiplied by an adequate phase term eiα so that, if
x = (w1, w2) we have w1 = w̄2. The optimal value is finally
obtained by,

w∗ = argmin
w

J 0
g (w) = w1 (8)

Now let’s consider two vector fields g1(z), g2(z) obtained
from I1 and I2 respectively. If we have,

w∗
1 = argmin

w
J 0
g1(w), w

∗
2 = argmin

w
J 0
g2(w) (9)

then through the proof at the end of this subsection, we can get
the optimal value to satisfy w∗2

1 = w∗2
2 e−2iθ, which indicates

the rotation angle as

θ =
i

2
ln(

w∗2
1

w∗2
2

) (10)

Proof. Let’s start with minimize the criterion for g2, as fol-
lows

min
w

∫∫
Re{wg2(z2)}2d2z2

=min
w

∫∫
Re{ws−1e−iθg1(z1)}2d2z1 × s−2

=min
w′

∫∫
Re{w′g1(z1)}2d2z1

(11)

Where w′2 = w2e−i2θ. Hence if we denote by w∗
1 , w∗

2 the
parameter values for which J 0

g1(w) and J 0
g2(w) is minimum,

then w2
1 = w2

2e
−2iθ.

2.3. scale and shift acquisition by multiple optimizations

This section proposes a method to estimate the scale and shift,
assuming the rotation angle is known. Together with sec-
tion 2.2, a complete algebraic algorithm is formed to find the



geometric similarities. To do so, we proposed to minimize
several criteria successively, each minimization providing one
equation. We first consider the following optimization,

min
w∈C

∫∫
Re{(w + az + bz̄)g(z)}2d2z (12)

This is a quadratic optimization without constrains, we ex-
pand it to get,

L = c1w
2 + c2w̄

2 + 2c3|w|2 + 2c4w + 2c5w̄ + c6 (13)

Where

c1 = c̄2 =
1

4

∫∫
g(z)2d2z, c3 =

1

4

∫∫
|g(z)|2d2z,

c4 = c̄5 =
1

4

∫∫
g(z)

(
(az + bz̄)g(z) + (bz + az̄)g(z)

)
d2z

(14)
Calculate the derivative of L to w and w̄, we have,

∂L
∂w

=
∂L
∂w̄

= c1w + c3w̄ + c4
set
= 0 (15)

This system of equations has a solution as long as det =
|c1|2 − c23 ̸= 0. And the optimal value w∗ can be obtained
by solving this equation.

Here we introduce how to obtain s and t based on this
carefully designed optimization. We rewrite z2 in eq. (2) as,

z2 = s−1e−iθz1 + u (16)

where u = z0(1−s−1e−iθ)+t. This can be regarded as rotat-
ing and scaling the image by θ and s times, then shifting for
u pixels. We denote eq. (12) by minw Jg(w, a, b), and solve
following series of optimization equations: First, For some
fixed a1, b1, if we have w∗

1 = argminw Jg1(w, a1e
−2iθ, b1)

and w∗
2 = argminw Jg2(w, a1, b1) , then we can have fol-

lowing equation,

w∗
1 = (w∗

2 + a1u+ b1ū)se
−iθ (17)

This can be proved briefly at the end of this subsection. Sim-
ilarly, we consider minimize for some fixed a2, b2 that differ-
ent from a1, b1. Let’s assume w∗

3 = argminw Jg1(w, a2e
−2iθ, b2)

, as well as w∗
4 = argminw Jg2(w, a2, b2), then we can get

w∗
3 = (w∗

4 + a2u+ b2ū)se
−iθ (18)

Eventually, combining this redundant set of equations pro-
vides a possible expression for s and u. And θ is chosen to
be one of the two values in eq. (10) that makes s and u as
compatible as possible the equations eq. (17) and eq. (18).
There are many options to choose parameters for acquiring s
and u. And in practice, we set different parameters respec-
tively to achieve this. This separable method will prevent
inaccurate results due to estimating too many parameters at
one time. A typical solution for estimate the shift is to use
a1 = b1 = 1, a2 = −b2 = 1. And u can be calculated as,

Re{u} = (w∗
1s

−1e−iθ − w∗
2)/2

Im{u} = (w∗
3s

−1e−iθ − w∗
4)/2

(19)

Proof. We start at optimizing the eq. (12) equation on g2 and
derive it by

min
w

∫∫
Re[(w + az2 + bz̄2)g2(z2)]

2d2z2

=min
w

∫∫
Re[(w + a(s−1e−iθz1 + u)

+ b(s−1eiθ z̄1 + ū))s−1e−iθg1(z1)]
2d2z1 × s−2

=min
w′

∫∫
Re[(w′ + a′z1 + bz̄1)g1(z1)]

2d2z1

(20)

Where w′ = (w + mu + nū)se−iθ and a′ = ae−2iθ. This
shows that if we have a package of optimization, where a =
a1e

−i2θ and a = a1 separately, then eq. (17) and eq. (17)
holds.

2.4. Combination with Local All-Pass registration

LAP[4] is a fast and robust algorithm that treats image shifts
in the spatial domain as phase changes in the frequency do-
main. The process is modeled by a local all pass filtering,
written as e−juTω = ĥ(ω) = p̂(ejw)

p(e−jw) Written in the spatial
domain as forward and backward versions of filter p respec-
tively, we have p[−k] ∗ I2[k] = p[k] ∗ I1[k]. Then, LAP
approximates this filter by combining linear bases in the time
domain, papp[k] =

∑
n cnpn[k]. Finally, the displacement

retrieved from the all pass filter is

uLAP(x) = j
∂ log(Happ(e

jω1 , ejω2))

∂ω1,2

∣∣∣∣
ω1=ω2=0

(21)

From here, we can see that this process may fail if the shift or
rotation is larger than the filter size. This issue can be handled
if we combine it with our Algebratic Registration algorithm
while keeping the LAP’s strengths for precise pixel-level es-
timation. Assuming the transform we obtained from AR is
noted as A and b, then we have, uAR(x) = (I − A−1)x +
A−1b Together with the estimated displacement field between
source image I1 and affined target image I2(x). We have

u(x) = uAR(x) + uLAP(x− uAR(x)) (22)

And the final displacement field is

u(x) = (I−A−1)x+A−1b + uLAP(A
−1x−A−1b) (23)

3. ANALYSIS

In this section, we analyze based on the following aspect: (1)
The invariant property of the algorithm by different settings.
(2) The speed of the algorithm.

3.1. Scale and translation invariance for the rotation esti-
mation

One key reason our algorithm can succeed is its scaling and
translation invariant when estimating the rotation angle. This



Fig. 1: Invariance property of the rotation estimation: When
estimating the rotation angle between two images, the differ-
ence in image scale or translation have minor effect on the
results.

Table 1: Running time of different algorithms.

Methods SIFT flow[7] NTG[2] SelFlow[8] AR (Ours)

Time (s) 84.7 15.5 4.3 0.07

section verifies the robustness of rotation estimation under
various transformations. The experiments show in fig. 1. The
results demonstrate that the scaling change and pixel trans-
lation accompanying the image rotation does not affect the
rotation estimation.

3.2. Speed test

One of the advantages of our Algebraic Registration algo-
rithm is its low complexity. This is because it only requires
solving a series of optimization with closed-from solutions.
We test our method on an image in 700 × 1000 pixels with
an Intel Core i9-9880H. The speed comparison is shown in
table 1. We can see that it is much faster than others.

4. EXPERIMENTS

4.1. Test on synthetic data

We numerically validate our method on synthetic images. For
a raw image of 400×400 pixels, we first enlarge it to a size of
800 pixels using zero-padding. Then we construct the target
image by rotating it by 60 degrees, scaling it by a factor of
1.5 and translating it by (60, 40) pixels. We use the Median
Absolute Error (EMed), Average Absolute Error (EMean), the
SalC[19] and running time as evaluation metrics. The results
show in table 2. We can see that this method can have a good
result with extremely fast speed for an image that LAP cannot
handle. Combining AR with LAP, the method can be accurate
with a relatively fast speed.

4.2. The oxford affine dataset

We compare our method with others in the Oxford Affine
Dataset[11]. We use the Fourier-Argand gradient[20] in this
test to replace the Wirtinger gradient. Since our results are
even better than the provided displacement field(as shown in

Fig. 2: Example registration results. (a). The source and tar-
get images are visualized in two colors. (b). Provided dis-
placement field. (c). The original LAP method fails in this
case. (d). Our method shows good performance.

Table 2: Performance test of synthetic images

Synthethis Image (800 × 800 pixels)
EMed Emean Pars SalC Time (s)

LAP 7.15 7.66 0.979 41.66% 1.365
AR (ours) 1.47 1.41 0.976 81.09% 0.079
AR+LAP(ours) 0.059 0.062 0.976 97.63% 2.22

fig. 2 (b), which is not perfect), we evaluate algorithms by two
reference-free metrics, called parsimony(Pars) and salience
correlation(SalC)[19]. The results are shown in table 3. Our
method can achieve better SalC results than others.

5. CONCLUSION

This paper proposes an algorithm that converts the image reg-
istration problem into an algebraic optimization problem. The
method can estimate the geometric similarity of image pairs
extremely fast, and can eliminate the deficiency of LAP at
a low cost. Future works include real-time video stabiliz-
ers, group-wise registration, or high-resolution medical image
registration.

Table 3: Methods comparison on the Oxford Affine Dataset

Bikes Trees Leuven
Pars SalC Pars SalC Pars SalC

Demons[18] 1.27 21% 1.28 28% 2.14 61%
MIRT[14] 3.08 44% 4.52 24% 3.45 59%
bUnwarpJ[1] 0.22 51% 0.93 30% 0.67 66%
SIFT flow[7] 0.71 52% 3.08 40% 0.92 64%
Elastix[5] 2.44 36% 2.44 28% 0.85 66%
SelFlow[8] 0.64 49% 1.41 32% 0.44 64%
LAP[4] 0.21 52% 0.77 35% 0.28 67%
LAFP[6] 0.23 42% 0.64 26% 0.29 51%
paraLAP[19] 0.18 53% 0.58 33% 0.15 67%
NTG[2] 0.22 52% 0.58 28% 0.11 61%
AR+LAP (Ours) 0.26 71% 0.70 43% 0.25 74%
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