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ABSTRACT

We address the problem of exact signal recovery in frequency do-
main optical coherence tomography (FDOCT) systems. Our tech-
nique relies on the fact that, in a spectral interferometry setup, the in-
tensity of the total signal reflected from the object is smaller than that
of the reference arm. We develop a novel algorithm to compute the
reflected signal amplitude from the interferometric measurements.
Our technique is non-iterative, non-linear and it leads to an exact so-
lution in the absence of noise. The reconstructed signal is free from
artifacts such as the autocorrelation noise that is normally encoun-
tered in the conventional inverse Fourier transform techniques. We
present results on synthesized data where we have a benchmark for
comparing the performance of the technique. We also report results
on experimental FDOCT measurements of the retina of the human
eye.

1. INTRODUCTION

Optical Coherence tomography (OCT) is an effective and non-invasive
interferometric technique that is well suited for the three-dimensional
imaging of biological specimens. It has a penetration depth of 2-3
mm in tissue and offers micrometer resolution. One can distinguish
between two primary types of OCT that differ in the way the optical
signal is encoded. The earlier type is time domain optical coherence
tomography (TDOCT) which uses a sequential scanning mechanism
(mechanical displacement of a reference arm). The more recent type
is frequency domain optical coherence tomography (FDOCT) that
can acquire the information of the full depth scan within a single ex-
posure [1]. FDOCT has a number of advantages that are making it
increasingly popular. It is significantly faster than TDOCT and has a
higher sensitivity [2]. It is also amenable to high-resolution imaging
by using the principles of phase-shifting interferometry [3, 4]. So
far, the primary applications of FDOCT have been in dermatology
and opthalmology [5]. The field is still quite new: the first medical
images were obtained in 1995 [1] and the first in-vivo FDOCT mea-
surements were reported in 2002 [6].

FDOCT involves inverting the spectrum domain measurements;
this is typically achieved by inverse Fourier transformation [7]. How-
ever, Fourier inversion is known to introduce artifacts. The field is
still nascent and not much work has gone into the signal processing
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aspects of FDOCT. The most recent result in this direction is the use
of minimum-phase functions to develop a Fienup-like iterative re-
construction algorithm [8].

In this paper, we propose a new non-iterative technique that en-
ables us to perform exact signal recovery.

2. SIGNAL ACQUISITION

In Fig.1, we show the FDOCT experimental setup for data acquisi-
tion. The output of the broadband light source is optically split into
two beams, each of which is directed towards one arm of a Michel-
son interferometer. A broadband reference mirror is placed at the
end of one arm, called the reference arm. The light reflected from
the broadband mirror serves as the reference signal in the interfer-
ometric signal measurement. The object which needs to be imaged
is placed at the end of the other arm called the object arm. The
light signals reflected from the object and the reference mirror are
combined in a collinear fashion by the beam splitter and directed to
a photodetector system or an optical spectrum analyzer. The light
that is scattered back from each scatterer within the object volume
contributes to the interfering signal over the measurement duration.
The photodetection system performs a spectrum decomposition of
the signal and records it as a function of the wavelength. Thus, in
the FDOCT setup, the depth information of the object is encoded as
a spectral fringe pattern. As a result of the encoding mechanism,
FDOCT systems do not require scanning of the reference through
the depth of the object. If we wish to acquire the volumetric descrip-
tion of the specimen, we need to perform lateral scanning.

3. ARTIFACTS IN SPECTRUM INVERSION

Refer to the setup shown in Fig.1. The signal from the object con-
sists of many elementary waves emanating from different depths z
within the object. Let a(z) denote the object scattering amplitude as
a function of the depth z. The plane wave reflected from the broad-
band mirror in the reference arm is denoted as aR. The spectrometer
performs a spectrum decomposition of the signal as a function of the
wavelength. The measurement is then mapped onto the wavenumber

scale. The wavenumber k =
2π

λ
where λ is the wavelength. The
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Fig. 1. Schematic of the Fourier domain optical coherence tomogra-

phy system.

resulting intereference signal is denoted as I(k) and is given by

I(k) = S(k)

˛̨̨
˛aRej2kr +

Z ∞

0

a(z)ej2k[r+n(z)z]dz

˛̨̨
˛
2

, (1)

where

2r is the pathlength in the reference arm,

2(r + z) is the pathlength in the object arm,

2z is the pathlength in the object arm relative to the reference
plane,

n(z) is the refractive index as a function of the depth,

aR is the reference wave amplitude,

a(z) is the amplitude of the wave backscattered from the object
and

S(k) is the spectrum intensity distribution of the broadband light
source.

The zero-phase delay plane is assumed to be outside the sample. In
the above equations, we have used the same notation as in [7] [Chap-
ter 12 by Lindner et. al.]. We ignore the dispersion in the specimen.
We also make a zeroth-order approximation: n(z) = n since it is
not straightforward to obtain the refractive index profile n(z). This
assumption is widely used and also holds when the bandwidth of the
light source is moderate, which is often the case in practice. Without
loss of generality, we set the reference wave amplitude to unity. Let
us make the substitution ω = −2kn to express the equations in the
standard Fourier transform notation. We can now rewrite (1) as:

I(ω) = S(ω)

˛̨̨
˛1 +

Z ∞

0

a(z)e−jωzdz

˛̨̨
˛
2

. (2)

Thus, from the intensity measurements, we can only extract the path-
length differences which is exactly what we are interested in. With-
out loss of generality, we assume that a(z) is real. We can expand

the squares to obtain

I(ω) = S(ω)

 
1 +

Z ∞

0

a(z)e−jωzdz +

Z ∞

0

a(z)ejωzdz

Z ∞

0

Z ∞

0

a(z)a(z′)e−jω(z−z′)dzdz′
!

. (3)

Apart from a constant offset, we have the following terms:

1.

Z ∞

0

a(z)e−jωzdz known as the Müller fringe term,

2.

Z ∞

0

a(z)ejωzdz which is the conjugate of the Müller fringe

term and

3.

Z ∞

0

Z ∞

0

a(z)a(z′)e−jω(z−z′)dzdz′ = F{raa(z)} where

raa(z) is the autocorrelation of a(z) describing the mutual
interference of all elementary waves.

Since the source used is broadband, its point spread function is close
to a Dirac. Otherwise, the point spread function of the source causes
blurring of the above terms. The function a(z) is one-sided and sat-
isfies the property: a(z) = 0 for z < (z0 > 0) where z0 is the
offset distance between the reference plane and the object surface.
By taking the inverse Fourier transform of I(ω), we get a tomogram
consisting of a(z), its mirror image a(−z), and raa(z) which is the
autocorrelation of a(z). a(z) and a(−z) do not overlap with each
other for a positive value of z0. The autocorrelation raa(z) is sym-
metric about z = 0 and overlaps completely with a(z) leading to
artifacts and loss of resolution. If the object contains a highly disper-
sive medium, the overlap of raa(z) and a(z) can be very significant
giving rise to several artifacts. These artifacts due to the overlap can
be reduced by choosing a large value of z0. However, a large value
of z0 causes the fringes in the power spectrum to get closer, requiring
a higher resolution optical spectrum analyzer. For a given resolution
of the spectrum analyzer, increasing z0 limits the accessible depth in
the object.

The problem of recovering a(z) from I(ω), in an artifact-free
manner has been addressed recently in [8]. The signal is assumed to
be approximately minimum phase and iterative techniques are used
for estimation. The type of problem has been addressed before in
the digital signal processing literature [9]. If the desired signal is in-
deed minimum phase, we can recover it exactly from its magnitude
spectrum. However, if it is not, we can recover only the minimum-
phase representation of the signal. Minimum-phase signal represen-
tations have had quite some success in the area of speech process-
ing [10, 11, 13]. The inspiration for the present work comes from
[11], but we go one step further and show that the practical interfer-
ometric signal acquisition model is such that it does not warrant any
minimum-phase signal approximation and enables exact recovery.

4. THE TECHNIQUE FOR EXACT SIGNAL RECOVERY

Let us consider equation (2). The term S(ω) is the power spectrum
of the source which can be measured separately by blocking the ob-
ject arm. Hence, we can assume that it is known. Now, we can
rewrite (2) as follows:

I(ω) = S(ω)

„
1 +

Z ∞

0

a(z)e−jωzdz

«
„

1 +

Z ∞

0

a(z)e−jωzdz

«∗
. (4)
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We note that the autocorrelation term is a consequence of the mul-

tiplicative interaction of

Z ∞

0

a(z)e−jωzdz with its conjugate. This

can be transformed into an additive interaction, and to that extent a
simpler one, by considering the logarithm of I(ω):

log I(ω) = log S(ω) + log

„
1 +

Z ∞

0

a(z)e−jωzdz

«

+ log

„
1 +

Z ∞

0

a(z)ejωzdz

«
. (5)

We know that, in an interferometric signal acquisition setup, the in-
tensity of the signal reflected from the object is much smaller than
the reference intensity (which we assumed to be unity). Therefore,

we can write

˛̨̨
˛
Z ∞

0

a(z)e−jωzdz

˛̨̨
˛ < 1. Henceforth, we denote

A(ω) =

Z ∞

0

a(z)e−jωzdz. Now, using the power series expan-

sion: log(1 + x) =

∞X
n=1

(−1)n−1 xn

n
for |x| < 1, we can write:

log I(ω)− log S(ω) =

∞X
n=1

(−1)n−1 An(ω)

n

+

∞X
n=1

(−1)n−1 A∗n(ω)

n
. (6)

We note that A(ω) has a causal Fourier inverse and therefore A∗(ω)
has an anti-causal Fourier inverse. Since A(ω) has a causal Fourier
inverse, An(ω) has a causal Fourier inverse as well for n ≥ 1. Simi-
larly, A∗n(ω) has an anti-causal inverse for n ≥ 1. Therefore, the in-
verse Fourier transform of log I(ω)−log S(ω) is the sum of a causal
and an anti-causal signal. Let us denote the inverse Fourier transform
operation by F−1. The causal part of F−1{log I(ω)− log S(ω)} is
F−1 {log (1 + A(ω))}. In other words,

F−1 {log (1 + A(ω))} = F−1 {log I(ω)− log S(ω)}u(z), (7)

where u(z) is the Heaviside/unit-step function. This allows us to
write the following:

A(ω) = exp
`F ˘F−1 {log I(ω)− log S(ω)}u(z)

¯´− 1. (8)

Now, since a(z) and A(ω) form a Fourier transform pair, we can
compute one from the other. Thus, we have an explicit relation for
a(z) in terms of the measured intensities and hence this is an exact
method for computing a(z). We summarize the algorithm as fol-
lows:

1. Given the measurements I(ω) and S(ω), we compute the sig-
nal c(z) = F−1 {log I(ω)− log S(ω)}. c(z) is also known

as the cepstrum [12] of F−1

j
I(ω)

S(ω)

ff
.

2. Next, we retain only the causal part of the cepstrum c(z). Let
this be denoted as c+(z). Therefore, c+(z) = c(z)u(z).

3. We then compute the Fourier transform C+(ω) of the causal
cepstrum c+(z).

4. Next, we apply the transformation: exp
`
C+(ω)

´− 1, which
yields A(ω).

5. Finally, we compute a(z) as a(z) =
1

2π

Z +∞

−∞
A(ω)ejωzdω.
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Fig. 2. (a) The synthesized scattering function of a three layer spec-

imen, (b) the scattering function recovered by the inverse Fourier

transform and (c) the scattering function obtained by using the new

technique.

5. EXPERIMENTAL RESULTS

To validate the performance of our technique, we consider two sets
of data: synthesized and experimental. We synthesized a multilayer
biological specimen with the associated scattering function a(z) as
shown in Fig. 2(a). We have displayed two hundred lateral scans of
the specimen. We assume that the source spectrum is perfectly flat.
The signal recovered by the inverse Fourier transformation technique
is shown in Fig. 2(b). Note that the artifacts due to the autocorre-
lation term corrupt the structural information of the specimen. The
scattering function recovered by using the new technique is shown in
Fig. 2(c). We note that the new technique yields exact and artifact-
free signal recovery.

Next, we report the performance on experimental data. We de-
scribe the experimental setup in brief. We synthesized the broadband
light source by using two superluminescent diodes (EXALOS) with
center wavelengths 853nm and 827nm. The respective full-width-
at-half-maximum values (FWHM) are 34nm and 25nm resulting in
an overall FWHM of 36nm, a central wavelength of 833.5nm and an
axial resolution of 8.5μm in air. The dispersion compensation in the
reference arm matches sample arm optics as well as the water cham-
ber of the eye. The light in the sample path passes an X-Y galvo
scanning stage (Cambridge Technology) and illuminates the eye via
a telescope with angular magnification of two. At the cornea, the
optical power is 300μW and the beam waist is 1.8mm resulting in
a theoretical spot size of 14μm at the retina. The recombined ref-
erence and the sample arm light is guided through a single mode
fiber to the spectrometer module. The latter is equipped with a vol-
ume transmission diffraction grating (Wasatch, 1200lines/mm) and
an objective lens with focal length 135mm. The CCD line scan cam-
era (ATMEL AVIIVA, 2048 pixel, 12bit) is driven at a line rate of
17.4kHz with an integration time of t=43μs. The measured sensitiv-
ity is 98dB close to the zero-offset distance.

To estimate the source spectrum, we averaged over all the scans.
This yields a reasonably accurate estimate since the specimen-specific
fringe pattern gets averaged across the incoherent lateral scans. We
processed the data by both techniques. In the Fourier inversion tech-
nique, it is common practice to suppress the source term (back-
ground) by subtraction to obtain an image with higher contrast. We
scaled the resulting images to possess the same dynamic range. The
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Fig. 3. (a) The tomogram obtained by the inverse Fourier transform and (b) the tomogram obtained by using the new technique.

resulting images are shown in Fig 3(a) and (b). Since the CCD cam-
era noise floor was about 40dB below the signal level, we show only
the 40dB dynamic range. We note a clear suppression of the au-
tocorrelation artifacts. The structure of the specimen is also neatly
resolved.

6. CONCLUSION

In this paper, we proposed a new technique for exact signal recovery
in a FDOCT system. The new technique is non-iterative, non-linear
and offers an exact solution unlike other approximate iterative/non-
iterative solutions. We demonstrated its performance on synthesized
as well as experimental data and showed that it is superior to the in-
verse Fourier transformation technique. We also need to study the
performance of the technique in the presence of additive noise for
various noise levels. Our technique is also applicable to other in-
terferometric measurements and generalizable to multidimensional
signals.
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