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Abstract—We consider the problem of optimizing the param-
eters of a given denoising algorithm for restoration of a signal
corrupted by white Gaussian noise. To achieve this, we propose
to minimize Stein’s unbiased risk estimate (SURE) which provides
a means of assessing the true mean-squared error (MSE) purely
from the measured data without need for any knowledge about
the noise-free signal. Specifically, we present a novel Monte-Carlo
technique which enables the user to calculate SURE for an
arbitrary denoising algorithm characterized by some specific pa-
rameter setting. Our method is a black-box approach which solely
uses the response of the denoising operator to additional input
noise and does not ask for any information about its functional
form. This, therefore, permits the use of SURE for optimization
of a wide variety of denoising algorithms. We justify our claims
by presenting experimental results for SURE-based optimiza-
tion of a series of popular image-denoising algorithms such as
total-variation denoising, wavelet soft-thresholding, and Wiener
filtering/smoothing splines. In the process, we also compare the
performance of these methods. We demonstrate numerically that
SURE computed using the new approach accurately predicts the
true MSE for all the considered algorithms. We also show that
SURE uncovers the optimal values of the parameters in all cases.

Index Terms—Monte-Carlo methods, regularization parameter,
smoothing splines, Stein’s unbiased risk estimate (SURE), total-
variation denoising, wavelet denoising.

I. INTRODUCTION

I MAGES are often corrupted by noise during the acquisition
process. Denoising aims at eliminating this measurement

noise while trying to preserve important signal features such as
texture and edges. Over the past few decades, a large variety
of algorithms has been developed for that purpose. They can
be roughly categorized into linear denoising methods such
as Wiener filtering and smoothing splines, variational and
partial-differential-equation-based (PDE) methods that use
nonquadratic regularization functionals such as total-variation,
and multiresolution methods such as wavelet denoising. For-
mally, any denoising algorithm can be thought of as an operator

(which depends on the set of parameters ) that maps the
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noisy data onto the signal estimate . When ap-
plying a particular algorithm, the user is faced with the difficult
task of adjusting to obtain best performance. To accomplish
this, researchers usually resort to empirical methods or pose
the problem in a Bayesian framework. Empirical methods have
proliferated, especially in the variational context where one of
the key problems is the selection of the “best” regularization
parameter. The most common techniques include the use of the
discrepancy principle [1], generalized cross validation (GCV)
[1]–[7], and the L-curve methods [8]–[11]. Alternatively, the
problem can also be formulated in a Bayesian framework by
imposing model-based constraints as prior knowledge on the
noise-free signal [12]–[15].

In a denoising scenario, the mean-squared error (MSE) of
the signal estimate is the preferred measure of quality to op-
timize . Unfortunately, the MSE depends on the noise-free
signal which is generally unavailable or unknown a priori. A
practical approach, therefore, is to replace the true MSE of
by some estimate in the scheme of things. A theoretical result
due to Stein [16] makes this possible in the Gaussian scenario.
Stein’s unbiased risk estimate—SURE, as it is called—provides
a means for unbiased estimation of the true MSE. Without ever
requiring knowledge of the noise-free signal, this unbiased esti-
mate solely depends on the given data and on some description
of the first-order dependence of the denoising operator with re-
spect to the data. The unbiasedness of SURE can be mathemat-
ically established, which makes it nonempirical. Moreover, the
closeness of SURE to the true MSE is aided by the law of large
numbers for large data size (especially images).

The divergence of the denoising operator with respect to
is the key ingredient of SURE [16]. It can be computed ana-

lytically only in some special cases such as when the denoising
operator performs a coordinate-wise nonlinear mapping, when
the signal estimate is obtained by a linear transformation of the
noisy data (linear filtering [7]), or when both are combined in
a specific way (e.g., wavelet thresholding [17]–[20]). For linear
algorithms, the desired divergence reduces to the trace of the
corresponding matrix transformation. However, in a general set-
ting, the explicit evaluation of the divergence is often out of
reach. Especially challenging are cases where the functional
form of the denoising operator is not known, for example when
the denoised output is the result of an iterative optimization pro-
cedure. Since most of the variational and Bayesian methods fall
into this category, there are many key algorithms for which the
evaluation of the required divergence term is neither tractable
mathematically nor even feasible numerically.
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In this paper, we address this limitation by proposing a novel
scheme that is applicable for a general denoising scenario. Our
method is based on Monte-Carlo simulation: the denoising al-
gorithm is probed with additive noise and the response signal
is manipulated to estimate the desired divergence. This leads to
a black-box interpretation of the proposed technique—it com-
pletely relies on the output of the denoising operator and does
not need any information about its functional form. We vali-
date the proposed scheme by presenting numerical results for
a variety of popular denoising methods—total-variation (TV)
denoising, redundant-wavelet soft-thresholding, and some clas-
sical ones such as orthonormal-wavelet soft-thresholding and
smoothing splines.

The paper is structured as follows. After setting up the
problem in Section II, we provide a brief overview of the SURE
theory in Section III. In Section IV, we present Monte-Carlo
strategies for estimating the MSE of a particular denoising al-
gorithm. First, we propose a simple scheme for the special case
of linear algorithms and then proceed to describe a new method
for arbitrary nonlinear operators. In Section V, we present
experimental results and demonstrate numerically that SURE,
computed using the new Monte-Carlo strategy, faithfully im-
itates the true MSE curve. Moreover, it is always capable of
uncovering the optimal value of the parameter (regularization
parameter for the variational methods and soft-threshold value
for the wavelet-based methods). Additionally, we illustrate
that the proposed scheme is applicable for denoising methods
characterized by multiple parameters. In the process, we also
compare the performance of these denoising algorithms in
terms of visual quality and signal-to-noise ratio (SNR). We
finally draw our conclusions in Section VI.

II. NOTATION AND PROBLEM FORMULATION

We adopt the standard vector formulation of a denoising
problem: We observe the noisy data given by

(1)

where represents the vector containing the samples
of the unknown deterministic noise-free signal and
denotes the vector containing zero-mean white Gaussian noise
of variance , respectively. We are given a denoising algorithm
which is represented by the operator that maps
the input data onto the signal estimate

(2)

where represents the set of parameters characterizing .
Our primal aim in this work is to optimize knowing only

and as illustrated by the “MSE estimation” box in Fig. 1.
To achieve this, we propose the use of SURE as a reliable es-
timate of the true MSE. SURE computation is greatly simpli-
fied if the denoising is performed by coordinate-wise filtering in
an orthonormal transform domain (e.g., Fourier transform, or-
thonormal wavelet transform, which preserve the MSE during
the transformation). However, complications appear as soon as
the transform becomes nonorthogonal or redundant. Then, one
is forced to compute SURE in the signal domain, which may or

Fig. 1. Signal estimate ~x is obtained by applying the ���-dependent denoising
algorithm on the observed data y. The MSE box then computes the estimate
SURE (���) of the MSE between the noise-freex and the denoised ~x as a function
of ���, knowing only y and f (y). The best estimate of the signal is obtained by
finding that ��� which minimizes the surrogate mean-squared error.

may not be mathematically tractable depending on the type of
filtering that is applied.

In the variational framework, the denoised output is obtained
in general by minimizing the problem-specific cost functional

(3)

(4)

where is the data fidelity term that measures the consis-
tency of to the given data, while is a suitable regulariza-
tion functional that often penalizes a lack of smoothness in .
When is quadratic in becomes linear. However, for most
other is nonlinear, in which case it is usually not possible
to write a closed-form expression for . The corresponding esti-
mation is typically implemented iteratively by running a suitable
optimization procedure that may involve large-scale image-do-
main filtering.

In the above variational formulation, is a positive
scalar that controls the amount of regularization imposed on
the solution. When , the solution tends to fit the data
more closely (implying a less significant noise reduction), while
a large value of yields a solution that is heavily constrained
(typically resulting in a loss of features and over-smoothing).
Thus, the choice of the appropriate is crucial. Much effort has
been dedicated to this problem [1], [21]. The primary techniques
to optimize can be broadly classified as follows:

1) use of the discrepancy principle [1], [6], [7];
2) L-curve based methods [8]–[11];
3) Bayesian methods [12]–[15];
4) the criterion [22];
5) MSE-based methods [6], [7], [23];
6) generalized cross validation (GCV) [1]–[7].
The discrepancy principle selects by matching data fidelity

term to noise variance; this generally yields over-penalized so-
lutions [7]. The L-curve methods are entirely deterministic and
choose by “balancing” the effect of data-fidelity and regular-
ization terms, while Bayesian methods have a statistical inter-
pretation in terms of Baye’s rule and assume some prior knowl-
edge on the noise-free signal. The criterion requires the
knowledge of and was originally proposed for linear methods
[22]. Moreover, it has been noted in [24] that, for linear algo-
rithms, is an unbiased estimate of MSE (up to a constant).
Some researchers in signal processing have also made explicit
attempts to minimize an estimate of the MSE but these methods
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are either restricted to the case of a linear estimator [6], [7] or
they are largely empirical [23].

The most popular method for linear algorithms is probably
GCV which does not require the knowledge of the noise vari-
ance. GCV is based on the “leave-one-out” principle [2]–[5]
and is known to yield which asymptotically minimizes (under
certain hypotheses) the true MSE [25]. In [24], Girard proposed
Monte-Carlo versions of GCV and (namely, RGCV and
R ) for linear algorithms when the associated quantities
are not explicitly computable. Following this, an extension of
RGCV for “mildly” nonquadratic (nonlinear) problems was
suggested by Wahba in [26] and [27] and by Girard in [28]. In
this paper, we propose an approach that is similar in spirit to
these Monte-Carlo methods but which brings in the following
improvements:

1) the proposed method is applicable for algorithms with “ar-
bitrary” nonlinearities;

2) the adjustment of parameters is based on SURE which is
optimal even in the nonasymptotic case unlike GCV.

III. STEIN’S UNBIASED RISK ESTIMATE—SURE

In his hallmark paper [16], Stein established the framework
for unbiased estimation of the risk (or MSE) of an arbitrary
estimator in the presence of Gaussian noise. While SURE is
a well-established technique in the statistical literature, it is
not so widely known in signal processing. There is a notable
exception in the context of (orthonormal) wavelet denoising
[17], [18] where the SURE strategy has proven to be quite
powerful and has been incorporated in some state-of-the-art
algorithms [19], [20], [29]; specifically, SURE-based denoising
using nonorthonormal transforms is described in [20]. In what
follows, we briefly review the theory of SURE in the context
of general nonlinear algorithms. We then illustrate the concept
in the simpler case of a linear algorithm, which also yields a
closed-form solution.

A. Theoretical Background

In the sequel, we assume that is a continuous and bounded
operator (i.e., the input-output mapping is continuous and a
small perturbation of the input necessarily results in a small
perturbation of the output). We also require that the divergence
of with respect to the data given by

(5)

where and represent the th component of the vectors
and , respectively, is well defined in the weak sense.

Definition 1: Given as in (1), SURE corresponding to
is a random variable , specified as

(6)

where represents the Euclidean norm.
The following theorem, due to Stein [16], then states that is

indeed unbiased.

Theorem 1: The random variable is an unbiased
estimator of

(7)

that is

(8)

where represents the expectation with respect to .
For a proof that is accessible to signal processing au-

dience, see [20]. (it requires the assumption that
is bounded by a rapidly increasing function such as

; ).
In the SURE formulation, the MSE is estimated purely based

on the input data , the divergence of , and the noise statis-
tics; it requires no knowledge whatsoever of the noise free signal

. The basis for the approach is that there are many more data
points than unknown parameters . Therefore, thanks to the law
of large numbers, both and
are quite stable estimates of and

, respectively, meaning that SURE provides
a fairly accurate proxy for the true MSE. Hence, it can be ap-
plied for data-driven optimization of a wide range of denoising
problems. However, the catch with (6) is that the evaluation of

turns out to be difficult or even infeasible when
there is no explicit form for the estimator (as is usually the case
for iterative algorithms). We close this section by presenting a
few cases where the desired divergence takes an explicit form.

B. Special Case: Linear Algorithms

Classical signal-reconstruction algorithms are linear in na-
ture. These are usually associated with quadratic cost functions;
the better-known examples are Tikhonov filters [7], [10] and
smoothing splines [30]–[33] in the variational setting, MAP es-
timators under the Gaussian prior [11], [14] and Wiener filter
[7], [34] in the stochastic setting. Such estimators can be de-
scribed by the following matrix transformation:

(9)

where is a matrix that depends on . Thus, the desired
divergence term is explicitly evaluated as

(10)

which yields an explicit expression for SURE. In this context,
circulant matrices deserve a special mention because their struc-
ture can be exploited for efficient computation of the trace as we
shall see in Section V-A4.

C. Special Case: Coordinate-Wise Nonlinearity

Let each component of be a nonlinear function of a single
argument, that is, the th component of the output is obtained
as

(11)
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In this case, too, the divergence can be analytically evaluated
since it amounts to computing the sum of the first derivatives

of the individual components of

(12)

Even though the coordinate-wise processing described by (11)
is not very interesting as such, it becomes quite powerful when
applied in a transform domain; in particular, in a wavelet or sim-
ilar multiresolution transform wherein is a function of the

th noisy transform coefficient [17]–[20]. The present result is
directly transposable to the case of an orthonormal transform
which permits exact mapping of the MSE and the divergence be-
tween the signal and transform domain using expressions sim-
ilar to (11) and (12). We are going to illustrate such a case in
Section V-A1.

IV. MONTE-CARLO ESTIMATION OF

The crucial step for evaluating the SURE formula in (6) is the
computation of . As we just saw, this can be done
explicitly in the cases of linear and coordinate-wise nonlinear
estimators [17]–[20]; but it is more difficult otherwise. In this
section, we investigate Monte-Carlo techniques to achieve this
goal. We start by revisiting a method that is valid in the linear
case only [35], [36], but which can be very useful when the ma-
trix is not available explicitly. Following that, we introduce
a more general technique that is applicable for arbitrary (non-
linear) algorithms.

A. Linear Algorithm With Unstructured

In many practical situations, especially with large data-sets,
the matrix is not available explicitly; instead, (9) is imple-
mented iteratively by using some suitable numerical solver (e.g.,
conjugate gradient, multigrid technique). It follows that the trace
is not directly accessible. There are matrix methods (such as the
power method) that can produce an estimate of in an
iterative fashion starting from (9), but they tend to be memory-
and computation-intensive. To tackle this difficulty, we propose
the use of the following Monte-Carlo algorithm which estimates
the required trace stochastically with computational cost
[up to the complexity of realizing (9)]. It is implemented by ap-
plying the estimator to noise only, as described next.

Algorithm 1: Monte-Carlo algorithm for estimating

• Generate a zero-mean i.i.d. random vector of unit
variance.

• For a given do the following:
1. Evaluate for
2. Compute the estimate of as

Algorithm 1 is a standard procedure in the literature [35], [36]
and has a twofold advantage over the iterative matrix methods

mentioned before: first, it is memory-efficient because, at any
given point, it only stores and not itself. Second, from a
computation point of view, the method is as good as the initial al-
gorithm itself since we can simply apply it to noise. The validity
of the algorithm is guaranteed by the fact that the random vari-
able is an unbiased estimator of , which is
a well-established result in the literature [35]–[38].

Proposition 1: Let be a zero-mean i.i.d. random vector
with unit variance and , where the factor

accounts for the averaging of the MSE (7) over all
samples. Then

(13)

For image-processing applications, it is reasonable to believe
that a single realization of will yield a sufficiently low
variance estimate [35], [24]. This is because, in practice, most
denoising algorithms operate only “locally” (i.e., is more
or less diagonal with rapidly decaying off-diagonal elements).
Qualitatively speaking, the components of are,
therefore, “nearly” independent. Since is large for images
(typically ), by law of large numbers
does not fluctuate more than ; this eliminates any
necessity for additional algorithm evaluations. A more quan-
titative argument can be made by computing the variance of

which is given by
, where is the

th diagonal element of and is the fourth-order
moment of the random variable . Again, since is “approx-
imately” diagonal, the quantities and
are of the order of . The variance is then bounded as

. Thus, in principle, asymptotically
converges to in the mean-squared error
sense. A further option is to reduce by selecting a
that has small a fourth-order moment. For instance, it has been
suggested to choose such that its components are either
or with probability 0.5 [36]–[38]; for such a , the variance
is lower than that obtained using a Gaussian [36], [38].

B. General Algorithm for Nonlinear Problems

Similar to the technique described above, our strategy for a
nonlinear is essentially based on probing the system with
noise, but is slightly more involved because of the nonlinearity
of . Specifically, we propose to investigate which
may be thought of as a random perturbation around the oper-
ating point of the algorithm. The output is then compared with

which yields a differential response of evaluated at
. The following theorem states that this differential response

yields the desired divergence as decreases.
Theorem 2: Let be a zero-mean i.i.d. random vector (that is

independent of ) with unit variance and bounded higher order
moments. Then

(14)
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Fig. 2. Dotted box depicts the module that estimates (1)=(N)div ff (y)g according to (17). The dashed box represents the SURE module (depicted as the MSE
estimation box in Fig. 1) which computes the SURE according to (6).

provided that admits a well-defined second-order Taylor ex-
pansion. Otherwise, the expression is still valid in the weak
sense (sufficient to apply Theorem 1) provided that

(15)

for some and (that is, is tempered).
Proof: We write the second-order Taylor expansion of

as

(16)

where is the Jacobian matrix of evaluated at and
represents the vector containing the (Lagrange) remainder

terms corresponding to each component of . In this case, the
components of are bounded in the expectation sense;
that is, .

Then, subtracting from (16) and multiplying by
from the left yields

where and because
and has bounded higher-order

moments. When , we immediately see that

which yields the desired result.
We could also obtain the proof of the weak form of the result

(when the second derivatives are not necessarily well-defined),
but is more technical. It involves standard but tedious usage of
mathematical tools of measure theory such as the Fubini the-
orem and the Lebesgue’s dominated convergence theorem and
is not included in this paper.1

Theorem 2 is a powerful result since nowhere did we have to
express the functional form of explicitly, thus making (14)

1A formal proof of this result is available at http://bigwww.epfl.ch/publica-
tions/ramani0803doc01.pdf

suitable for a wide variety of algorithms. The important point
is that is treated as a black box, meaning that we only need
access to the output of the operator, irrespective of how it is im-
plemented. From a calculus point of view, it can be regarded as
the stochastic definition of the divergence of a vector field in
multiple dimensions where may be under-
stood as the first-order (random) difference of . It may also
be thought of as a generalization of a result due to Wahba [26],
[27] and Girard [28] developed in the context of RGCV which
is only applicable for “mildly” nonlinear problems, in the sense
that . We discuss this further in Section V-C1.

Equation (14) (including the limit) forms the basis of our
Monte-Carlo approach for computing SURE for a nonlinear

. Since, in practice, the limit in (14) cannot be implemented
due to finite machine precision, we propose the following
approximation:

(17)

where the factor accounts for the averaging (of SURE)
over all the pixels. The R.H.S. of (17) amounts to adding a small
amount of noise (of variance ) to and evaluate .
The difference is then used to obtain an es-
timate of the divergence. The schematics of implementing (17)
is illustrated in Fig. 2. The validity of the approximation in (17)
depends on how small can be made. In practice, we must se-
lect a small enough to mimic the limit, but still large enough so
as to avoid round-off errors in . As demonstrated in
Section V-B, the admissible range of covers several decades,
so that the choice of this parameter is not critical.

We now give an algorithm for Monte-Carlo divergence es-
timation (and SURE) which is quite straightforward and easy
to implement. It assumes that a “suitably” small has been se-
lected and a zero-mean unit variance i.i.d. random vector has
been generated.

Algorithm 2: Algorithm for estimating
and SURE for a given

1. For , evaluate .
2. Build . Evaluate for .
3. Compute and

using (6).
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Algorithm 2 also uses only one realization of for the same
reason given in Section IV-A: the law of large numbers is ap-
plicable to whenever is
“approximately” independent for different . This assumption is
quite valid in practice because mostly performs “local” op-
erations (for instance, finite-length wavelet filters and coordi-
nate-wise thresholding are used in wavelet-based methods and
finite-difference filters are used in TV denoising). We present
experimental results in Sections V-C2–V-D that support this
claim.

Another significant observation is that whenever is linear,
the two Monte-Carlo algorithms discussed in this work turn out
to be rigorously equivalent. This is formally stated in the fol-
lowing proposition which is easily proven.

Proposition 2: Let be linear as in (9) and be a zero-mean
i.i.d. random vector with unit variance. Then, without the limit,
the R.H.S. of (14) reduces to that of (13), independent of .

V. VALIDATION AND COMPARISON OF DENOISING TECHNIQUES

Now that we have a practical means of estimating
for an arbitrary , we demonstrate the ap-

plicability of Monte-Carlo SURE for some popular denoising
algorithms such as total-variation denoising (TVD) and re-
dundant scale-dependent wavelet soft-thresholding (RSWST).
Also included in the evaluation are orthonormal scale-depen-
dent wavelet soft-thresholding and smoothing splines for which
SURE takes an explicit form. For the variational methods (TVD
and smoothing splines), the parameter represents the
regularization tradeoff, while for the wavelet-based methods,

controls the scale-dependent thresholds. In the forthcoming
sections, we first describe each algorithm along with its associ-
ated characteristics. We then discuss numerical issues related
to choice of to be used in Algorithm 2. Finally, we present
experimental results that validate our arguments.

A. Description of Denoising Methods

1) Orthonormal Scale-Dependent Wavelet Soft-Thresholding
(OSWST): If is the matrix corresponding to an orthonormal
wavelet transform, the OSWST denoised signal is given by

, where

(18)

The second term in the R.H.S. of the above equation is equiv-
alent to the Besov norm of the corresponding continuously de-
fined signal estimate [39]. The quantity is the th wavelet
coefficient in the th sub-vector of (corresponding to the th
sub-band) and is the scale-de-
pendent regularization parameter for ; the dimension
of the data is , while corresponds to the norm of the coef-
ficient vector. For our experiments, we set and (for
image denoising with constraint on the wavelet coefficients),
which yields the scale-dependent regularization parameter

(19)

The advantage of selecting an orthogonal transform is that
it decouples so that (18) is equivalent to independently
minimizing scalar cost functions on a coefficient-by-coefficient
basis. The minimization of scalar cost corresponding to is
then simply achieved by a soft-thresholding operation [39] with
the threshold so that

if

if
(20)

where is the th wavelet coefficient in the th sub-band
of the wavelet transform . Due to the orthonor-
mality of the MSE (and, hence, SURE) is invariant
under the transform (Parseval equivalence). Therefore,
replaces , while replaces in (6). The required diver-
gence is then simply computed to be , where

and is the indicator
function.

The OSWST is akin to the SureShrink algorithm of
Donoho et al. [17] in that they both apply soft-thresholding in
an orthonormal (wavelet) transform domain. However, the two
methods significantly differ from each other in the way they
select the threshold levels: while SureShrink assigns a threshold
value to each sub-band by independent sub-band minimization
of SURE, OSWST optimizes the threshold parameters
(that characterize the sub-band dependent threshold value
in (19)) by minimization of SURE computed over all the
sub-bands (entire wavelet decomposition).

2) Redundant Scale-Dependent Wavelet Soft-Thresh-
olding (RSWST): Redundant discrete wavelet transforms are
over-complete representations that are advantageous for de-
noising, mainly due to their better shift-invariant properties
[40]–[42]. We consider the undecimated wavelet transform
(UWT) with an orthonormal filter pair in the redundant para-
digm (tight-frame). Our denoising function is again the scale
dependent soft-thresholding operator but now applied on
the UWT coefficients. For in (19), yields the
same threshold level for all sub-bands in which case both
OSWST and RSWST perform universal soft-thresholding of the
corresponding wavelet coefficients. However, unlike OSWST,
there is no cost function associated with RSWST. Moreover, as
shown in [20], Parseval’s equivalence is no longer valid in the
redundant wavelet domain which forces us to evaluate SURE
in the signal domain.

Writing , where is a UWT matrix
and the vector containing the soft-thresholding opera-
tors [see (20)], it is immediately clear that evaluating

is arduous because the output of depends on
thus demanding explicit access to each element of .

However, since the soft-thresholding operator is continuous and
weakly-differentiable [18], RSWST (and OSWST included)
satisfies the weaker hypotheses of Theorem 2 and, therefore,
qualifies for Monte-Carlo estimation procedure described in
Section IV-B. In fact, RSWST constitutes a good demonstra-
tion example for illustrating the signal-domain computation of
SURE using Algorithm 2 to perform a combined optimization
of the two threshold parameters .
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3) Total-Variation Denoising (TVD): While wavelet-based
denoising forms an active research area in its own right, other
denoising procedures that have flourished in the literature,
include variational and PDE based methods of which the most
popular is TV denoising [43]. The idea behind TVD is to
minimize the total-variation of an image that is constrained
to be “close” to the given noisy data. The problem has been
formulated in both continuous and discrete domains [43], [44].
The solution is either found by evolving a PDE derived from
the Euler–Lagrange equation or by performing some kind
of iterative optimization [e.g., bounded optimization using
majorization-minimization (MM) [45] or half-quadratic [46]
optimization].

Here, we consider the discrete domain formulation of
Figueiredo et al. [44] where the TV denoised image is obtained
by minimizing the cost functional

(21)

where is the discrete
2-D total-variation norm and and are matrices corre-
sponding to the first order finite difference in the horizontal and
vertical directions, respectively. is convex and can be min-
imized using an iterative MM algorithm [44]. Then, starting
from the update equation, it can be established in a straight-
forward (but tedious) manner that for TVD admits at least
a second-order Taylor expansion.2 TVD is a typical example
where SURE cannot be evaluated analytically and while our
Monte-Carlo method circumvents the difficulty.

4) Smoothing Splines: The smoothing splines problem corre-
sponds to reconstructing a continuously-defined function from
an infinitely long sequence of noisy data on a uni-
form grid. It is generally formulated in the shift-invariant frame-
work [30]–[33] where the B-spline coefficients are obtained by
linear (digital) filtering of the noisy data.

We will slightly digress from the vector notation to accurately
formulate what we said in the paragraph above. Let
represent the infinite sequence of noise-corrupted input in di-
mensions. The smoothing spline algorithm is usually described
by a generator which specifies the approximation
space (e.g., polyharmonic spline) and a digital correction filter

. In the denoising scenario, the denoised output is obtained
by re-sampling the smoothing spline on the grid which yields
an estimate of the form

(22)

where is the th component of the infinite-dimensional
vector and . The required divergence
is whose th component is given by

(23)

2The derivation of this result can be found at http://bigwww.epfl.ch/publica-
tions/ramani0803doc01.pdf

It is independent of and can be computed in the Fourier do-
main as

where is the frequency response of and is the
Fourier transform of .

In the finite-dimensional case, the smoothing spline denoised
output can be obtained using (9) where is the block-circulant
matrix formed from the filter taps and is diagonal-
ized by the fast Fourier transform (FFT) matrix. Its eigenvalues
are nothing but the samples of the frequency response
whose sum yields the desired trace.

B. Range of Validity of the Proposed Monte-Carlo SURE

The two main conditions for Algorithm 2 to work are that
satisfies the hypotheses of Theorem 2 and is “small”. Ideally,
we would like to let tend towards zero in (17) as dictated by
(14), but this cannot be realized exactly in practice due to finite
machine precision. When is too small, numerical round-off er-
rors become more prominent because becomes insensitive to
changes in . In effect, this phenomenon fixes a lower bound
for which may vary depending on the sensitivity of . To
elucidate this, we selected the following nonlinear algorithms:
TVD and RSWST with threshold value (which satisfy
at least one of the hypotheses of Theorem 2) and found, based
on numerical experiments with JAVA that was ad-
missible for these algorithms. We then applied Algorithm 2 with
Gaussian for each of these methods for different values of
and a wide range of for the Boats test image with input SNR
4 dB.

We observed that when was decreased from down to
, Algorithm 2 yielded SURE values which not only cap-

tured the trend of the true MSE over a wide range of but also
yielded very good estimates of the optimal for the TVD and
RSWST methods, in agreement with Theorem 2. We illustrate
this in Fig. 3 for the cases of and for TVD and
RSWST where the corresponding curves nearly overlap and are
also close to the true MSE curve over the entire range of . At
the other end, as soon as , we started to observe significant
bias (cf. uppermost curves in Fig. 3 corresponding to )
which indicates that large is not desirable for nonlinear prob-
lems. We, therefore, conclude that whenever the assumptions of
Theorem 2 are valid, the proposed estimation procedure is quite
robust with respect to (when ) and it yields meaningful
results when is made “small.”

Next, to investigate the relevance of the underlying differen-
tiability hypotheses in Theorem 2, we applied Algorithm 2 to
RSWHT which performs hard-thresholding with the threshold
value . Since the hard-thresholding operator is neither
continuous nor weakly-differentiable [47], RSWHT violates the
hypotheses of Theorem 2. Numerically, this is reflected in the in-
creasing instability of the SURE curves as decreases in Fig. 4.
In this case, violating the hypotheses of Theorem 2 leads to a
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Fig. 3. Plots of MSE (�) and (Monte-Carlo) SURE (�) for different ": TVD (left); Haar-RSWST with threshold value (�)=(2) (right); Noisy Boats image with
SNR = 4 dB; � = 29:45.

Fig. 4. Plots of MSE (�) and (Monte-Carlo) SURE (�) for different ": Haar-
RSWHT with threshold value (�)=(2); Noisy Boats image with SNR = 4 dB;
� = 29:45.

variance of Monte-Carlo SURE that increases without bound
with decreasing .

It must be noted that the hard-thresholding function is quite
an extreme case and has been considered here purely to illus-
trate the sharpness of the hypotheses of Theorem 2 to certify
whether or not a denoising algorithm is suitable for the pro-
posed Monte-Carlo SURE. Fortunately for us, most common
algorithms encountered in practice satisfy the required differ-
entiability hypothesis and can be optimized with Algorithm 2
as demonstrated next.

C. Results With One-Parameter Optimization

We now present numerical results for SURE-based optimiza-
tion of a single parameter (only ) for the methods discussed
in Section V-A. In doing this, we exemplify the use of SURE,
but do not contend with state-of-the-art denoising methods. For
our experiments, we consider different categories of test im-
ages including a medical image (MRI 256 256), a stochastic
image [a realization of fractional Brownian motion (fBm) with
Hurst exponent 0.5 on a uniform grid of size 256 256, see
Fig. 5], a tomography phantom (Shepp–Logan phantom of size

Fig. 5. Specific noise-free images considered in this paper apart from other
standard test images.

256 256) together with three standard natural images: Bar-
bara (512 512), Boats (512 512), and Peppers (256 256).
To test the effectiveness of smoothing splines for denoising of
stochastic signals, we implement the polyharmonic smoothing
spline (PSS) of degree equal to 1 which is known to be the op-
timal estimator for the considered fBm image [33]. We choose
the Haar wavelet transform for the wavelet based methods to
match the wavelet filter with the first-order finite difference filter
employed in TVD. We used levels of decomposition in all
cases and did not perform any thresholding on the coarse-scale
projection of the signal.

The performance of the methods is quantified by the SNR of
the output , which is computed as

(24)

All SNR values reported in this paper were obtained by aver-
aging over three independent simulations. We consider images
corrupted by white Gaussian noise whose standard deviation
is known (it can be estimated reliably in practice using the me-
dian estimator of Donoho et al. [17]). In all the experiments, the
value of is set to achieve the desired input SNR computed by
replacing with in (24). Besides, in the imple-
mentation of all the methods, periodic boundary conditions were
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TABLE I
COMPARISON OF GCV AND SURE IN TERMS OF SNR IMPROVEMENT

used when required. For PSS and OSWST, SURE was com-
puted analytically, while for TVD and RSWST, the proposed
Monte-Carlo method (Algorithm 2) was used with zero-mean
i.i.d. Gaussian random vectors of standard deviation .

1) Comparison With Other Performance Measures: Here,
we compare the performances of SURE and generalized cross
validation for a linear (PSS method) and a nonlinear (RSWST

) algorithm in terms of SNR improvement. The GCV
is computed explicitly for the PSS method, while, for RSWST,
we consider the Monte-Carlo version (for nonlinear algorithms)
proposed by Girard [28] which we denote . Thus, we
write GCV [24] and [28] as

(25)

(26)

where is used in (26) as recommended in [28]. The
output SNR obtained by adjusting based on SURE and gen-
eralized cross validation (GCV and ) is tabulated for
various input noise levels and test images in Table I.

As seen from the table, for the PSS method, the performance
of GCV becomes steadily poorer with decreasing noise level.
This may be due to the fact that GCV does only perform op-
timally under special conditions (cf. Proposition 3.1 in [25])
which are probably not fulfilled in the present experiments. As
for , it was observed that the selected was far from
the optimum value in all cases: this can be attributed to the bias
originating from the recommended value of and the fact that
RSWST does not probably satisfy the “mild” nonlinearity as-
sumption. As a result, the performance of is poor at
all noise levels.

Following the philosophy underlying (14) and the argumen-
tation in Section V-B, we, therefore, decided to inspect another
version of , denoted by , which utilized a
small value: . It is observed that dramatically
improves the performance as reflected in the output SNR values
corresponding to : this demonstrates the validity of
the proposed Monte-Carlo procedure for estimating the diver-

gence for algorithms with “arbitrary” nonlinearities. However,
it should be noted that the performance of is still not
on par with SURE, which consistently imitates the oracle for
both the methods and for all noise levels and considered test
images. This indicates that GCV-like measures, though having
the advantage of not requiring , may not always yield optimal
performance for all denoising algorithms.

2) MSE-SURE Comparison: A series of relevant graphs
( versus ) for four denoising methods are
shown in Figs. 6 and 7. It is observed that SURE follows the
true MSE curve remarkably well in all the cases thereby leading
to accurate estimates of the optimal . We observed the same
trend for all test images and input SNRs which confirms the
consistency of our method. The agreement is somewhat better
in the case of larger images (Boats, Barbara) as compared to
the Peppers image which is probably due to the fact that we
have four times more pixels to estimate the MSE (law of large
numbers).

These results demonstrate the validity of the approximation
in (17). The RSWST method is a borderline case for which the
formula (14) is only true in the weak sense because the second
derivative of the soft-thresholding operator is not well-defined
for the two critical values . Yet, Algorithm 2 still per-
forms well in accordance with the second part of Theorem 2.

It should also be noted that this type of extensive estimation
over a wide range of (as shown in Figs. 6 and 7) has been done
purely for the purpose of illustration. In practice, we can rely on
bracketing methods (golden-mean search) which do not use any
derivative information in order to find the minimum of SURE in
a much smaller number of steps (typically 10 steps).

3) Visual Comparison: To highlight the different characteris-
tics of the denoising methods it is best to compare the results vi-
sually. Fig. 8 shows the denoised outputs of four algorithms with
optimized parameters. The smoothing spline estimator, as its
name suggests, attempts to smooth the noisy fluctuations during
the denoising process. But in doing so, it also smoothes the un-
derlying image leading to smudged edges [as seen in Fig. 8(c)],
which is the main disadvantage of this approach.

The Haar-OSWST preserves some edge informa-
tion but produces a blocky output because small detail coef-
ficients are set to zero by the univariate soft-thresholding op-
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Fig. 6. MSE (�) and SURE(�) for all considered methods (Noisy Peppers image with SNR = 4 dB, � = 33:54), (a) PSS (Degree = 1), (b) Haar-OSWST
(s = 1), (c) TVD (� = 0:1), (d) Haar-RSWST (s = 1; � = 0:1).

erator. There is a loss of image details and the reconstructed
output exhibits artifacts corresponding to the footprints of the
basis function (Haar wavelet). The Haar wavelet is at the low
end of what can be achieved with an orthonormal wavelet trans-
form; the use of a wavelet with better regularization proper-
ties (symlets, higher order spline wavelets, etc.) yields better
results—typically dB additional gain (results not shown).

The TV denoised image appears significantly better than the
earlier two. Yet, although the edges are preserved as per the TV
constraint, the output exhibits some artificial blockiness due to
the fact that the algorithm tends to favour piecewise constant
solutions.

The Haar-RSWST yields the best visual output,
which correlates with the higher SNR value (11.90 dB). This
can be attributed to the redundant nature of the underlying trans-
form. Interestingly enough, the result is not penalized by the
lower order of the Haar transform (piecewise-constant approx-
imation), in fact, it is quite the contrary (as was also noticed
in [20]). This is in contrast with the nonredundant case where
higher order wavelets yield better results, but nothing that comes
close to the result in Fig. 8(f).

4) Computational Cost: Two main aspects of any denoising
algorithm are the associated computational cost and the yielded

SNR improvement. In general, these two aspects are conflicting
in nature and the user must strike a good balance between them.
In terms of computational efficiency, the four methods can be
ranked as follows.

i) The Haar-OSWST method ( levels), which requires
of the order of operations, while it uses the same
amount of storage as the image itself.

ii) Polyharmonic smoothing splines; these are imple-
mented efficiently using the FFT and, therefore, require

operations while storage-wise, it is
equivalent to the Haar-OSWST method.

iii) The Haar-RSWST method; it is implemented using the
algorithm à trous [41] which, for , requires a total
of computations. It should be noted that
the performance improvement yielded by the redundancy
of the transform is at the cost of requiring storage
locations which is probably one potential downside of this
method.

iv) TVD; the MM algorithm of [44] required an average of
13 main iterations. At any given iteration, the method
uses few- locations (typically ) for storing inter-
mediate iteration variables. Additionally, for each main
iteration, we performed 20 conjugate-gradient iterations
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Fig. 7. MSE(�) and SURE (�) for all considered methods (Noisy Boats image with input SNR = 4 dB, � = 29:45)). (a) PSS (Degree = 1), (b) Haar-OSWST
(s = 1), (c) TVD (� = 0:1), (d) Haar-RSWST (s = 1; � = 0:1).

to solve an associated linear system. This leads to a total
of operations to obtain a single denoised signal es-
timate implying that TVD is the costliest of all the con-
sidered methods.

5) SNR Improvement: We now make a quantitative compar-
ison of the methods in terms of SNR improvement. For the sake
of comparison, the SNR is computed for outputs obtained by
setting based on both the true MSE and SURE. This is tabu-
lated in Table II where the first value in each cell gives the SNR
obtained by choosing based on the true MSE (oracle SNR),
while the second corresponds to that obtained by Monte-Carlo
SURE optimization. The maximum of the SNRs with respect to
all the methods is indicated in bold-face font for each image and
noise variance. Several observations are in order:

• The first and the most important one for this paper is
that the SNR obtained based on the true MSE and SURE
are either equal or different only in the second decimal
place for all tested cases. This indicates the reliability
and robustness of our Monte-Carlo SURE optimization
procedure.

• Haar-OSWST performs poorly, especially at high
noise levels. This is due to the inflexible nature of the
soft-thresholding operator and blocky-reconstruction of
the Haar wavelet. However, as noted earlier, one may be

able to boost the performance slightly by using a higher
order wavelet (typically dB additional gain).

• The linear smoothing spline technique is among the least
effective method for natural image denoising. It is seem-
ingly better than Haar-OSWST at high noise
levels for almost all images due to the fact that it smoothes
the noisy image thereby strongly reducing the harsh effect
of noisy fluctuations. But, it also smoothes the underlying
signal making it the least-preferred method for images with
rich texture (for instance, the Barbara image).
However, the polyharmonic smoothing spline of de-
gree 1 outperforms all the other methods for the fBm
image, which is in agreement with the theory. This also
strengthens the fact that smoothing splines are ideal when-
ever the underlying image fits the statistical model. A
similar behaviour is observed for the MRI image which
may be due to the fact that MRI images are mostly
fractal-like [48] and their power spectrum can be well
approximated by the spectral law [49].

• As expected, the use of redundant transform improves the
denoising quality compared to Haar-OSWST . The
Haar-RSWST (with ) method provides a gain of more
than 2 dB compared to Haar-OSWST at large
levels of noise. Notably, it is also the best method for all the
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Fig. 8. Visual comparison of SURE-optimized denoising results for the Boats image (zoomed); (a) Noise-free image; (b) noisy observations (� = 29:45; SNR =
4 dB), (c) polyharmonic smoothing spline (Degree 1) result (SNR = 11:84 dB) (d) Haar-OSWST (s = 1) result (SNR = 10:33 dB); (e) TVD result (SNR =
11:02 dB); (f) Haar-RSWST result (s = 1;SNR = 11:90 dB).

images with the exception of fBm and the Shepp–Logan
phantom.

• TVD performs better than PSS and Haar-OSWST
(and even -optimized Haar-OSWST, see the fol-

lowing subsection for details), whenever the images are
smooth without strong textures (for instance the Peppers
image and the Shepp–Logan phantom). This shows that
TVD is competitive or even better than classical wavelet
denoising methods [44] for images that fall well within the
piecewise-constant category. The Shepp–Logan phantom
is noteworthy in this context as it is a good example of a
piecewise constant image. Unsurprisingly, TVD performs
better than all the considered methods for this particular
image, as indicated in Table II.
In the presence of rich texture (the Barbara image), how-
ever, TVD performs worse than all wavelet based methods,
which is quite expected because the TV prior is not well-
suited for such images. In fact, any texture is considered
part of the noise and is annihilated by TVD.

To conclude, we infer that of the considered methods, some
are better suited than others for certain type of images: while
overall Haar-RSWST yields the best results for natural images,
smoothing splines are well adapted to fractal-like processes and
TVD does best for piecewise-constant images.

D. Results With Multiparameter Optimization

So far we have only provided results for SURE-based one-pa-
rameter optimization. However, there is no major difficulty in

applying our method for multiparameter optimization as well.
The brute force approach would be to perform an exhaustive
search in multiple dimensions to find the best parameter values
that minimize SURE. A better way is to perform the search
by applying derivative-free optimization. The Powell-Brent al-
gorithm, which uses bracketing and parabolic interpolation for
line-search and takes about iterations to converge
for set of parameters, is well-suited for our problem as long
as the number of parameters stays reasonably small (typically

).
Here, we test the concept with the optimization of

for the PSS, Haar-OSWST and Haar-RSWST methods. For the
PSS method, matches the order of the spline to the Hurst ex-
ponent of the underlying noise-free signal. This fact has been
applied in [33] where the optimal is obtained by fitting
a fractal-like model to the power spectrum of the noisy image.
However, in our approach, this is not required as and are opti-
mized together using SURE. For the wavelet methods, adjusting

changes the threshold value in each sub-band according to (19)
and our understanding is that this yields better denoising perfor-
mance than universal soft-thresholding. In all our experiments,
we observed that the 2-D Powell optimization of the respective
methods took no more than four iterations at various noise levels
for all the test images. The results are tabulated in Table III.

With PSS, the combined optimization does not yield any sig-
nificant improvement for the fBm since a degree 1 spline is the-
oretically the best in the MSE sense (Wiener solution). As ex-
pected PSS still performs the best of all the methods for the fBm
image. The improvement for Boats, Barbara, Peppers and the
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TABLE II
PERFORMANCE OF CONSIDERED METHODS IN TERMS OF SNR

TABLE III
COMPARISON OF (�; s)-OPTIMIZED METHODS

Shepp–Logan phantom is also less significant because these im-
ages are not very fractal-like. In contrast, there is a significant
improvement ( dB at high input SNR) for the MRI image
which provides further support for the claim that MRI images
are fractal-like and the order must be matched to the fractal
dimension to obtain best results.

As noted in Table III, this combined optimization is shown
to produce a consistent SNR increase for both Haar-OSWST
and Haar-RSWST methods. In fact, in the redundant case it
leads to an increase of about +1 dB for smooth images like Pep-
pers, Boats and fBm at high noise levels. Thus, the optimized
Haar-RSWST performs the best of all the considered methods

for all natural images which exemplifies the fact that redundant
transforms make a powerful denoising tool.

However, it must be emphasized that the results provided
in this section are purely for the purpose of illustrating
multiparameter optimization of SURE computed by the
proposed Monte-Carlo scheme. In our experiments, we
considered a set of popular denoising algorithms with
adjustable parameters without making any specific claim
concerning their overall optimality. In fact, we have in-
tentionally chosen some test images which favour one or
the other algorithm to illustrate that the issue of finding a
“best” algorithm is not so clear-cut.
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The reader who is interested in state-of-the-art methods is
referred to the relevant literature; in particular the BiShrink
(dual tree complex wavelet decomposition) [50], BLS-GSM
(full steerable pyramidal decomposition) [51], ProbShrink
(undecimated Daubechies symlets) [52], and SURE-LET (with
redundant Haar transform) [20]. Depending on the type of
image these more-advanced techniques can yield a further
SNR improvement of the order of 1 dB. In some cases such as
SURE-LET, they already take full advantage of the possibility
of automatic SURE-based parameter adjustment, with the
important difference that the underlying solution is explicit as
opposed to our black-box approach where it is obtained numer-
ically. The benefit with the latter scheme is that it requires no
hypothesis concerning the analytical form of the solution and,
therefore, has a wider range of applicability.

VI. SUMMARY AND CONCLUSION

Computation and application of SURE for denoising prob-
lems demands the evaluation of the divergence of the denoising
operator with respect to the given noisy data. The calculation of
this divergence for a general denoising problem may turn out to
be nontrivial, especially if the operator does not have explicit
analytical form as is the case with iterative algorithms (vari-
ational, PDE-based and Bayesian methods). In this paper, we
introduced a Monte-Carlo technique that circumvents this dif-
ficulty and makes SURE viable for an arbitrary denoising sce-
nario, especially when the computation of the associated diver-
gence is mathematically intractable or numerically infeasible.
By adding a perturbation to the signal, our method essentially
implements a random first-order difference estimator of the di-
vergence of the denoising operator. From a calculus point of
view, this can be related to a stochastic definition of the diver-
gence of a vector field. The final outcome is a black-box scheme
which yields SURE numerically using only the output of the de-
noising algorithm without the need for any knowledge of its in-
ternal working.

We demonstrated the applicability of our method by per-
forming Monte-Carlo SURE optimization of some popular
denoising algorithms in the wavelet (both orthonormal and
redundant) and variational (linear and nonlinear) settings.
We found that SURE computed using the proposed tech-
nique perfectly predicts the true MSE in all considered cases,
thereby yielding correct values for the optimal threshold and
the regularization parameter for the respective problems. We
also substantiated this argument in the multivariate case by
performing SURE-based optimization of the thresholds for
denoising by scale-dependent wavelet soft-thresholding. We
showed that the SNR obtained by SURE-based optimization is
in almost perfect agreement with the oracle solution (minimum
MSE) for all considered cases. This suggests that Monte-Carlo
SURE can be reliably employed for data-driven adjustment of
parameters in a large variety of denoising problems involving
Gaussian noise.
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