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Robust Real-Time Segmentation of Images
and Videos Using a Smooth-Spline

Snake-based algorithm
Frederic Precioso, Michel Barlaud, Thierry Blu, Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract—This paper deals with fast image and video segmen-
tation using active contours. Region-based active contours using
level sets are powerful techniques for video segmentation, but they
suffer from large computational cost. A parametric active contour
method based on B-Spline interpolation has been proposed in [26]
to highly reduce the computational cost, but this method is sensi-
tive to noise. Here, we choose to relax the rigid interpolation con-
straint in order to robustify our method in the presence of noise: by
using smoothing splines, we trade a tunable amount of interpola-
tion error for a smoother spline curve. We show by experiments on
natural sequences that this new flexibility yields segmentation re-
sults of higher quality at no additional computational cost. Hence,
real-time processing for moving objects segmentation is preserved.

I. INTRODUCTION

WE address the problem of image and video segmentation
using region-based active contours. The goal is to extract

image regions corresponding to semantic objects. Image and
video segmentation can be cast in a minimization framework by
choosing a criterion which includes region and boundary func-
tionals. Boundary functionals were first proposed by Kass et al.
[21] and geodesic active contours by Caselles et al. [3], [4] for
active contour segmentation. Region-based active contours were
first introduced by Ronfard et al. [30] and Cohen et al. [10].
Chakraborty et al. [5] combined both boundary and region infor-
mation for medical images segmentation. Then, Chesnaud et al.
[9], Chan et al. [6], Zhu et al. [35], Paragios et al. [24], and De-
breuve et al. [12] introduce region-based statistic descriptors for
image or video segmentation. Jehan-Besson et al. [17], [20] ad-
dress the segmentation problem where features of the region to
be segmented are embedded in region functionals. In this frame-
work, Gastaud et al. [13] propose a new approach introducing
shape prior. This method uses a variational approach as opposed
to previous work on shape prior, based on probabilistic methods
[11]. The shape prior allows free form deformation [13] and is
not restricted to a parametric deformation as in [8].

All these contour or region-based methods use a level-set ap-
proach which is accurate but time consuming. In this paper, we
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propose a parametric active contour evolution based on a cubic
spline contour [2].

In Section II, we present a survey of the region-based cri-
terion, the derivation of the criterion and computation of the
velocity vector.

In Section III, we propose a cubic B-spline implementation.
Cubic B-splines preserve regularity and have excellent
approximation properties [32] which means that, for a given
accuracy, fewer samples are needed than with other parametric
methods; moreover, fast algorithms are available for B-splines,
which greatly reduces the computation cost.

Unfortunately, interpolation methods are not robust to noise.
This is why we propose to use smoothing splines [33] in the
B-spline interpolation approach of [27]. These curves preserve
the implementation advantages as the B-splines while softening
the interpolation constraint. The relaxation of the interpolation
condition is traded for an optimal increase of the smoothness of
the spline snake. A smoothness parameter controls the amount
of relaxation.

In Section IV, we compare the influence of the smoothing
spline parameter with the curve-length regularization coef-
ficient. Finally, we show some experiments on real video
sequences.

II. REGION-BASED ACTIVE CONTOURS

A. Criterion and Velocity

Let us define a general segmentation criterion. For each frame
of the sequence, we search a background region , and ob-
ject regions with a common boundary (Fig. 1). Thus, the
criterion includes both region and boundary functionals

(1)

In this criterion, is the descriptor of the unknown back-
ground domain , is the descriptor of the unknown object
domain and is the weight of the regularization.

Since we use statistical descriptors (for and ), such
as mean, variance, or region histograms, the entropy descrip-
tors are globally attached to the region [9]. In the variational

1057-7149/$20.00 © 2005 IEEE



PRECIOSO et al.: ROBUST REAL-TIME SEGMENTATION OF IMAGES AND VIDEOS 911

Fig. 1. Domain definition.

Eulerian method proposed by Jehan-Besson et al. [20], for a re-
gion-based active contour segmentation, the authors introduce
a dynamical scheme (shape gradient method) in the criterion.
Hence, regions become continuously dependent on an evolution
parameter .

The criterion is denoted by .
Thus, the computation of the derivative provides

(2)

where is the curvature of the contour, is the velocity of ,
and is the unit inward normal to .

The terms are deduced from the variation of the descrip-
tors with the region. The term is deduced from the variation
of the region, and the classical term comes from the deriva-
tion of the Boundary term in (1) [4]. Complete proofs are avail-
able in [17], [19], and [20].

The active contour evolves from an initial position
toward the object with a velocity in the direction of , the
inward normal vector of the active contour

(3)

The velocity expression is deduced from the derivative (2)

(4)

• represents local terms which are computed from the
two first terms in (2). In Section IV, we will detail the
expression of and then the velocity for two applica-
tions: segmentation of homogenous regions and segmen-
tation of moving objects.

• is a constant.

B. Implementation

Region-based active contour evolution can be implemented
in two different ways.

• Implicitly, based on the level-set approach [19], [20],
[23]. Such a method provides an implicit management
of topological changes and yields accurate results, but it
suffers from a high computational cost.

• Explicitly, using active parametric contours. Such a
method reduces the computational cost substantially
and provides a complete control of the data size. The
accuracy of the results is dependent on the noise level
of the sequence. Using smoothing splines is likely to
introduce robustness in this method.

III. TOWARDS CUBIC SMOOTHING SPLINES

A. Cubic Spline Interpolation

The evolution velocity is now computed only at sampling
points along a spline active contour. Cubic spline curves are
parametric curves where and
are cubic polynomials on each segment and
are smoothly (twice continuously differentiable) connected be-
tween segments. Here, we assume that there are such segments
parametered by with the assumption and
that we are given the sampling points .

Each segment is expressed as a cubic polyno-
mial [1]

(5)

is a nonuniform B-spline function; the parameters of
the model are the B-spline coefficients called control points.
These coefficients can be specified by solving for the equa-
tions .

The B-spline function is a piecewise cubic polynomial
that depends on the values of the curve parameter at the
sampling points.

Irregular sampling of is intuitively more pertinent, as
regards active contour propagation, than uniform sampling.
This is the option chosen by, e.g., Pottmann et al. [25] and
Yang et al. [34], who propose to optimize the parameterization
of the spline curve for approximating a target curve, as well
as in other approaches based on arbitrary parameterizations
(chord length, centripetal, Foley, etc.). However, building the
nonuniform spline curve requires the computation of different
polynomials which is time consuming. To overcome this
problem, we have proposed a regular sampling approach [27],
i.e., , to represent the active contour using uniform
B-spline functions. In that case, after reparameterizing the
curve, the B-spline function is independent of the seg-
ment considered on the curve. We can write
where the centered B-spline of degree 3 is a bell-shaped,
symmetrical function, as shown in Fig. 2, defined by

.

(6)
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Fig. 2. Centered B-spline of degree 3.

The arc (5) with (6) becomes [1]

(7)

The computation cost of regular sampling is lower than han-
dling a specific equation for each segment of a
nonuniform B-Spline curve.

Moreover, the control points can be obtained from the
sampling points using a fast filtering algorithm when the
curve parameter is sampled uniformly (see Appendix I).

Indeed, each interpolated point corresponds to the poly-
nomial expression value when . From (7), we ob-
tain the relation between sampling points and control points
(B-spline coefficients)

(8)

This relation can be written as a convolution

(9)

where is the discrete cubic B-spline kernel.
The inverse convolution operator is defined by

(10)

Using the prefiltering approach exposed in [33], the inverse con-
volution operator is computed efficiently from a cas-
cade of first order causal and anti-causal recursive filters (see
details in Appendix I). The control points are computed from
sampling points using this fast filtering algorithm.

Cubic splines provide good interpolation accuracy at low
computational cost [32]. Moreover, these curves have several
interesting properties: They are twice continuously differ-
entiable, which allows to build a -regular curve. Thus,
the normal vector and the curvature, involved in the velocity

equation, can be computed exactly at every sampling point. In
addition, such curves minimize the following criterion:

(11)

under interpolatory constraints [31]. Here,
is a parametric description of the curve and the second
derivative of w.r.t. ; this functional is actually very close
to the (squared) curvature when the parameter is close to
the curvilinear abscissa, as shown in [16].

Although we have obtained real-time accurate results with an
implementation based on these B-spline curves [26], interpola-
tion is not robust enough in the presence of noise. Thus, we pro-
pose to use a less constrained approximation method; namely,
the smoothing spline method [28].

B. Cubic Spline Approximation

A smoothing spline is an approximation curve controlled by
a parameter trading interpolation error for smoothness [29]. It
minimizes the following criterion:

(12)

where the s are the measured data points and s are points,
on the curve, joining of polynomial pieces.

The result is still a cubic spline, but it does not satisfy any-
more the interpolation condition exactly. The interpolation error
has been converted into increased smoothness—smaller energy
of the second derivative.

The first term of (12) can be developed as

where is the curvilinear abscissa of the curve , and is
the angle of the tangent to the curve at . This shows that the
smoothing part in (12) can be rewritten as a sum of two positive
terms

(13)

Thus, the decrease of facilitates the decrease of
and :

• the first term of (13) represents the average variation of
curvilinear abscissa. Thus, decreasing this term tends to
improve the curve sampling uniformity;

• when the sampling is nearly uniform—i.e.,
, which is favored by the decrease of the first

term—the second term of (13) is lower bounded by the
square of (using Cauchy–Schwartz inequality)

which is the average tangent angle variation over the
curve. Preventing this quantity from being large also
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Fig. 3. Evolution from cubic spline interpolation (� = 0) toward cubic
smoothing spline approximation (� = 0:7).

prevents loops in the curves. This is because each loop
increases the value of by at least.

Fig. 3 shows the evolution of a cubic spline curve, based on
10 data points, from regular interpolation (for ) toward
a smoothing spline approximation (for ). This figure
shows that loops are avoided as the smoothness parameter
increases.

In Figs. 4 and 5, we have plotted the variance of the curvi-
linear abscissa and the interpolation error of
smoothing splines as functions of the smoothness parameter .

The curve in Fig. 4 confirms that the interpolation error in-
creases slightly with . Indeed, the amount of missclassified
pixels, between the smoothing spline segmentation and a seg-
mentation of reference, increases with , but only up to 1.6% of
the size of the object.

Fig. 5 shows that, on the contrary, the curvilinear abscissa
variance decreases with .

The relation between sampling points and control points
(B-spline coefficients) can be written as a convolution

(14)

with

(15)
This transfer function is factorized into a product of causal and
anticausal responses

(16)

where and are real quantities obtained
from the two poles and of that are inside the unit
circle. This prefiltering approach provides an efficient method
to compute the smoothing spline coefficients (see details in Ap-
pendix II).

The positive parameter quantifies the tradeoff between in-
terpolation error and regularity. For , no interpolation
error is allowed, and, thus, we get interpolating splines. When

increases, a larger amount of interpolation error is allowed;
hence, the spline snake is smoother and its sampling more reg-
ular. We show in Section IV the benefits of this new approach
for the segmentation of noisy images.

Fig. 4. Accuracy decreases slightly with �.

Fig. 5. Sampling uniformity increases with �.

IV. SEGMENTATION OF NOISY DATA

In this section, we present results of segmentation of static
images and segmentation of video sequences. We compare the
respective influence of the smoothing spline parameter and
the contour length regularization parameter on the segmenta-
tion quality. We first show results of a segmentation based on a
homogeneity criterion.

A. Segmentation of Homogeneous Regions

1) Grayscale Still Images: In this example, the images are
osteoporosis medical images. The goal is to segment bone
regions in the image. We consider the functional (1) where

and are descriptors of the bone homogeneity. The region
homogeneity is characterized by a function of the variance of
luminance intensity. Let and represent respectively
the variance and mean of , , and represent,
respectively, the variance and mean of , and a
positive function, for instance, .

Thus, the criterion to be minimized is

(17)

where is a positive constant.



914 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 7, JULY 2005

Fig. 6. Regular spline segmentation with � = 0 and length penalty � = 10.

Fig. 7. Smoothing spline segmentation with � = 0:08 and � = 0.

Using (2), the derivative of the functional with respect to
is

(18)

where is the curvature of the contour and is a constant.
More details and proofs are available in Jehan-besson et al.

[19]. In order to find a local extremum of the criterion (17), as
the authors proposed, we evolve a curve using the steepest de-
scent method. Thus, we obtain the following evolution equation:

Thus, the expression (4) of the velocity is known

(19)

This velocity makes the B-spline active contour evolve toward
the minimum of the energy criterion (17). Thus, the competition
between the region inside the contour and the region
outside leads to increase the homogeneity of both
regions. However, the images are corrupted by acquisition noise
and by the noise of nonbone tissues (muscles, fat, etc.).

Fig. 6 shows the convergence using the cubic spline interpo-
lation with length penalty method. The length penalty provides
smoothness to the contour. However, the acquisition noise cor-
rupts the segmentation quality in the area of interest for osteo-
porosis diagnostic. The smoothness of the contour depends only
on the length penalty parameter .

Fig. 7 shows the convergence using the new smoothing spline
method. The flexibility of the smoothing splines provides an ac-
curate bone segmentation without being corrupted by the noise.
The smoothness of the contour depends only on the smoothing
spline parameter .

Fig. 8 shows the robustness of the new smoothing spline
method regarding parameter variations. Between the left and
the right picture on the top row, is only increased from 0 to
0.01 [Fig. 8(a) and (b)], but still the accuracy of the segmenta-
tion is highly improved and the most efficient results are almost
reached. If we increase again ten times, up to 0.1, [Fig. 8(c)],
the segmentation is smooth but still very good. By increasing

ten times [Fig. 8(d)], the contour is too smooth but remains
robust. Additional experiments with and 100 indicate
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Fig. 8. Robustness regarding Smoothing spline parameter � variations. (a) Interpolation � = 0 and � = 0. (b) Approximation � = 0:01 and � = 0.
(c) Approximation � = 0:1 and � = 0. (d) Approximation � = 1 and � = 0.

that even if the contour is too smooth to preserve a sufficient
segmentation accuracy, the structure of the contour remains
stable which is not true with variations of , the weight on
the length penalty. Such relative robustness of the snake with
respect to suggests that we can determine a range for standard
values of this parameter. This first experiment provides a range
of .

The contour is sampled with 512 knots and the size of the
image is 512 512. The segmentation is obtained in 25 s with
a Pentium IV at 2.6 GHz. It has to be pointed out that most
of this computation time is spent in evaluating the variance of
the object domain and of the background. Indeed, segmenta-
tions with 256 and 128 knots, obtained in 24 s, confirm it: The
cost of the approximation amounts to a few percents of the full
computation.

To improve the computation time of our algorithm with such
descriptors based on area moments (mean of the intensity, vari-
ance, etc.), a perspective would be to implement the method of
Jacob et al. [15] for an exact computation of the area moments
of spline curves.

2) Color Video Sequences: As detailed by Jehan et al. in
[19], [20], the homogeneity in color images is related to the
determinant of the covariance matrix for Gaussian distributions.

Yezzi et al. [22] and Herbulot et al. [14] extended this frame-
work to the more general case of Entropy descriptors without
Gaussian distribution hypothesis.

In these experiments, regions of interest are regions of ho-
mogeneous color, like the face on the sequence Erik. The color
images are in the RGB color space. Let us define the joint prob-
ability distribution

and the joint entropy, between the three channels of the image,
on the domain

(20)

The segmentation of homogeneous regions of a color video
sequence is achieved by region competition between the back-
ground and the object , minimizing the following
criterion:

(21)
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Fig. 9. Evolution of segmentation with the minimization of the criterion (21). (a) Initial curve. (b) Iteration 40. (c) Iteration 100. (d) Final segmentation (Iteration
430).

Thus, applying DREAMS method [20] to (21), the evolution
equation based on the joint probability distributions is [14]

(22)

where

(23)

is the Gaussian kernel involved in the Parsen window method.
Fig. 9 shows the evolution of the curve and Fig. 10 the seg-

mentation of some frames of a sequence.
The data extracted from the histogram evolution are very sen-

sitive to noise. This is why we use a smoothing B-spline ap-
proach which combines a very low computational cost and a

global robustness to noisy data. The parameter is in
the standard range determined in the previous experiment, i.e.,

.

B. Moving Objects Segmentation

Now, we present results obtained for the segmentation of
moving objects in video sequences. This segmentation is based
on motion detection. Our method is applied to the real “coast-
guard” video. The goal is to detect the boat of the coastguards
in the sequence. We consider the functional (1) where
and are, respectively, descriptor of moving objects and
descriptor of the background. The descriptors have to take into
account the camera motion in this sequence. Thus, the criterion
to be minimized is

(24)

where is the projection of the image onto
the referential of image in order to compensate for the motion
of the camera. The camera motion model is based on a 6-param-
eter affine model. These parameters are computed with a robust
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Fig. 10. Segmentation through a sequence. (a) Frame 10. (b) Frame 20. (c) Frame 30. (d) Frame 40.

estimation using motion vectors [7]. The motion field is eval-
uated by a classical block-matching algorithm between frames

and [18]. and are two positive constants.
The descriptors are region-independent. Thus, the local terms

of the differentiation (2) disappear and the velocity (4) reduces
to

(25)

Since the descriptor is a temporal
gradient, this local term is noise sensitive.

In the “coastguard” sequence Fig. 11(a), the wake of the boat
behaves like noise for the background descriptor . Thus, the
contour evolution equation is corrupted by noise.

Fig. 11(b) shows the results using the cubic spline interpola-
tion method [27]. The smoothness of the contour depends only
on the contour length regularization parameter . However, the
foam in the wake of the boat is kept as part of the object.

Fig. 11(c) shows the results using the new smoothing spline
method proposed here. The smoothness of the contour depends
only on the smoothing spline parameter . Relaxing the rigid
interpolation constraint brings an obvious improvement: The
foam is not kept anymore, whereas the object is still reasonably
well segmented.

This third experiment confirms the range of , we de-
termined, as standard values for the parameter .

Fig. 12 shows the computation time and the accuracy of the
segmentation on the “coastguard” sequence, for the 5 first im-
ages. The contour is sampled with 64 knots and the size of the
image is 352 288. The sequence is segmented with a Pentium
IV at 2.6 GHz. The initial contour for the first frame is given by
the image boundaries. For the frames 2, 3, 4, and 5, the initial-
ization is provided by the final contour in the previous frame.
The object in the first frame takes more time to be segmented
because the initial contour is “far” from the object. For the other
frames, the segmentation is achieved in less than 0.40 s/frame
(with a Pentium IV at 2.6 GHz). Thus, the whole segmentation
process should be ten times faster to provide results in real time.
According to our knowledge, such a factor is not out of reach
by optimization for an industry expert.

We can, thus, say that the smoothing spline method provides
global robustness to noise-like data. The accuracy results on a
real video sequence show the improvement of our smoothing
spline method over a direct regularization of the segmentation
criterion.

V. CONCLUSION

In this paper, we address the problem of image and video
segmentation by working out a new region-based method using
cubic smoothing spline active contours.

Instead of spline interpolation, we have chosen a smoothing
spline approximation because we want the method to be more



918 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 7, JULY 2005

Fig. 11. Smoothing spline to smooth contours. (a) Initial sequence. (b) Interpolation � = 0 and � = 20. (c) Approximation � = 0:3 and � = 0.

robust in the presence of noise. The smoothing spline parameter
provides a tunable tradeoff between interpolation error and

contour smoothness. Furthermore, increasing the smoothing
spline parameter improves the sampling uniformity of the
contour and avoids the presence of loops. The structure of the
contour remains stable to variations of this parameter which is
not true with variations of , the weight on the length penalty.
The robustness of the active contour with respect to suggested
that we could determine a range for standard variations of this
parameter. Our experiments provided a range of . As a
consequence of the very low computational cost of the B-spline
implementation, real-time segmentation is achieved.

APPENDIX I
CUBIC SPLINE INTERPOLATION

A. Recursive Filter Factorization

Assuming that the data points are uniformly sampled, the
interpolating cubic spline filter , given in (10), can be
factorized into a product of causal and anticausal filters [33]

(26)
where .

This factorization results in a cascade of first-order causal
and anticausal recursive filters. Thus, given the data points

, the right-hand-side factorization provides
the cubic spline interpolating coefficients
through the following recursive algorithm:

(27)

(28)

for all integer , and where are intermediate coefficients.
We have to specify the initialization for the two recursions.

B. Initialization

1) Causal Filtering: The first recursion (27) leads to the fol-
lowing relation:

(29)
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Fig. 12. Computation time of the segmentation. (a) Frame 1: 1.33 s. (b) Frame 2: 0.12 s. (c) Frame 3: 0.30 s. (d) Frame 4: 0.42 s. (e) Frame 5: 0.25 s.

Because the curve is closed, the data points are periodic, i.e.,
for all integer . As a result of the filtering

operations, the coefficients and are periodic, as
well.

Letting in (29) and using the periodicity of
provides

(30)

The others coefficients are obtained
by applying the induction (27).

2) Anticausal Filtering: We now apply the anticausal filter
(28) on the coefficients and, in order to trigger the recur-
sion, we need to initialize it by providing the value of

.
Similarly as for the causal case, we obtain the following ex-

pression for :

(31)

Then, the induction (28) provides .
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We have, thus, specified the appropriate starting values for
both causal and anticausal filtering. We cascade these filters with
data points to compute cubic spline coefficients . The recur-
sive algorithm is stable numerically, fast and easy to implement.

APPENDIX II
CUBIC SMOOTHING SPLINE APPROXIMATION

A. Recursive Filter Factorization

Assuming that the data points are uniformly sampled, the
smoothing cubic spline filter , given in (15), can be
factorized into a product of causal and anticausal filters.

Let us consider the denominator of

(32)

This polynomial can be factorized as

(33)

where and are real numbers. Moreover, because does
not cancel on the unit circle, has its roots—whether real
or complex—strictly inside the unit circle. This shows that the
smoothing spline prefilter can be implemented as a cascade of
second-order causal and anticausal recursive filters

(34)

Note that, by defining , we can rewrite (32) as
the roots of which are either real, when

, or complex, when . This implies that
the roots of are either real, when , or complex,
when . It is only when that has
double roots.

Given the data points , the right-hand-side
factorization of (34) leads to the cubic smoothing spline coeffi-
cients by the following recursive algorithm:

(35)

(36)

We now have to specify the appropriate initialization for the two
recursions.

B. Initialization

In order to determine the initialization of the recursive
filtering algorithm, we need to compute the impulse response

of the causal filter in the cascade expression
(34).

• When , with
and we immediately have

from which we obtain

where is the discrete step sequence for
and otherwise.

• When , the two roots and of
are distinct. We can, thus, decompose in simple
fractions

where and . As
a result, the impulse response of is given by

Note that the impulse response of the anticausal filter
(needed for the initialization of the anticausal

recursion) is given by .
1) Causal Recursion: The initialization of (35) requires

computing and . Using the impulse response of
, we have

then, using the periodicity of (closed contour)

(37)

We, thus, need to compute an expression of the form
. For this, we consider the functions

Since obviously satisfies , we can re-
strict to and we find

Thanks to the periodicity, has to be replaced by
in this expression when . Moreover, by simple
differentiation of , we also have that

(38)

Finally, we find that

• when

(39)
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Fig. 13. Flow-chart of our algorithm based on cubic spline interpolation.

• when

(40)

These expressions can be substituted in (37) to provide the
initial conditions to the recursion (35).

2) Anticausal Recursion: The initialization of (36) requires
computing and . Using the impulse response

of , we obtain

then, using the periodicity of (closed contour)

(41)

By substituting the expressions found in (39) and (40) in these
equations, (41) provides the initial conditions to the recursion
(36).

To summarize the process described above, given data
points , we cascade a causal and an anti-
causal filter to compute the cubic smoothing spline coefficients

. As for interpolating spline, the recursive
algorithm for smoothing spline is stable numerically, fast, and
easy to implement.
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Fig. 14. Flow-chart of our algorithm based on smoothing spline approximation.

APPENDIX III
FLOW-CHARTS OF THE ALGORITHMS

A. Cubic Spline Interpolation

See Fig. 13.

B. Cubic Smoothing Spline Approximation

See Fig. 14.
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