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Summary

An important topic in image processing is the estimation of motion from a sequence
of images. This motion is known as the Optical Flow and is utilised in a range
of applications e.g. computer vision, biology and medical imaging. In this work, we
present a novel algorithm to estimate the optical flow using local all-pass filters. We
demonstrate that this algorithm is fast, consistent, and that it outperforms three state-
of-the-art algorithms when estimating constant and smoothly varying flows. We also
show initial competitive results for real images.

Optical Flow Estimation

Problem: Find a velocity field u(x,y) = |ui(x,y), us(x,y)| based on the variation
of pixel intensities within an image sequence [1], where (z, ) is the pixel coordinates.
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(b) Optical Flow, u(x,y) (d) Flow Colour Code

(a) Image 1, I1(z,y)

Standard Framework

Assume a pixel's intensity remains constants as it flows from one image to another:

Brightness Constraint:  Ih(z,y) = Li(z — wi(x,y), y — us(x,y))
_—

Non-Linear

Linearise constraint by performing first order Taylor approximation under the assump-
tion that the displacement of the optical flow is small [1,2]:
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Optical Flow Equation: I, — I] + u1—1 + u2—2 =0
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1 Constraint for 2 Unknowns = Ill-posed (Aperture Problem)

Overcoming the Aperture Problem:

Global Approach: Minimise a global energy function that comprises the optical
flow equation as a data term and a regularisation constraint on the flow as a prior
term [1].

Local Approach: Constrain the optical flow to be constant over a local region and
solve the optical flow equation within the region [2].

Our Approach

Instead of assuming small displacement and using the optical flow equation:

Assume the optical flow is slowly varying = Treat as locally constant

Under this assumption:

e Relate local changes between two images via a filter that is All-Pass in nature

e Extract local estimate of optical flow from this all-pass filter

% No limit on the size of displacement of the flow
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All-Pass Filtering Framework
1. Shifting is All-Pass Filtering

Under brightness constraint:
Constant optical flow = Shifting by a displacement vector u = |uq, us|

Shifting in frequency domain:
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R Optical Flow |
Ih(wi,w2) = (wr, ws) e
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= Filtering Operation

All-Pass Filter:  H(wq,wy) = e /1«17 712

2. Rational Representation of All-Pass Filter

The (2w, 27)-periodic frequency response of any digital all-pass filter can be expressed
as:

P (ej“’l, ej“’2) <—  Forward Filter
P (e77%1 e77«2) <— Backward Filter
Linearise filtering performed by h:

H(wl, wg) =

Lk, 1] = hlk, 1|« L[k,l] < pl—k,—* Llk 1] = plk,{] = L]k, ]

3. Filter Approximation - A Basis Representation

Approximate p using a linear combination of a few, known, real filters:
N-1

papp[ka l] — Z Cnpn[k7 l]

n=0

Opt for compact filter basis based on Gaussian filters:

polke, 1] = =57 palk 1] = (K2 + 12 — 202)polk, [
pl]ﬁ l — kpo[/ﬁ l] p4;7f75; — /flpo[l@ l]
ok, U] = U polk, ] pslk, 1] = (k* — I?) polk, [

where 0 = (R + 2)/4 and R is the half-support of the filters.

4. Extracting the Displacement Vector

. | 0 log (Ha (ej“’1 ejw2))
. _ _ : pp ;
Since H,,, = e /M0 — 5 =
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Local All-Pass Algorithm

Assume flow is constant within a window R and estimate a local all-pass filter. Thus,
for (2R + 1) square window R, solve at every pixel:

min > [pupp[—k, =1 % Lk, 1| = paplk, 1 * L[k, 1]
el eR

% ¢g =1 == Solve linear system of equations with N — 1 unknowns

e Efficient implementation using convolutions
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and pointwise multiplication

Local All-Pass
Filter

e Extract optical flow estimate from filters
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Multi-Scale Refinement

Estimate the flow in a slow-to-fast varying manner by changing the filter parameter
R; large values of R allow the estimation of large flow whilst small values allow faster
variations.

Post-Processing:

e Remove erroneous flow estimates using
Inpainting

e Smooth flow estimate using mean
filtering

uk+1

% Real Images = Pre-process images using high-pass filter and median filtering at small R

Results

Evaluation under two conditions:

Noiseless Conditions: Image [ is generated by directly warping image [; with a
synthetic optical flow. Therefore, the images exactly satisfy brightness constraint.

Real Conditions: Image I, is acquired independently of [;. Therefore, the images
are unlikely to satisfy the brightness constraint exactly (i.e. noisy conditions).

Accuracy:

Measures: EE = ||u — ue|;, and AE = cos™ (
S L

End-point Error (in pixels)
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Angular Error (in degrees)

Comparison of the LAP algorithm against three state-of-the-art optical flow algorithms

Constant Flows Smoothly Varying Flows Real Flows

D =1 pixel D = 15 pixel | D =1 pixel | D = 15 pixel | Dimetrodon | RubberWhale
AAE AEE | AAE | AEE | AAE | AEE | AAE | AEE | AAE | AEE | AAE | AEE
LAP 4x107° 1x10-7/0.0010.001 | 0.107 0.002 0.746|0.102|1.782 0.096 3.870 | 0.116
LDOF [3] | 0.777 0.020 | 0.169 | 0.054 | 2.119 | 0.043 | 11.91 | 1.310 | 2.104 | 0.115 | 4.310 | 0.129
MPOF [4] | 1.833 0.046 | 0.094 | 0.044 | 2.103 | 0.041 | 7.201 | 0.964 | 2.976 | 0.150 |2.662  0.087
HS [1,6] 1.293 0.033 | 0.084 | 0.039 | 1.854 | 0.037 | 6.010 | 0.868 | 4.562 | 0.219 | 3.801 | 0.119

* AAE - Average Angular Error and AEE - Average End-point Error
** D is the maximum displacement of the optical flow

Algorithms

Estimating a smoothly varying optical flow with LAP algorithm (maximum displacement is 15 pixels)

(f) Ground Truth Flow, u (h) LAP Flow Estimate, e

(g) Image 2, I

(e) Image 1, I1

Computation Time:

Computation time for the five optical flow algorithms (images are 388 by 584 pixels)

LAP | LAP w. Median Filters| LDOF [3]| MPOF [4] HS [1,6]
Time (seconds) | 6.23 7.76 29.87 279.00 | 47.05

% Unlike the others, LAP computation times achieved using only a Matlab implementation
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