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ABSTRACT

Context. Two main classes of imaging algorithms have emerged in radio interferometry: the CLEAN algorithm and its multiple
variants, and compressed-sensing inspired methods. They are both discrete in nature, and estimate source locations and intensities
on a regular grid. For the traditional CLEAN-based imaging pipeline, the resolution power of the tool is limited by the width of the
synthesized beam, which is inversely proportional to the largest baseline. The finite rate of innovation (FRI) framework is a robust
method to find the locations of point-sources in a continuum without grid imposition. The continuous formulation makes the FRI
recovery performance only dependent on the number of measurements and the number of sources in the sky. FRI can theoretically
find sources below the perceived tool resolution. To date, FRI had never been tested in the extreme conditions inherent to radio
astronomy: weak signal / high noise, huge data sets, large numbers of sources.
Aims. The aims were (i) to adapt FRI to radio astronomy, (ii) verify it can recover sources in radio astronomy conditions with more
accurate positioning than CLEAN, and possibly resolve some sources that would otherwise be missed, (iii) show that sources can be
found using less data than would otherwise be required to find them, and (iv) show that FRI does not lead to an augmented rate of
false positives.
Methods. We implemented a continuous domain sparse reconstruction algorithm in Python. The angular resolution performance of
the new algorithm was assessed under simulation, and with visibility measurements from the LOFAR telescope. Existing catalogs
were used to confirm the existence of sources.
Results. We adapted the FRI framework to radio interferometry, and showed that it is possible to determine accurate off-grid point-
source locations and their corresponding intensities. In addition, FRI-based sparse reconstruction required less integration time and
smaller baselines to reach a comparable reconstruction quality compared to a conventional method. The achieved angular resolution
is higher than the perceived instrument resolution, and very close sources can be reliably distinguished. The proposed approach has
cubic complexity in the total number (typically around a few thousand) of uniform Fourier data of the sky image estimated from the
reconstruction. It is also demonstrated that the method is robust to the presence of extended-sources, and that false-positives can be
addressed by choosing an adequate model order to match the noise level.

Key words. techniques: interferometric – methods: numerical – techniques: image processing

1. Introduction

Existing radio interferometric imaging algorithms are discrete
in nature, e.g., CLEAN (Högbom 1974) and its numerous vari-
ants (Bhatnagar & Cornwell 2004; Cornwell et al. 2008) or the
compressed sensing inspired methods proposed by Wiaux et al.
(2010), Starck et al. (2010), Carrillo et al. (2014), Dabbech et al.
(2015). As such, they estimate the locations and intensities of ce-
lestial sources on a uniform grid that is artificially imposed over
the field of view (Schwab 1984).

Sources do not line up so conveniently in reality, located in-
stead in-between pixels of the pre-defined grid. This leads to in-
accurate source position and intensity estimation, with contribu-
tions from closely located sources being merged together into
a single pixel (see Fig. 1 for an illustration). Depending on the
ultimate goal (e.g., calibration), it may be desired to have more
accurate location estimates (and thus distances between objects)
than achievable on a grid.

The starting point for this work was hence to see if we could
accurately determine the intensities and locations of sources
directly from visibility data without a grid imposition in an inter-
mediate image domain. The framework commonly referred to as
finite rate of innovation (FRI) sampling is a natural candidate for
this task. Introduced first in the signal processing community,
FRI sampling generalizes the Shannon sampling theorem to
sparse non-bandlimited signals. Vetterli et al. (2002) proposed,
for example, a sampling scheme permitting the exact recov-
ery of a stream of Dirac from a few Fourier series coeffi-
cients. The framework has since been applied successfully in
other fields, and extended to 2D signals as well as noisy mea-
surements (Maravić & Vetterli 2005; Shukla & Dragotti 2007;
Pan et al. 2014; Ongie & Jacob 2016). Having been originally
designed to work only with equally spaced Fourier samples as
input, Pan et al. (2017b) extended the FRI framework to cases
with non-uniform samples (as is the case in radio interferome-
try). It thus becomes possible to envisage an FRI-based approach
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Fig. 1. Existing imaging algorithms estimate the locations and intensi-
ties of celestial sources on a uniform gird. In practice, sources do not
line up so conveniently, and can fall off-grid. Gridding hence results in
a less accurate estimation of the location estimations as well as a poten-
tial overestimation of intensities due to multiple sources being merged
to the same pixel.

in radio astronomy, albeit with the substantial remaining chal-
lenge of recovering a large number of sources given the very
weak signals and massive data sets.

A continuously defined framework such as FRI, allows the
significance of the notion of achievable angular resolution to
be revisited. Indeed, for the traditional CLEAN-based imaging
pipeline, the resolution power of the tool, or the ability to distin-
guish neighboring sources, is limited by the width of the synthe-
sized beam, whose width is inversely proportional to the longest
baseline of the interferometer. Sources closer than this critical
beam width are indistinguishable from one another.

In comparison, the FRI-based sparse recovery allows sources
separated by a distance smaller than this apparent bound to be
distinguished. The continuous-domain formulation makes the
performance only dependent on the number of measurements
and sources in the sky, but not on the number of pixels from
an arbitrarily imposed, and potentially very large, grid. We name
the proposed FRI-based approach as Looking beyond pixels with
continuous-space EstimAtion of Point sources (LEAP).

Compressed sensing (e.g., Starck et al. 2010), while it sur-
passes the instrument resolution limit as well, does rely on a
grid. LEAP differs in that the estimation of source locations is
decoupled from the estimation of their intensities. Hence, it is
possible to exploit the consistency in source locations among
different frequency sub-bands and have a coherent reconstruc-
tion in a multi-band setting (see Sect. 2.3.3).

The present work quantifies how successfully LEAP can be
applied to recover point sources in realistic radio astronomy con-
ditions. Our experiments, carried out through simulation and
actual interferometric measurements from LOFAR, show that
the reconstruction is more accurate and requires fewer measure-
ments, reaching a comparable source estimate to CLEAN from
much less integration time and smaller baselines. The achiev-
able position accuracy goes below the perceived angular res-
olution, which allows closely located sources to be reliably

distinguished. To confirm that these super-resolved sources were
indeed actual sources, we showed that CLEAN could also re-
cover them given longer baselines (and hence sharpening its
PSF). Finally, we showed that LEAP could leverage together the
information from multiple frequency bands in a coherent fashion
to improve point source estimation.

The paper is organized as follows. After a briefly review of
the radio interferometer measurement equation in Sect. 2.1, we
propose to adapt the sparse recovery framework based on FRI
sampling (Sect. 2.2) to source estimations in radioastronomy
in Sect. 2.3. The algorithmic details for the reconstruction of
the source locations and intensities are discussed in Sects. 2.3.1
and 2.3.2. Further, we present the multi-band formulation in
Sect. 2.3.3. The method is validated with both synthetic exper-
iments (Sects. 3.2 to 3.4), actual LOFAR observations from the
Boötes field (Sect. 3.5), and the “Toothbrush” cluster (Sect. 3.6),
respectively. We discuss the advantages and limitations in Sect. 4
before concluding the work with a few possible future directions
in Sect. 5.

2. Methods

2.1. Interferometric imaging measurement equation

A typical radio interferometer consists of an array of anten-
nas that collect the electromagnetic waves emitted by celestial
sources. In the far field context, these sources are assumed to be
located on a hypothetical celestial sphere and the emitted electro-
magnetic waves arrive at each antenna in parallel. Consequently,
the signals received at two antennas differ only by a geomet-
ric time delay, which is determined by the baseline of the an-
tenna pair and the observation frequency. When the field-of-view
is sufficiently narrow, the celestial sphere can be approximated
locally by a tangential plane. It can be shown that the visibil-
ity measurements Vi j, given by the cross-correlations of antenna
pairs (i, j), then correspond to a 2D Fourier domain (conven-
tionally referred to as (u, v)-domain) sampling of the sky bright-
ness distribution I (Thompson et al. 2001; Taylor et al. 1999;
Simeoni 2015):

Vi j =

"
R2

I(r)e− j2π〈r,∆pi j〉 d2r, ∀i, j = 1, . . . , L. (1)

Here, L is the total number of antennas forming the interferom-
eter; r = (l,m) are the spatial coordinates of the sky image; and
∆p = (pi−pj)/λ := (ui j/2π, vi j/2π) is the projection onto the tan-
gent plane of the baseline between antenna i and j, normalized
by the wavelength λ of the received electromagnetic waves. For
simplicity, we assumed antennas have uniform gains and omni-
directional primary beams in (1). The w-term (see Cornwell et al.
2008) is considered as a constant for all baselines in a suf-
ficiently small field-of-view. However, the proposed algorithm
can straightforwardly be extended to more complex data models
such as the ones considered in Simeoni (2015).

The measurement Eq. (1) is known as the van Cittert-Zernike
theorem (Thompson et al. 2001, Chap. 3). It establishes an ap-
proximate Fourier relationship between interferometric mea-
surements and the sky brightness distribution: the visibilities Vi j
are samples of the Fourier transform of the sky image at dis-
crete frequencies (ui j, vi j). For a given antenna layout, a radio
interferometer has finite number of possible baselines. Hence, it
can only have a partial Fourier domain coverage. By exploiting
the earth rotation, a wider uv coverage can be achieved, which
sharpens the point-spread-function, and hence improves the res-
olution, of the various reconstruction algorithms.
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time domain

x(t)µ(t) = 0

Fourier domain

x̂m ∗ hm = 0

mask
function |µ(t)|

Fourier series
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Fig. 2. Sparse recovery with annihilating filter method. The annihilation equation that the sparse signal should satisfy x(t)µ(t) = 0 is equivalent to
a set of discrete convolution equations between uniformly sinusoidal samples and a finite length discrete filter in the Fourier domain. The mask
function µ(t), which can be estimated from the given lowpass filtered samples of x(t), vanishes at the position where x(t) is different from zero.

In a modern radio telescope, the number of antennas can be
enormous (e.g., around 20 000 dipole antennas in LOFAR). In
that case, it becomes unrealistic to send all raw data collected
by the antenna arrays to a centralized correlator and obtain visi-
bility measurements for each antenna pair. One commonly used
strategy for data compression involves grouping antennas as sta-
tions and applying beamforming to antenna signals within each
station. The visibility measurements are then obtained by taking
the cross-correlations at the station level. Specifically, the beam-
formed visibility measurement from two stations (i, j) are:

Vi j =

Q∑
p=1

Q∑
q=1

w(i)
p w̄

( j)
q

"
R2

I(r)e− j2π
〈
r,∆p(i, j)

pq

〉
d2r, ∀i, j = 1, . . . , L.

(2)

Here, L is the total number of stations, Q is the number of anten-
nas per station; ∆p(i, j)

pq =
(
p(i)

p − p( j)
q

)
/λ is the normalized base-

line for the pair formed by the pth antenna in station i and the qth
antenna in station j; and w(i)

q are beamforming weights. A typical
beamforming strategy is matched beamforming, which amounts
to choosing w(i)

p = 1√
Q

e j2π
〈
r0,p(i)

p

〉
, with r0 the focus direction of

the matched beamforming (e.g., the zenith).
When digital beamforming is performed, either the

beamshapes at each station must be accounted for – rendering
the conventional imaging pipeline more computationally inten-
sive – or neglected with potentially strong consequences for
image accuracy (Tasse et al. 2013). The latter is the strategy
most commonly employed in off-the-shelf CLEAN implemen-
tations (Offringa et al. 2014). In contrast, as we will show in
Sect. 2.3, the proposed approach readily accounts for the beam-
formed visibilities with minimal effort.

In summary, LEAP can transparently work with either mea-
surement Eq. (1) (without beamforming), or (2) (factoring in
beamforming). To this end, we estimate the Fourier transform of
the sky image on a (resolution-independent) uniform grid (e.g.,
55 × 55 in a typical setup for radioastronomy) from the visibil-
ity measurements (2). The point source locations and amplitudes
are subsequently obtained from these uniform Fourier transform
reconstructions with the FRI sampling technique, which we re-
view now in the next section.

2.2. Continuous domain sparse recovery with FRI sampling

In this section, we review a continuous-domain sparse recov-
ery technique on both the methodology (Sect. 2.2.1) and the

reconstruction algorithm aspects (Sect. 2.2.2). This technique
will be adapted to solve point source estimation in radio astron-
omy in the next section (Sect. 2.3).

2.2.1. The classic FRI sampling framework

Sampling signals with finite rate of innovation (FRI; Vetterli
et al. 2002; Blu et al. 2008) is a sampling theory for continuous-
domain sparse signals. Typically, these signals have finite de-
grees of freedom (i.e., signal innovation) per unit time/space.
The goal of FRI sampling is to estimate the finite number of
unknown signal parameters from samples, or in general mea-
surements, of the original continuous-domain sparse signal. A
classic example of FRI signals, and the one most closely related
to point source reconstruction in radio astronomy, is a τ-periodic
Dirac stream (Vetterli et al. 2002):

x(t) =
∑
k′∈Z

K∑
k=1

αkδ(t − tk − k′τ). (3)

Within each period, there are K Dirac deltas with amplitudes αk
located at tk. The objective is to reconstruct these 2K unknown
parameters from samples of the sparse signal x(t).

Instead of directly reconstructing the original continuous-
domain sparse signal x(t), FRI-based sparse recovery estimates
a smooth “mask” function µ(t), typically a polynomial, which
vanishes precisely at the non-zero locations of the sparse signal
(Fig. 2). If we could find such a continuous function satisfying
the annihilation equation µ(t)x(t) = 0, then the non-zero loca-
tions of the sparse signal are given by the roots of µ(t). The es-
timation of the amplitude for each non-zero element in x(t) is a
linear problem, and can be easily solved once we have the non-
zero locations of the sparse signal.

It remains to examine how the annihilation constraint
µ(t)x(t) = 0 can be enforced algorithmically. A common fea-
ture of FRI signals is that they consist of, or can be transformed
into, a weighted sum of sinusoids whose frequencies are related
to the unknown parameters of the original continuous sparse
signals. Thanks to a result first discovered more than two cen-
turies ago (Prony 1795), we know that there exists a finite length
discrete filter such that its convolution with uniformly sampled
sinusoids is zero (hence the name “annihilating filter”). Conse-
quently, we can enforce the continuous-domain annihilation con-
straint with a few discrete convolution equations.

Take the Dirac reconstruction (3) as an example. On the one
hand, the given measurements are typically low-pass filtered
samples of x(t), which have a direct correspondence to its
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Fourier series coefficients. On the other hand, the Fourier series
coefficients are a sum of sinusoids uk:

x̂m =
1
τ

K∑
k=1

αk e− j 2π
τ tkm︸  ︷︷  ︸

um
k

; (4)

whose frequencies have a direct correspondence with the Dirac
locations tk. By choosing a (K + 1)-tap filter [h0, . . . , hK] with
z-transform

H(z) =

K∑
m=0

hmz−m = h0

K∏
k=1

(1 − ukz−1), (5)

then hm∗ x̂m = 0 for all m. In the time domain, the Fourier domain
convolution equations reduces to a multiplication between the
sparse signal x(t) and a mask function µ(t) = H

(
e− j 2π

τ t
)
, which

vanishes at t = tk:

µ(t)x(t)
F←→ hm ∗ x̂m.

Readers are referred to Vetterli et al. (2002), Blu et al. (2008) for
rigorous derivations of the annihilation equations.

Given sufficient measurements, the annihilating filter coeffi-
cients can be reconstructed from the annihilation equations. The
Dirac locations are then obtained by taking the roots of the poly-
nomial (5). Once we have tk, the amplitudes associated to each
Dirac can be obtained by solving a simple least square estimation
based on (4). It has been shown that a stream of K Dirac deltas
can be perfectly recovered from at least 2K + 1 ideal (noise-free)
samples (Vetterli et al. 2002).

2.2.2. Generalization to arbitrary measurements

The direct reconstruction based on the annihilation equa-
tions are sensitive to noise. Various algorithms have thus
been proposed to improve the robustness of FRI reconstruc-
tion, including total least square minimization (Vetterli et al.
2002), Cadzow’s method (Blu et al. 2008), the matrix pencil
approach (Urigüen et al. 2013), and structured low-rank ap-
proximation (Condat & Hirabayashi 2015). However, these ap-
proaches are designed to operate only on uniformly sampled
measurements.

Recent work by Pan et al. (2017b) generalizes the classic
FRI framework to cases with non-uniform samples making it
applicable to point source reconstruction in radio astronomy.
There, generic FRI reconstruction is recast as an approximation
problem, where one would like to recover an FRI signal consis-
tent with the given measurements. The re-synthesized measure-
ments (based on the reconstructed FRI signal) should match the
given (noisy) measurements up to the noise level. A valid solu-
tion to the approximation problem is obtained with the help of
a constrained optimization, where the fitting error (e.g., the `2
norm of the discrepancies) is minimized subject to the annihila-
tion constraint:

min
h∈H ,

b

‖a −Gb‖22 subject to b ∗ h = 0. (6)

Here

– a is the given measurements of the sparse signal;
– h is the annihilating filter coefficients, which belongs to a

certain feasible setH , e.g., ‖h‖22 = 1;

– b is a set of (unknown) uniformly sampled sinusoids, which
needs to be tailored to each specific sparse reconstruction
problem;

– G is a linear mapping from these uniform sinusoidal samples
to the measurements.

More concretely, for the periodic stream of Dirac reconstruction
in the previous section, we could take the ideally lowpass filtered
samples as the measurements a, the Fourier series coefficients
x̂m as the uniform sinusoidal samples b, and the inverse discrete
Fourier transform (DFT) as the linear mapping G (see (2.3.1) for
cases of point source estimation in radio astronomy).

The sinusoidal samples b have to be taken on a uniform grid
in order to apply the annihilation constraint. However, the grid
step-size is flexible and is unrelated to the final resolution that
can be achieved with FRI reconstruction, which is only related
to the noise level (or in general the level of model mismatch). Ex-
perimentally, FRI-based sparse recovery reaches a lower bound,
typically characterized by Cramér-Rao bound (Pan et al. 2017b).
We define precisely the problem formulation in the case of radio
interferometer point source reconstruction in the next section.

An efficient algorithm (Pan et al. 2017b) was proposed to
solve (6) iteratively, where an ` × ` linear system of equations
was solved at each iteration for a set of uniform sinusoidal sam-
ples b of size `. The simplicity of the algorithm is beneficial
for point source reconstructions in radio interferometer imaging.
The recovery estimates point sources in the continuous domain
directly from visibilities, and the complexity depends only on
the dimension of b (typically around a few thousand). In terms
of computational complexity, solving a dimension ` linear sys-
tem of equations is at most O(`3) (see Golub & Van Loan 2012,
Chap. 3). In contrast, CLEAN or compressed sensing based ap-
proaches have to estimate an intermediate sky image defined on
a grid first before applying local peak detections in order to iden-
tify point sources. Consequently, the complexity of these algo-
rithms is related to the size of the discrete image (around one
million pixels or more), which is significantly larger than the di-
mension of the uniform sinusoidal samples b in a typical setup
(see Sect. 3.5 for a concrete example).

Although the focus in this paper is on point source recon-
structions, the FRI-based approach can also deal with extended
source recovery. Given a suitable set of bases in which the ex-
tended sources have a sparse representation, the same algorithm
can be applied in the transformation domain. However, sub-
stantially more work would be required to design a continuous
domain “sparsifying” transformation for celestial sources (see
Starck et al. 2010, for examples in a discrete setup), and hence
this is left for future work.

2.3. Algorithm

In the previous section, we reviewed the generic form of an
FRI-based sparse reconstruction. In this section, we adapt this
continuous-domain sparse recovery framework to point source
reconstructions in radio astronomy. The FRI-based approach
estimates source locations first (Sect. 2.3.1) before solving a
least square minimization for the source intensities (Sect. 2.3.2).
A multi-band formulation, which may potentially reduce the
amount of data needed significantly, are proposed in Sect. 2.3.3.
Finally, an iterative strategy to refine the source estimation based
on the current reconstruction is discussed in Sect. 2.3.4.
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2.3.1. Estimation of point source locations

For point source reconstruction, the sky image consists of a sum
of Dirac deltas:

I(r) =

K∑
k=1

αkδ(r − rk). (7)

The goal is to reconstruct the source locations rk and intensities
αk > 0 from the beamformed visibility measurements1:

Vi j =

Q∑
p=1

Q∑
q=1

w(i)
p w̄

( j)
q

K∑
k=1

αke− j2π
〈
rk ,∆p(i, j)

pq

〉
, ∀i, j = 1, . . . , L. (8)

The intensities of sources falling outside the telescope pri-
mary beam are significantly attenuated, hence it is reasonable
to assume the sky image has finite spatial support, e.g.2 rk ∈
[−τ1/2, τ1/2] × [−τ2/2, τ2/2]. The Fourier transform of the sky
image, then can be represented by sinc interpolation3:

Î(u, v)=
∑
ξ1∈Z

∑
ξ2∈Z

Î
(

2πξ1

τ1
,

2πξ2

τ2

)
sinc

(
τ1

2

(
u − 2πξ1

τ1

)
,
τ1

2

(
v − 2πξ2

τ2

))
·

From the FRI reconstruction perspective, as long as we can esti-
mate both the uniformly sampled sinusoids Î(2πξ1/τ1, 2πξ2/τ2)
and the annihilating filter, then the source locations are given
by finding roots of polynomials, whose coefficients are specified
by the annihilating filters. In general, the zero-crossing of a 2D
polynomial is a curve – any Dirac deltas that are located on the
curve satisfy the annihilation constraints (Pan et al. 2014). In or-
der to uniquely determine the Dirac locations, it is necessary to
find two annihilating filters: the Dirac locations are then obtained
from the intersections of the two associated curves (Pan et al.
2017a). Once the source locations are reconstructed, it is a linear
problem to estimate source intensities, which amounts to solving
a simple least square minimization (see details in Sect. 2.3.2).

However, this would require the estimation of infinitely
many sinusoidal samples from a finite number of visibility mea-
surements. One way to address this challenge is to assume addi-
tionally that the Fourier transform Î(u, v) is periodic with period
2πM × 2πN for some M and N such that Mτ1 and Nτ2 are odd
numbers4. From Poisson sum formula, the Fourier transform of
the sky image can be approximated as (see Pan et al. 2017b, for
a similar treatment in 1D):

Î(u, v) ≈
∑

|ξ1 |≤
⌊ Mτ1

2

⌋
∑

|ξ2 |≤
⌊ Nτ2

2

⌋Î
(

2πξ1

τ1
,

2πξ2

τ2

)
ϕ

(
u − 2πξ1

τ1
, v − 2πξ2

τ2

)
, (9)

where ϕ(u, v) =
sin(u) sin(v)

MNτ1τ2 sin(u/(Mτ1)) sin(v/(Nτ2)) .

The beamformed visibility measurements (8) are linear com-
binations of irregularly sampled Fourier transform of the sky
image at frequencies specified by the baselines of the antenna

1 The proposed approach can also cope with non-beamformed mea-
surements (see comments after (2) in Sect. 2.1).
2 Without loss of generality, we can always shift the coordinates such
that the telescope primary beam is centered at the origin.
3 In cases where strong sources fall outside the assumed spatial support
and still have significant contributions to the visibility measurements,
the interpolation representation here will be less accurate.
4 This is for the consideration of the convergence of Poisson sum equa-
tion (see Blu et al. 2008, for details).

pairs ∆p(i, j)
pq . Equation (9) provides a linear connection between

a finite set of uniform sinusoidal samples Î(2πξ1/τ1, 2πξ2/τ2)
and these non-uniformly sampled Fourier transform. In terms
of FRI sparse recovery, this amounts to solving a constrained
minimization:

min
h1∈H1,
h2∈H2,

b

‖a −Gb‖22

subject to b ∗ h1 = 0 and b ∗ h2 = 0, where

– a is the visibility measurements (8);
– b is the Fourier transform of the sky image on a uniform grid

Î(2πξ1/τ1, 2πξ2/τ2);
– G is the linear mapping from the uniformly sampled Fourier

transform b to the visibilities based on (8) and (9);
– h1 and h2 are two annihilating filters, each belonging to a

certain feasible set, e.g., ‖h1‖22 = 1, ‖h2‖22 = 1.

Similar to the 1D case, each annihilating filter defines a mask
function in the spatial domain, whose value vanishes on a cer-
tain curve. The source locations are then given by the inter-
sections of the two curves. In spatial domain, the annihilation
constraints can be considered as requiring the multiplication be-
tween the two mask functions with the sky image (that contains
a few point sources) be zero. Note that, instead of enforcing the
reconstructed signal to follow the interpolation Eq. (9) exactly,
we use it only as a metric to gauge the reconstruction quality in
Eq. (2.3.1). This explains why a reasonably robust reconstruction
is observed experimentally even when the periodicity assump-
tion is violated (Pan et al. 2017b). However, see Sect. 2.3.4 for a
strategy to refine the linear mapping based on the reconstructed
source model.

2.3.2. Estimation of point source intensities

The source intensity αk are estimated by solving a least-square
fitting problem based on the measurement Eq. (8) once we have
reconstructed the source locations rk:

αopt = arg min
α∈RK

L∑
i, j=1

Vi j −
Q∑

p,q=1

w(i)
p w̄

( j)
q

K∑
k=1

αke− j2π
〈
rk ,∆p(i, j)

pq

〉
2

. (10)

Equation (10) can be re-written more compactly in matrix form.
For this we need to introduce a few quantities:

– The visibility matrix Σ ∈ CL×L whose terms are given by
(Σ)i j = Vi j, for all i, j = 1, . . . , L.

– The antenna steering matrix A ∈ CLQ×K defined by

A =


ρ(1)(r1) . . . ρ(1)(rK)
ρ(2)(r1) . . . ρ(2)(rK)

...
...

...
ρ(L)(r1) . . . ρ(L)(rK)

 ,
where ρ(i)(rk) =

[
e− j2π〈rk ,p(i)

1 〉, . . . , e− j2π〈rk ,p(i)
Q 〉

]
∈ CQ is the an-

tenna steering vector for station i and rk are the reconstructed
source locations.

– the beamforming matrix W ∈ CLQ×L is a block-diagonal
matrix defined by

W =


w̄(1) . . . 0
...

. . .
...

0 . . . w̄(L)

 , (11)
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where w(i) =
[
w(i)

1 , . . . , w
(i)
Q

]
∈ CQ is the beamforming vector

for station i.

With the notation introduced above, (10) reduces to:

αopt = arg min
α∈RK

∥∥∥Σ −WHA diag(α) AHW
∥∥∥2

2

= arg min
α∈RK

∥∥∥∥σ − [(
WTĀ

)
◦
(
WHA

)]
α
∥∥∥∥2

2
, (12)

where σ = vec (Σ) is the vectorization of the visi-
bility matrix, and ◦ denotes the Khatri-Rao product (see
van der Veen & Wijnholds 2013, for more details). The closed-
form solution of (12) is

αopt =
[(
WTĀ

)
◦
(
WHA

)]†
σ,

where † denotes the Moore-Penrose pseudo-inverse. The opti-
mization problem (12) could be further constrained by α > 0
(since source intensities are positive) leading to a non-negative
least-squares problem, which can be solved within a finite num-
ber of iterations (Lawson & Hanson 1995). Finally, when the
number of sources is uncertain, a sparsity promoting penalty
term ν‖α‖1 could also be envisaged, with the parameter ν acting
as model selection parameter. Unfortunately, such a penalty term
would bias the estimation of the source intensities. Instead, we
propose an alternative model order selection procedure, based on
the fitting error (see Sect. 3.4).

2.3.3. Coherent multiband reconstruction

Modern radio telescopes operate over a wide frequency range,
e.g., 30 MHz to 240 MHz for LOFAR (Van Haarlem et al. 2013).
The emitted electromagnetic waves of celestial sources within
the operation range are measured simultaneously, which are sub-
sequently filtered into different sub-bands. If the consistency of
the measurements across different sub-bands is exploited, it may
potentially reduce significantly the integration times needed in
order to have a reliable reconstruction.

Classic approaches, e.g., multi-frequency synthesis (Conway
et al. 1990), and multi-frequency CLEAN (Sault & Wieringa
1994), try to map multi-frequency visibility measurements into
a single sub-band centered at a reference frequency based on a
frequency-dependent sky brightness distribution model.

With FRI-based sparse recovery, the mutual information
shared across different sub-bands can be exploited in a coher-
ent manner. It is usually reasonable to assume that the source lo-
cations remain the same across all subsequent sub-bands. Since
the annihilating filter is uniquely specified by the point source
locations alone, this implies that we should find one annihilat-
ing filter for all sub-bands such that the annihilation equations
are satisfied5. In general, the source intensities αk differ from
sub-band to sub-band. Hence, the uniformly sampled sinusoids,
which are chosen as the interpolation knots Î(2πξ1/τ1, 2πξ2/τ2)
in Eq. (9), are sub-band-dependent. Then, the multiband point
source reconstruction amounts to solving

min
h1∈H1,
h2∈H2,
b1,...,bJ

J∑
i=1

∥∥∥a(i) −G(i)b(i)
∥∥∥2

2 (13)

subject to b(i) ∗ h1 = 0 and b(i) ∗ h2 = 0 for i = 1, · · · , J,
5 The same approach can be applied to measurements of different po-
larizations within the same sub-band, where the source locations are
common but intensities differ for each polarization.

I(r) =
K∑

k=1

αkδ(r − rk)

G0

G†0

G1

Φ W

G

Î
(2πξ1

τ1
,

2πξ2

τ2

)
Î
(
u(i, j)

pq , v
(i, j)
pq

)
Vi j = Î(ui j, vi j)

Fourier
Samples

Point
Sources

Fig. 3. Diagram of the various linear operators involved in the up-
date strategy for the forward operator G (see details in Sects. 2.3.1
and 2.3.4).

where a(i) and b(i) are the visibility measurements and the uni-
form sinusoidal samples in the ith sub-band, respectively; and
G(i) is the linear mapping based on Eqs. (8) and (9) for each one
of the J sub-bands. Note that (13) is in fact the same formula-
tion6 as Eq. (2.3.1) with a change of variables:

a =


a(1)

...
a(J)

 , b =


b(1)

...
b(J)

 , and G =


G(1) . . . 0
...

. . .
...

0 . . . G(J)

 .
Once we have estimated the common annihilating filter h for all
sub-bands, the source locations and intensities are determined in
the same manner as in the single band case.

2.3.4. Update strategy for the linear mapping G in Eq. (2.3.1)

Ideally, G should be constructed based on the measurement
Eq. (8) in the constrained optimization Eq. (2.3.1), and the dis-
crepancies between the re-synthesized visibilities Gb with the
given measurements minimized. If the actual mapping, which
links the Fourier transform of the sky image on a uniform grid to
the visibility measurement, were available, then the FRI-based
sparse recovery would give the exact reconstruction from the
noiseless measurements. However, this is not feasible, as the ex-
act mapping based on Eq. (8) contains the source locations and
intensities, which are unknown a priori. One possible strategy
is to use the initial reconstruction, where G was approximated
with the periodic-sinc interpolation Eq. (9), to update the objec-
tive function in Eq. (2.3.1).

To describe this update strategy, we need to introduce some
notation (see Fig. 3 for a summary):

– Denote by G0 the linear operator that maps source intensities
α to the Fourier transform of the sky image on a uniform grid
(u, v) = (2πξ1/τ1, 2πξ2/τ2) as in Eq. (9):

G0: α 7→ Î
(

2πξ1

τ1
,

2πξ2

τ2

)
=

K∑
k=1

αke− j2π(lkξ1/τ1+mkξ2/τ2),

6 To be precise, the convolution in the annihilation constraints in the
multiband case should be understood as a convolution for each sub-
band, which amounts to vertically stacking the convolution matrices as-
sociated with all sub-bands.
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with some given source locations rk = (lk,mk).
– Denote by G1 the matrix mapping the source intensities α to

the non-gridded Fourier samples
(
u(i, j)

pq , v
(i, j)
pq

)
:

G1: α 7→ Î
(
u(i, j)

pq , v
(i, j)
pq

)
, i, j = 1, . . . , L; p, q = 1, . . . ,Q.

The matrix G1 can also be expressed of the antenna steering
matrix A as G1 = Ā ⊗ A.

– Denote by W ∈ CL2×L2Q2
the cross-beamforming matrix that

beamforms the off-grid Fourier samples:

W: Î
(
u(i, j)

pq , v
(i, j)
pq

)
7→ Vi j =

Q∑
p,q=1

w(i)
p w̄

( j)
q Î

(
u(i, j)

pq , v
(i, j)
pq

)
.

Here W is related to the beamforming matrixW in (11) as:
W =WT ⊗WH.

– Finally, denote byΦ the periodic-sinc interpolation (9) eval-
uated at non-gridded Fourier samples

(
u(i, j)

pq , v
(i, j)
pq

)
:

Φ: Î
(

2πξ1

τ1
,

2πξ2

τ2

)
7→ Î

(
u(i, j)

pq , v
(i, j)
pq

)
.

Then the linear mapping is chosen as G = WΦ in the ini-
tial estimate. In comparison, if we knew the ground truth
source locations and intensities, the optimal mapping would be
G = WG1G†0, where G†0 is the Moore-Penrose pseudo-inverse(
GH

0 G0

)−1
GH

0 .

Note that G1G†0, which transforms the uniformly sampled
Fourier data to the irregularly sampled ones7, has a rank at
most K. At any intermediate step, we may choose the linear
mapping G as: W

(
G1G†0 + ΦPN

(
G†0

)), where G0 and G1 are
built with the reconstructed point source locations and PN

(
G†0

)
is the orthogonal projection onto the null space of G†0: I −
G0

(
GH

0 G0

)−1
GH

0 . Experimentally, such an iterative strategy man-
ages to refine the linear mapping and results in a reliable recon-
struction (see an example in Sect. 3.2).

We emphasize that the reconstruction quality should always
be measured based on Eq. (8), with rk and αk the reconstructed
source locations and intensities, respectively, regardless of the
update strategy for the linear mapping G. We summarize the
FRI-based point source reconstruction in Algorithm 1.

3. Results
3.1. Data and experiment setup

The proposed FRI-based sparse recovery approach for point
source estimation (LEAP) was validated with both simulated
visibilities and real observations from LOFAR. In simulation,
visibilities were generated from ground truth point source pa-
rameters (locations and intensities) with the LOFAR core station
antenna layout. In experiments with real LOFAR observations,
we sub-sampled the visibility measurements over different inte-
gration times such that only 2% or 0.25% of the total integration
times in the measurement set were available to the reconstruction
algorithms in single band and multi-band scenarios, respectively.

7 Superficially, this looks similar to the “gridding” in a conventional
approach, e.g., CLEAN. However, unlike CLEAN, the final resolution
that can be achieved by the FRI-based algorithm is not related to the
grid step size but only the noise level in the given measurements (see
Pan et al. 2017b).

Algorithm 1: Point source estimation with FRI
Input : Visibility measurements V, radio-telescope

antenna layout p, number of sources K to
reconstruct

Output: Source locations ropt
k , source intensities

αopt = [α1, . . . , αK]

1 Initialize G = WΦ, MinError = ∞;
for loop← 1 to MaxIterations do

2 Reconstruct annihilating filter coefficients h1 and h2
from (2.3.1);

3 rk ← common roots of two polynomials with
coefficients h1 and h2, respectively;

4 Update G1 with the reconstructed rk;
5 (α,FittingError)← minα ‖V −WG1α‖22 ;

if FittingError < MinError then
6 ropt

k ← rk, αopt ← α, MinError ← FittingError;
7 Update G0 and G1 with ropt

k and
G = W

(
G1G†0 +ΦPN

(
G†0

));
end

end

We should point out that it is not only the number of inte-
gration times that matters: with the same number of integration
times taken consecutively, a much worse reconstruction is ob-
tained by both CLEAN and LEAP. Experimentally, we observe
that it is better to take measurements that are well-spread over
the whole acquisition time. One explain might be that with a
larger time separation between adjacent measurements, the earth
has more significant displacement in space. Thus, it allows the
radio interferometer to sample the (u, v)-plane sparsely but over a
large area (instead of densely sampling a local area as in the case
with consecutive integration times). Spatial diversity in the (u, v)
domain sampling makes the reconstruction algorithms more re-
silient to noise.

We summarize the experimental setups in terms of antenna
layouts, integration time and sub-band selections in Table 1. The
reconstruction quality of the FRI-based approach was measured
by the average distance8 between the recovered and the ground
truth source locations (in simulation) or the catalog data (in real-
data experiments).

The LEAP results were compared to those obtained from
WSClean9, which implements the state-of-the-art w-stacking
CLEAN algorithm (Offringa et al. 2014). The maximum number
of iterations for the WSClean algorithm was set to 4 × 104. The
threshold level was determined automatically by the WSClean
algorithm based on the estimated background noise level. Unlike
LEAP, which reconstructs point source locations and intensities
directly, the CLEAN algorithm typically produces discrete sky
images, which will be compared to the FRI reconstruction by
visual inspection.

In the following part, we first conduct simulations to verify
the effectiveness of the updating strategy of the linear mapping in
Sect. 3.2. Next, we investigate the resolvability of the proposed
algorithm by simulating visibilities from two point sources that

8 The correspondence between the reconstructed and ground truth
source locations were obtained by permuting the source locations such
that the distance between the permuted reconstruction and the ground
truth source locations was minimized.
9 Available at https://sourceforge.net/projects/wsclean/
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Table 1. Summary of various datasets used in the experiments.

Dataset I II III IV

Sources Point sources Boötes field “Toothbrush” cluster
RX J0603.3+4214

Data type Simulated Actual observation Actual observation

Antenna layout LOFAR core stations (HBA) LOFAR core and remote
stations (HBA)

LOFAR core and remote
stations (HBA)

Number of stations 24 28∗ 36
Telescope focus

(RA, Dec) (14h32m00.0s,+34◦30′00.1′′) (14h32m00.0s,+34◦30′00.1′′) (06h03m20.0s,+42◦14′00.0′′)

Longest baseline
(× wavelength) 713.3 1015.4 1019.9 1150.3

Instrument angular
resolution 4′49.2′′ 3′23.1′′ 3′22.2′′ 2′59.3′′

Polarization I
Observation start

time (UTC) 2014-08-10-13:00:04.01 2014-08-10-13:00:04.01 2013-02-24-15:32:01.42

Observation end
time (UTC) 2014-08-10-19:53:58.48 2014-08-10-20:07:19.59 2013-02-25-00:09:24.51

Time resolution (s) 400.56 400.56 3204.45 500.70
Number of

integration times 63 72 9 63

Number of
sub-bands 1 1 8 1

Sub-band frequency
(MHz) 145.8 145.8 145.8∼146.5 132.1

Section 3.2, 3.3 and 3.4 3.5 3.5 3.6

Notes. The LOFAR antenna layout is used in simulation (Dataset I). We have sub-sampled the real observations over different integration times
such that only 2% (for the single band cases: Dataset II and IV) or 0.25% (for the multi-band case: Dataset III) of the total integration times is
available to the FRI reconstruction algorithm. (∗) 4 of the 24 LOFAR core stations (HBA) were not working during the observation. We have used
4 additional remote stations that are closest to the telescope center.

are separated by various distances in Sect. 3.3. Further, a strat-
egy to avoid false detections by selecting an adequate model
order is validated through simulations in Sect. 3.4. Finally, we
apply LEAP to actual LOFAR observations from the Boötes
field (Sect. 3.5), which consists of mostly point sources; and the
“Toothbrush” cluster (Sect. 3.6), which has an extended structure
in addition to many point sources within the field of view.

3.2. Iterative refinement of linear mapping

One challenge in applying the FRI-based sparse recovery tech-
nique to radio astronomy is identifying a suitable surrogate
function to gauge reconstruction quality – the ideal MSE crite-
ria based on the measurement Eq. (8) requires the knowledge of
the (unknown) ground truth source locations and intensities. We
proposed one possible strategy that allows us to refine the objec-
tive function based on the current reconstruction in Sect. 2.3.4.
In order to verify the effectiveness of such a strategy, we gener-
ated an empty measurement set (MS) with the LOFAR antenna
layout as specified in Table 1 Dataset I. The MS file is then filled
with noiseless visibilities that are simulated based on (8) from
two point sources with randomly generated intensities and loca-
tions within the field-of-view (5◦ × 5◦).

The evolution of the fitting error between the re-synthesized
visibilities (8) (based on the reconstructed point source param-
eters) and the given visibility measurements is shown in Fig. 4.
The reconstructed sources are included for visual comparison,
where the dirty image is overlaid with the reconstructed and

ground truth point sources. With this simple updating strategy,
we indeed obtain the exact reconstruction after a few iterations.

3.3. Source resolution

In this section, we investigate the resolving power of the pro-
posed FRI-based sparse recovery, by comparing the performance
to that of CLEAN. The antenna layout of the 24 LOFAR core sta-
tions was used to simulate a 7 h single sub-band observation with
center frequency 145.8 MHz (HBA band). The visibility mea-
surements were taken every 400.56 s, leading to a total 63 sets
of visibilities at different time instances. The maximum base-
line was 713.3 wavelengths, which corresponds to an instrument
angular resolution of 4′49.2′′. For simplicity, we did not account
for polarization effects in this work. We note, however, that the
technique described in Sect. 2.3.3 to reconstruct point sources
from multi-bands may be adapted to treat together different po-
larizations in a coherent manner (see remarks in footnote 5).

We simulated visibilities of two point sources with unitary
intensities. The two sources were separated by distances vary-
ing from 10′′ to 10′ on a log scale. The particular antenna lay-
out means there is not always the same sensitivity along all di-
rections. To alleviate this potential direction-dependent bias, we
averaged the results over 100 signal realizations with different
relative orientations between the two sources for each separation
distance. Circularly symmetric complex Gaussian white noise is
added to the noiseless visibilities such that the signal to noise ra-
tio (S/N) in the visibility measurements ranges from −10 dB to
20 dB with a step size of 5 dB.
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Fig. 4. Iterative refinement of the linear mapping G in (2.3.1) for exact point source reconstruction (see details in Sect. 2.3.4). Panel a: The
evolution of the fitting error between the re-synthesized and given noiseless visibility measurements. Panel b: Exact reconstruction of the point
sources with LEAP (background image: dirty image from the same visibility measurements).
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Fig. 5. Average reconstruction success rate (3.3) of two point sources that are separated by various distances from noisy visibility measurements
with a) LEAP and b) CLEAN. The reconstructed point sources with CLEAN are extracted from the corresponding CLEAN model image. A point
source is considered to be successfully reconstructed if the estimated source location is within half the separation distance with the ground truth
source location. Results for each noise level and source separation are averaged over 100 different signal and noise realizations. Instrument angular
resolution is 4′49.2′′.

A point source was considered to be successfully recon-
structed if the estimated source location is within half the sep-
aration distance between the two sources, from the ground truth
source location. Hence, the average reconstruction success rate
for K point sources is:

success rate =
# of k such that dist(r′k, rk) < ∆r/2

K
, for k = 1, 2.

Here dist(·, ·) computes the distance between the reconstructed
r′k and ground truth source locations rk; and ∆r is the separation
between the two sources. We extracted the reconstructed source
locations from the CLEAN model image with a pixel size 3.5′′.
The average reconstruction success rate is shown in Fig. 5 for
both CLEAN and LEAP.

Note that while the instrument angular resolution was close
to 5′ here, the FRI-based sparse recovery still manages to re-
solve two sources beyond the instrument limitation in many

cases. This is in stark contrast to image-based approaches such
as CLEAN or compressed sensing (CS), where the reconstruc-
tions are typically spatial domain images – in order to determine
point source locations (and intensities), an additional blob detec-
tion algorithm needs to be employed. In contrast, the FRI-based
approach starts from a point source assumption, and reconstructs
the source parameters directly without going through an interme-
diate spatial domain image.

To better illustrate the difference between the proposed
method and other image-based reconstruction methods, we in-
clude two examples where it would otherwise not be possible
to recover all point sources based on the estimated sky images
(Figs. 6 and 7):

– Figure 6 shows how two closely located sources, 1′30′′ apart,
are accurately estimated from mildly noisy visibility mea-
surements (S/N = 20 dB) with LEAP, while the CLEAN
image contains one big blob encompassing both sources. In
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(a) LEAP reconstruction
(24 stations, 63 integration times)

(b) CLEAN image
(24 stations, 63 integration times)

(c) CLEAN image with additional
measurements (56 stations,

3150 integration times)

Fig. 6. Resolve closely located sources accurately with LEAP (S/N = 20 dB, source separation: 1′30′′, antenna layout: 24 LOFAR core stations,
background: CLEAN image). Panel a: LEAP reconstruction. Panel b: CLEAN image from the same set of visibility measurements. Panel c:
CLEAN image from additional visibilities with higher time resolution (8.01 s between adjacent integration times) and longer baselines (56 LOFAR
core and remote stations). The setup in (c) with longer baselines reduces the telescope angular resolution to 6.10′′.

(a) LEAP reconstruction
(24 stations, 63 integration times)

(b) CLEAN image
(24 stations, 63 integration times)

(c) CLEAN image with additional
measurements (24 stations,

3150 integration times)

Fig. 7. Reliable estimation of sources from highly noisy measurements with LEAP (S/N = −10 dB, source separation: 1◦30′, antenna layout:
24 LOFAR core stations, background: CLEAN image). Panel a: LEAP reconstruction. Panel b: CLEAN image from the same set of visibility
measurements. Panel c: CLEAN image from additional visibilities with higher time resolution (8.01 s between adjacent integration times) from
24 core stations.

fact, neither one of the two source locations corresponds to
the peak of the blob.
Further, we considered another case for CLEAN, where ad-
ditional measurements from 32 LOFAR remote stations were
added. With this configuration, the telescope has a much
smaller angular resolution 6.10′′ (compared with 4′49.2′′
with 24 LOFAR core stations only). The time resolution
of the visibility measurements from all stations is also in-
creased: adjacent integration times are separated by 8.01 s.
In total, visibilities from all 56 stations at 3150 integration
times are given to the CLEAN algorithm. The blob size
is significantly reduced and both sources are resolved by
CLEAN (Fig. 6c).

– Figure 7 shows two well-separated sources, 1◦30′ apart, are
reliably reconstructed from highly noisy visibility measure-
ments (S/N = −10 dB) with LEAP, while the weaker source,
whose intensity is 1/5 of that of the strong source, is com-
pletely buried in the noisy background, and cannot be de-
tected from the estimated sky image using CLEAN. With
additional visibilities from a higher time resolution (8.01 s
between adjacent integration times), both the strong source

in the middle of the field of view and the weak source are
correctly reconstructed by CLEAN (Fig. 7c).

3.4. Model order selection

The point source model requires a choice of a certain model
order K. In simulation, this parameter is assumed to be given
a priori, while with actual observations, we have to spec-
ify/estimate it. A strategy is then needed to determine if a
particular choice of K over-estimates10 the model order and
leads to false detections. One method is based on the fit-
ting error between the reconstructed source model and the
given measurements (Gilliam & Blu 2016). From our experi-
ence, the FRI reconstruction algorithm can reliably estimate a
sparse signal that fits the given measurements up to the noise
level (Pan et al. 2017b). The strategy is constructive since we can
usually estimate the noise level from a source finding algorithm,

10 In the case of under-estimation, the most dominating point sources
will be reconstructed by the algorithm with a fitting error above the
noise level (see an example in Fig. 8c).
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Fig. 8. Model order selection based on the fitting error of the reconstructed point source model and the given visibility measurements (Dataset I).
The model order is the minimum number of sources such that the fitting error reaches the noise level of the measurements (Background images of
(b)–(d): CLEAN images; signal to noise ratio (S/N) in the visibilities: 0 dB; Actual model order: 3). Panel a: Evolution of the fitting errors against
different point source model orders K in (7). Panel b: Reconstructed source models with the correct model order K = 3. Panel c: Reconstruction
with under-estimated model order K = 1. Panel d: Reconstruction with over-estimated model order K = 5.

e.g., Duchamp (Whiting 2012), SoFiA (Serra et al. 2015), and
PyBDSF11, or manually specify the approximation error allowed
in the reconstruction.

In particular, if the fitting error achieved by FRI-based re-
construction is still within the noise level with a lower model
order, then we can further reduce the number of sources by one.
The final model order is obtained by repeating the process until
any further reduction in K leads to a fitting error above the noise
level.

We validated this approach by simulating visibility measure-
ments for K = 3 point sources from 24 LOFAR core stations
(Dataset I in Table 1). The noiseless visibilities are contaminated
by circularly symmetric complex Gaussian white noise such that
the S/N in the visibility measurements is 0 dB. We applied LEAP
with different model orders, and compared the noise level with
the fitting errors between the given and the re-synthesized visi-
bility measurements based on (8) (Fig. 8a). As soon as the model
order is reduced below the actual number of sources, the fitting
error jumps above the noise level, while this error remains stable
for over-estimation cases. The reconstructed point source model
11 Available at https://github.com/lofar-astron/PyBDSF

that corresponds to under-estimation and over-estimation cases
are also included in Fig. 8.

3.5. Actual LOFAR observation: Boötes field

In the previous section, we validated the robustness of the pro-
posed FRI-based sparse recovery method with simulated point
sources. In this section, we apply LEAP to an actual LOFAR
observation from the Boötes field. Source estimation from real
observations of a radio telescope presents a significant challenge
over and above ideal simulation conditions. Visibility measure-
ments in a typical setting suffer from severe noise contamination,
which may arise from thermal noise at antennas, the planar ap-
proximation (1), as well as directional dependent artifacts due
to ionosphere variations (Williams et al. 2016). We used12 the
visibility measurements from the 24 LOFAR core stations and
4 remote stations closest to the telescope center, and considered

12 During the observation, 4 out of the 24 core stations were not
working.
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(a) Source detection from single-band LOFAR measurements (Dataset II)

(b) Source detection from multi-band LOFAR measurements (Dataset III)

Fig. 9. Source detection from actual LOFAR observations from the Boötes field (Dataset II and III) with LEAP (the left column) and CLEAN (the
right column). Panel a: LEAP and CLEAN reconstruction from single band visibility measurements at frequency 145.8 MHz with 72 integration
times. Panel b: LEAP and CLEAN reconstruction from visibility measurements within 8 sub-bands at frequencies from 145.8 MHz to 146.5 MHz
with 9 integration times.

two different scenarios for the point source reconstruction in the
Boötes field:

1. Single-band visibility measurements at 145.8 MHz were ex-
tracted from the measurement set (MS). We sub-sampled the
MS file uniformly every 50 integration times (∼7 min), lead-
ing to a total 72 sets of visibilities from 2% of the all inte-
gration times. See Sects. 2.3.1 and 2.3.2 for the algorithmic
details.

2. Visibility measurements within 8 sub-bands centered at fre-
quencies from 145.8 MHz to 146.5 MHz were extracted from
the MS file. In total, 9 sets of visibilities at different inte-
gration times were given to the reconstruction algorithms
by sub-sampling the MS file every 400 integration times
(∼53 min). Sources were reconstructed with the multi-band
formulation presented in Sect. 2.3.3.

In both cases, LEAP reconstructed Fourier transform of the sky
image within each frequency sub-band, on a uniform grid of size

57 × 63 that spanned the telescope uv-coverage. The source lo-
cations were subsequently estimated from these uniform Fourier
data. We fixed a priori the number of sources to be K = 100 in
Eq. (7) for the LEAP reconstruction. Of course, in practice an
non-arbitrary choice of an adequate model order K is needed,
and this is discussed in Sect. 3.4.

The reconstructed point sources for the single-band and
multi-band cases are plotted in Fig. 9, where the background im-
age is the corresponding CLEAN image reconstructed from the
same sets of visibility measurements in each case. We compare
the estimated source parameters with a catalog of the Boötes
field at 130∼169 MHz (Williams et al. 2016). The errors of the
estimated source locations are 1′17.79′′ and 1′38.01′′ in the
single-band and multi-band cases, respectively. Similar to the
observations in simulated cases, we find that LEAP can reliably
resolve closely located sources from the actual LOFAR measure-
ments. The advantage of the FRI-based sparse recovery, which
gives a direct estimate of the point source parameters, is evident
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(a) LEAP reconstruction (b) CLEAN image (c) Compressed sensing (CS)
deconvolution

(d) LEAP reconstruction compared with
TGSS catalog

(e) LEAP reconstruction compared with
NVSS catalog

(f) Zoom-in of the compressed sensing
reconstruction

Fig. 10. Point source reconstruction from actual LOFAR observations from the Toothbrush cluster RX J0603.3+4214 (Dataset IV). Point sources
are reliably estimated even in the presence of extended sources (the Toothbrush cluster). Existence of sources are validated by referencing both
the TGSS and the NVSS catalog. Panel a: The reconstructed point sources with LEAP. Panel b: The CLEAN image from the same set of visibility
measurements. Panel c: The deconvoluted image with a compressed sensing (CS) based approach (Dabbech et al. 2015). Zoom-in comparisons
of the LEAP reconstruction against d) the TGSS catalog and e) the NVSS catalog around the Toothbrush cluster. Panel f: Zoom-in plot of the CS
reconstruction around the toothbrush cluster.

by comparing the CLEAN image in both single-band and multi-
band cases: several sources would otherwise be too weak to be
reliably detected with a blob detection algorithm applied to the
CLEAN image without introducing many false detections.

3.6. Acutal LOFAR observation: Toothbrush cluster

A natural question to ask is how well the algorithm recov-
ers point sources in the presence of extended sources within
the field of view. In order to test their influence, we applied
LEAP to a LOFAR observation from the Toothbrush cluster
RX J0603.3+4214, which contains one of the brightest radio
relics. The toothbrush shape is suggested to be a consequence of
a triple merger event based on simulation (Brüggen et al. 2012).
We used the LOFAR observation with both the 24 core sta-
tions and 12 remote stations within a single-band at frequency
132.1 MHz (Dataset IV in Table 1).

The LEAP reconstruction results are compared to the
CLEAN image. We also included the deconvolved im-
age obtained with a compressed sensing (CS) based ap-
proach (Dabbech et al. 2015) for reference. We overlaid the
CLEAN image with the reconstructed point sources from LEAP
in Fig. 10, and validated the existence of sources by comparing
the reconstructions with the 150MHz TIFR GMRT sky survey
(TGSS; Intema et al. 2017). Even in the presence of the Tooth-
brush cluster at the center of the field of view, LEAP is ro-
bust enough to estimate the point sources reliably. The average

reconstruction error of the source locations compared with the
TGSS catalog is 2′43.60′′. A zoom-in plot, Fig. 10c, of the area
around the toothbrush cluster, reveals that LEAP reconstructed a
few sources not in the TGSS catalog (and hence are mismatched
to other sources in the catalog). In order to determine whether
theses sources were false detections, we cross-referenced with
the NRAO VLA sky survey (NVSS; Condon et al. 1998), which
observes the sky at a much higher frequency (1.4 GHz). The ex-
tra sources reconstructed by LEAP were indeed confirmed to be
actual radio sources (Fig. 10d). The average LEAP reconstruc-
tion with respect to the NVSS catalog was 2′1.36′′.

4. Discussion

4.1. Resolution

In CLEAN-based source estimation algorithms, the recon-
structed sky model (which consists of a few non-zero pixels
around sources) are convolved with a point spread function
(a.k.a. the “CLEAN beam”). The motivation for such an addi-
tional smoothing step is to reflect the angular resolution of a
given instrument – the size of the CLEAN beam is determined
by the diffraction limit imposed by the instrument with a given
maximum baseline. Consequently, it is not possible to resolve
sources beyond the instrument angular resolution. In practice,
the minimum angular resolution that can be achieved by CLEAN
is much larger than the instrument diffraction limit as noticed
in Garsden et al. (2015). This is also observed in the two-source
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simulations in Sect. 3.3: within the simulation setup (which has
a maximum source separation of 10′ and an instrument angular
resolution 4′49.2′′), CLEAN cannot always resolve both sources
consistently even for cases with relative large source separation
and low noise levels.

In comparison, LEAP directly reconstructs the source lo-
cations in continuous space. The final resolution achievable is
only related to the noise level in the visibility measurements.
This is a direct consequence of enforcing continuous domain
sparsity (i.e., the point source model) in the reconstruction pro-
cess. LEAP tries to fit the given visibility measurements op-
timally (in the least square sense) with a point source model.
From the experimental results in Figs. 5 and 6a, it indeed man-
ages to resolve sources separated by a distance well below the
instrument angular resolution. Further, experiments with actual
LOFAR observations from the Boötes field and the Toothbrush
cluster (Sects. 3.5 and 3.6, respectively) also confirm the ability
of LEAP to identify closely located sources reliably.

4.2. Efficient use of visibility measurements

In the experiments with actual LOFAR observations, we sub-
sampled13 the measurement set along different integration times:
2% and 0.25% of the total integration times is used in the single-
band and the multi-band reconstruction respectively. Even with
such little data, the point sources were estimated accurately
by LEAP. This is potentially useful for a modern radio-
interferometer like LOFAR or the next generation Square Kilo-
meter Array (SKA), which consists of an array of numerous om-
nidirectional antennas. With an efficient algorithm, like LEAP,
using only a fraction of the total observations can still yield
reconstruction accuracy comparable to a conventional method
(e.g., CLEAN) requiring significantly more integration times
and longer baselines (e.g., Fig. 7). Another potential application
of LEAP could be for the Very Long Baseline Interferometry
(VLBI), which has sparse coverage in the uv domain.

5. Conclusions

We investigated the FRI-based continuous-domain sparse recov-
ery framework in the challenging radio astronomy setting with
both simulations and actual LOFAR observations, and demon-
strated that the proposed approach (LEAP) can accurately re-
solve closely located sources under various noise conditions. In
particular, we showed that it is possible to go beyond the in-
strument angular resolution. A comparable reconstruction ac-
curacy to CLEAN can be achieved with significantly fewer
measurements. Further, we developed a multi-band reconstruc-
tion scheme that estimates the point sources consistently among
different sub-bands, and demonstrated the effectiveness of the
multi-band reconstruction strategy given actual LOFAR obser-
vations. In order to facilitate the application of this new approach
for source estimation in radio astronomy, the Python implemen-
tation is made available online14.

For future work, we will consider the potential application in
calibration, where an accurate source estimation is essential for

13 This is different than taking the measurements with same number of
consecutive integration times. See our comments at the beginning of
Sect. 3.1.
14 The Python package is available at
https://github.com/hanjiepan/LEAP

subsequent imaging. Another interesting application could be for
pulsar detection (from the antenna signals), given that LEAP can
have reliable reconstructions even from very limited data. We
will also extend the current framework to the sphere, to improve
performance for instruments with a wide field-of-view, such as
the Murchison Wide-field Array (MWA).
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