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Abstract— We present an optimal spline-based al-
gorithm for the enlargement or reduction of dig-
ital images with arbitrary scaling factors !.This
projection-based approach is realizable thanks to a
new finite difference method that allows the compu-
tation of inner products with analysis functions that
are B-splines of any degree n. For a given choice
of basis functions, the results of our method are
consistently better that those of the standard in-
terpolation procedure; the present scheme achieves
a reduction of artifacts such as aliasing and blocking
and a significant improvement of the signal-to-noise
ratio.

I. INTRODUCTION

Image resizing (magnification or reduction) is a
typical operation in image processing [6]. Among
its domains of application, we can highlight
biomedical imaging, digital publishing and multi-
media. The standard method for image size reduc-
tion consists in fitting the data with a continuous
model and resampling the function at the desired
rate [4]. A potential problem of the approach is the
creation of aliasing and blocking artifacts.

In [9], it was demonstrated that it is possible
to reduce these undesired effects by approximating
the continuous model by its projection onto a given
space prior to resampling. The approach may be
viewed as a generalized version of anti-aliasing fil-
tering where the prefilter is matched to the approx-
imation space. This kind of formulation also yields
higher quality results for image magnification with
non-integer factors. Initially, the method was re-
stricted to orthogonal projection and its weakness
was the difficulty to perform an exact numerical
implementation of the optimal prefilter for high or-
der splines (n > 2). Lee et al. extended the ap-
proach using oblique projections in spline spaces to
increase the computational speed [5]. The analysis
function they used was a box (the B-spline of de-
gree 0). Here, we present a futher extension that
allows us to compute both oblique and orthogo-
nal projections (least-squares approximations) for
splines of any degree n.

YA demonstration is available on the web at

http://bigwww.epfl.ch/demo /resize

What makes the approach feasible in this more
general setting 1s the new finite difference method
presented in Section 3; it allows an ezact compu-
tation of the required inner products for analysis
functions that are B-splines of any degree n. The
method works for both reduction and magnifica-
tion of images with an arbitrary scaling factor and
any translation value. When the scale parameter
is a power of two, 1t is equivalent to a wavelet pro-
cessing because splines satisfy a two-scale difference
equation [11].

IT. PHILOSOPHY OF THE APPROACH

The image resizing problem can be solved using
separable basis functions. Consequently, the com-
plexity is reduced from 2-D to 1-D.

In order to simplify the description of our algo-
rithm, 1t is advantageous to use a continuous signal
processing representation of operators defined in
the continuous domain. For that reason, we intro-
duce the digital-to-analog operator s(n) — ss(z) =
>, s(n)d(z — n), where 4 is Dirac’s mass distribu-
tion.

The schematic continuous-time domain represen-
tation of the whole algorithm is given in Fig. 1.

All boxes denote convolutions; h, ¢ and ¢ are dig-
ital filters while the others are continuously-defined
convolutions.

The affine transformation s (% + b) is repre-
sented via a combination of shift (convolution with
d(x 4 b)), and resizing s(z) — s (%) represented as

We now describe the four main steps of the
method.

A. Interpolation

The first step of the method is to take the dis-
crete input data s(k) and construct a continuous
interpolating model s(z) = ", c(k)¢(z — k) where
the p(z—k)’s are some specified basis functions.For
this purpose, we take the samples s(k) and con-
volve them with an appropriate prefilter g to get

the coefficients: c(k) = (g * s)(k).
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Fig. 1. General scheme for the projection based resizing method

The continuous-time function s(z) is obtained by
convolution with ¢(z).

The prefilter G(z) = W is chosen such
that the interpolation requirement is satisfied
s(z) le=k= Y ;c(l)p(k —1). In other words, g(k) is

the convolution inverse of the sequence (k).

B. Affine transformation (conceptual step)
fe)=s (5 +b)
a

The function s(z) is rescaled and shifted. If a < 1,
it corresponds to image reduction; otherwise, the
image 1s enlarged.

C. Projection based signal approrimation

If we apply the standard method, we get the re-
sized version just by resampling f(z) at the inte-
gers.

Instead, we will think in terms of approximation
theory. We would like to find the best approxima-
tion of f(x) € V,,, where V,,, = span; {pa(z — k)}.

We know that the least squares solution to this
problem is the orthogonal projection of f(x) onto
Vip,- It 1s also possible, although suboptimal, to
choose an oblique projection.

To calculate the projection, we use the analy-
sis and synthesis function 1 (z) and ¢ (2), which
are not necessarily biorthonormal. Their cross-
correlation sequence is given by

arz(k) = (p1(z), pa(z — k))

First, we calculate the inner-products ¢;(k) =
(f(x), p1(x—k)) which is equivalent to prefiltering
f(x) with ¢1(—2) and sampling thereafter.

If ay2(k) # 8k, the projection of f(z) onto V (p2)
perpendicular to V(¢1) requires an additional dig-
ital filtering correction. Thus,

f(x) = Papif(x) (1)
= D (e1xq)(k)pa(z — k)
= Y es(k)pa(a — k)

To satisfy the biorthogonality condition, the ap-
propriate correction filter ¢ is the convolution in-
verse of ays: ¢ = ‘11_21 “ W

This is equivalent to use the synthesis function
2 = g5 * pa(x — k), where p1(x) and ¢2(x) are
biorthogonal.

If 1 (x) € Vs, we have an orthogonal projection,
otherwise we have an oblique projection.

Note that, in general, no set of coefficients ca (k)
can be found expressing f(x) as an exact linear
combination of shifted synthesis functions. The
function f(z) is thus only an approximation of

In the case of the orthogonal projection, we ob-
tain a resized image with minimum loss of infor-
mation (the approximation is optimal). In the
case of an oblique projection, the approximation
is usually only slightly suboptimal depending on
the angle between V,,, = span,{pi(z — k)} and
Voo = spang{ps(xz — k)} [8]. Moreover, the rate
of convergence depends on the approximation or-
der properties of the synthesis function alone; the
analysis function has essentially no influence on the
asymptotic approximation error [7].

D. Resampling the projection at the integers
Finally, we have to resample the projection at the

integers (f(l) = f() |z=i). The output is f5(z) =

IRIOUCETE

ITI. IMPLEMENTATION USING UNIFORM SPLINES
We now describe how this method can be imple-

mented exactly using B-splines as basis functions.

A. Definitions

B-splines are basis functions for the polynomial
spline functions. The explicit time-domain formula
for the B-spline of degree-n 1s:

B (2)

I 1
Aﬂ+1*%*6<x+n; ) (2)

n z"
13+I 0

A is the finite difference operator: A = §(z)—8(z—

1).
B-splines of different degrees are related by the
differentiation formula
nq + 1
3
=) e

where D is the usual differentiation operator.

ifz>0
else.

Dn1+1ﬂn+n1+1(m) _ An1+1ﬂn (l‘ _

B. Why use splines?

We chose to work with splines because they have
excellent approximation properties and belong to



the class of functions that have minimum support
for a given order n: This means that the compu-
tational complexity is minimized [3]. In addition,
we have an ezact formula for the computation of
the inner products; this is typically not possible for
other wavelet-like basis functions.

C. Projection method using splines

We now particularize the method to work with
splines.  Our algorithm has the following pa-
rameters: @(z) = " (z), p1(z) = F"(x), and
¢s = ajy * ("2, This implies that aia(k) =
grtnatl(g) o

D. Computing inner products

All the steps in the method are simple and can
be performed using digital filtering, except for the
computation of the scalar product for an arbitrary
resizing factor a (not assumed to be a power of
two as in the case of wavelets). In this section,
we introduce an efficient method to compute inner
products with B-splines of any degree n. The key

formula is derived from (3):

n n —(n . +1
<f(T);ﬁ 1($—y)>:A1+1D (1+1)f<y+n12 )
where D=1+1) g the (n1 + 1)-order integration
defined by

kel

D= f(z) = Ty f(a) (4)

Tq: ’

In effect, we can compute the inner product rather
simply by applying finite differences to the (ny+1)-
fold integral of f. What make an exact computa-
tion possible and tractable analytically is the fact
that the (n; + 1)-fold integral of a spline is a spline
with a corresponding increase of the degree. Specif-
ically,

D s(2) = S d(k) it (2 — k- 2afL)
k

with d(k) = (A=) & e)(k), s(z) =
Yorpc(k)B™(x — k) and the inverse finite differ-
ence operator ATt o (1 — 2=t =

1
(Zk) Z_k)n1+
_0 .

E. Derwation of the algorithm

We will give a graphical derivation of our algo-
rithm by successive modification of the block dia-
gram in Fig. 1.

We will use the exchange rules given in Figs. 2, 3
and 4.

Figs. 5, 6 and 7 give the manipulations that are
neccesary to get the final implementation of the
algorithm shown in Figure 8. In the diagram, we
have extracted the operators between the marks 1
and 2 in Fig. 1 for simplicity.

T N
Fig. 2. Exchange rule for %}
1 s+ = @ 5(x+ab) |—

Fig. 3. Exchange rule for a shift by b
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Fig. 4. Convolution of two z}.

F. Practical implementation

The practical implementation of the method is
based on the equivalent block diagram in Fig. 8.
We now briefly summarize the main implementa-
tions steps:

i Digital prefiltering with the (causal and anti-
causal) exponential filter ¢ = (b")~! implemented
in a recursive fashion to get ¢(k) (interpolation co-
efficients) from s(k) (input samples) [10].

ii (n1 4 1)-running sums corresponding to the op-
erator A=(n1+1),

111 Geometric transformation and resampling using
spline interpolation model of degree (n + ny + 1)
(basis function ¢(z)).

iv (n1 + 1)-centered finite differences, correspond-
ing to the filter with z-transform A”1+! & (1 —
z)mtt,

v Digital postfiltering with the sampled synthesis
function ¢ * h(k) = ¢2(x) |o=k.

In our implementation, the input signal is extended
using symmetric mirror boundary conditions. A
difficulty in the algorithm consists in keeping these
conditions through steps 2 to 5. A clear description
of how this is achieved will be given in [1].

G. Results

The performance of the algorithm was evaluated
and compared with the standard one that fits the
image with a spline of the same degree and then
resamples 1t at the required rate. The original im-
age (Fig. 9.a) was first reduced and then magnified
back to its original size. Table 1 and 2 provide the
final SNR, measures. We observe that, for low or-
der splines, the orthogonal projection method per-
forms much better than the standard one (by more
than 5 dB for a = \/7 and n = 0). For higher order
splines, the results are still significantly better for
the optimal case with low reduction factors, and
much better for high reduction factors.

In Tables 3 and 4, we see that oblique projec-
tion only brings a slight degradation when com-
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Fig. 5. Extract from figure 1. Substitution of 3(x) and ™' (z) by their explicit expressions using equation (2).
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Fig. 6. Using the rule in Fig. 2, the boxes are reorganized in such a way that both the one-side power functions and the
shifts are kept on the left side of the scale change a. In this way, the support of the spline kernel will not depend on
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Fig. 7. Application of convolution rule in Fig. 4
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Fig. 8. Equivalent form of Fig. 1. Since A—(ntri+l) Antni+l = [ we can re-write the algorithm in Fig. 7 using B-splines
instead of polynomials. The spline kernel is ¢(x) = a™1+137+71+1 (5 4 7). Since the filters in 4 and 5 are all digital,
we are allowed to push the sampling step towards the resizing box.

n optimal standard

0 30.3524 dB 25.5223 dB

1 34.6657 dB 31.5789 dB

2 36.8907 dB 36.1911 dB

3 37.4675 dB 36.4505 dB
TABLE 1T

LEAST SQUARES PROJECTION VS STANDARD METHOD. SNR
RESULTS FOR a = /7

n optimal standard

0 24.7703 dB 22.8756 dB

1 27.0704dB | 25.7173 dB

2 27.8819dB | 26.6222 dB

3 28.1338 dB | 26.5937 dB
TABLE 1II

TLEAST SQUARES PROJECTION VS STANDARD METHOD. SNR
RESULTS FOR a = T

pared to the orthogonal scheme, while the com-
putational complexity is proportional to with n;.
These results are consistent with the theory devel-
oped in [7] and [3]. An example of the type of im-
provement that can be obtained over standard in-
terpolation is shown in Fig. 9; note that the signal
model i1s the same in both cases: piecewise linear.
We observe that by using projections and low or-
der splines most of the high frequency information
is kept in this case.

ny projection
0 37.1769 dB
1 37.3996 dB
2 37.4663 dB
3 37.4675 dB | ¢« orthogonal projection
TABLE TIT

OBLIQUE VS ORTHOGONAL PROJECTION. SNR RESULTS FOR
a:ﬁANDn:ng:B

nq projection
0 27.7889 dB
1 28.0458 dB
2 28.1231 dB
3 28.1338 dB | ¢ orthogonal projection
TABLE IV

OBLIQUE VS ORTHOGONAL PROJECTION. SNR RESULTS FOR

a=mAND n =ns = 3

IV. CONCLUSIONS

In the paper, we have generalized Lee et al.’s
method for signal resizing using both oblique and
orthogonal projections. We have demonstrated
that this method performs better that the stan-
dard interpolation and resampling approaches; its
main advantage is aliasing supression.

A nice property of the present algorithm is that
its complexity per output point does not depend
on the scaling factor; this was not the case in an



earlier version of the method [9].
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Fig. 9. FExample of image reduction by a factor a =

(1]
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(9]

/7 using linear splines: (a) Original Magnetic Reso-
nance (MR) image; (b) Reduced image using standard
method; (c) Difference between the original signal and
the enlarged version of the imagen (b); (d) Reduced im-
age using orthogonal projection (e) Difference between
the original and the enlarged version of the image (d).
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