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{»-Multiresolution Analysis: How to Reduce Ringing
and Sparsify the Error

Arrate Mufioz Student Member, IEEH hierry Blu, Member, IEEEand Michael Unserellow, IEEE

Abstract—We propose to design the reduction operator of an ~ Multiresolution analysis also plays a central role in the theory
image pyramid so as to minimize the approximation error in the  of the wavelet transform, which provides a nonredundant repre-
£,-sense (not restricted to the usugb = 2), wherep cantake non- - sentation of images across scales. Here too, the applications in

integer values. The underlying image model is specified using shift- . . d ter visi d oft
invariant basis functions, such as B-splines. The solution is well-de- image Processing and cComputervision are NnUMerous, and oien

fined and determined by an iterative optimization algorithm based Very successful [3]-{5].
on digital filtering. Its convergence is accelerated by the use of first ~ One of the earliest and most popular examples of pyramid
and second order derivatives. Forp close to 1, we show that the s due to Burt and Adelson [2]. Their Gaussian filtering, how-
ringing is reduced gmd_ Lhar: the hgstogram of tne detail image is  gyer, produces excessive smoothing, which leads to some loss
sparse as compared with the standard case, wheye = 2. of image details. Higher-quality image approximation can be

Index Terms—Banach spaces, multiresolution, non-Euclidean obtained by designing a reduction filter that is optimum in the
norms, splines. least-squares sense, or by using the lowpass branch of a wavelet

decomposition algorithm [6], [7]. Another option is to use spline
|. INTRODUCTION pyramids that minimize either th& or the Lo-approximation

. . error [8], [9]. These latter representations are especially attrac-
UI}:TIIRESOL:JTLQ': analyis 'i ? s:rr]nple_ yet VerY POW=iye for continuous/discrete multiscale processing. The nice fea-
eriul concept which goes back 1o he pioneering worlﬁ re of these pyramids is that they can all be implemented using

O.f Ros_enlfeld [1] and Burt.:nd Ac:?Ison Lz] Ilr!stead gf a f'_xi. combination of filters and sampling rate converters. Of course,
SIZ€ pixel array, one considers a hierarchical Image descripiply o pisicq aspect here is filter design—a standard requirement

at multiple resolution levels; typically, a series of fine-to-coar € the biorthogonality of the reduction and expansion opera-

approximations which are stored in a pyramid data StrUCtUg, [10]. Unfortunately, simplicity also comes at a price and

Su.Ch pyramids are extremely gseful for s_peedmg UP CoOMiflase pyramids suffer from limitations that are inherent to linear
tations. In fact, there are multiscale versions of most ima

. ) . ; ethods; in particular, edge blurring (when the smoothing is
processing algonthms.. The main advantages of multiscale P{8o strong, e.g., the Gaussian pyramid), aliasing (when it is not
cessing are the following. enough), and ringing artifacts (when the filters have a sharp
+ Computational speedsince there are much fewer pixelsytoff). Thus, the selection of a suitable multiresolution model
at the coarser levels of the pyramid, iterative algorithms essentially a question of compromise: higher order spline
that switch between resolution levels require less compgy wavelet approximations generally yield better energy com-
tation and have faster convergence. paction but they also give rise to larger Gibbs oscillations as the
 Spatial resolution adaptationMany image processing fynctions become more and more bandlimited [11].
algorithms operate on very localized neighborhoods andan, attractive alternative to linear pyramids is to go nonlinear.
it makes good sense to adapt the resolution in an optimgdyeral authors have proposed to replace the linear pyramid fil-
fashion. This is especially true with iterative schemegys py nonlinear ones including the median and morphological
which proceed by successive refinement—here the resgserators [12]-[16]. However, these so-called morphological
lution should be linked to the step size of the algorithm. hyramids are generally not meant to provide a continuous/dis-
* Increased robustnesdn the context of iterative algo- crete representation. Nonlinear filters can also introduce distor-
rithms, the smoothing effect of the pyramid reduces thgyns that make the reduced images visually unpleasant.

likelihood of getting trapped in local extrema. ~In this paper, we will pursue another approach and intro-
* Analogies can be made with the hierarchical organizatigfi,ce spline pyramids that are optimal fornorms. Note that
of the human primary visual cortex. the choice of a spline model in this context is equivalent to

specifying the expansion mechanism, i.e., polynomial spline
interpolation. Thus, the challenge is to come up with a corre-
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solution is well defined. In Section Ill, we propose a digital fil- Optimization | ¢ R )
tering-based procedure that computes the solution iterative’ algorithm 7" < > s
The computational overhead of the iterative approach is smi 7, -reducer Expander

and we expect the generation of the pyramid to account for or

a very small part of the total effort in a typical multiscale al e with min [lel,,
gorithm. In Sections IV and V, we compare the approximations

obtained for differenps and orders of the approximation funcfig- 1. Reduction/expansion system for an integer scaling factor
tions, respectively. We end with a discussion of our results Reduction: the signal is reduced by a fac¥so as to minimize thé,-norm of

; #fk error. Expander: upsampling and filtering, as specified by the approximation
Section VI. model [see (2)].

Il MULTIRESOLUTION SUBSPACES O, In other words 5(k) is entirely specified by its coefficients.

In this section, we present the theoretical basis of our methdthese are the quantities that are stored in the pyramid; at each
We justify the choice of our continuous/discrete model and shadgwel there is exactly one such number per node. The template
that our approximation problem has a well-defined solution. h x should be interpreted as an expansion (or interpolation) filter

which maps the coefficients sequenge(coarse level of the
A. Definitions and Notation pyramid) to the finest resolution level on which the signals are
The|| - ||¢, norm of a sequence= {c; }cz is defined as defined (cf. the right hand side of Fig. 1). We are using the sub-
script NV in hy to indicate that the expansion filter depends on
r N (typically, a spline interpolator with an expansion facly.
llelle, = <Z |Ck|p> (1) Inthe sequel, we will sometimes leave out this dependence to

kCZ simplify the notation. The corresponding approximation space
with 1 < p < oo and the special cask||,., = maxucz |cxl. IS
The z-transform of a signad(k), k € Z is denoted by
. Vy = §(/€) = Clh]\r(/{} — Nl) cel . (3)
S(z) =Y s(k)z7* { ; P

kezZ
It is clearly convex andV-integer shift-invariant, i.e.s(k) €
gN iff S(k + N) € Vn.
For our formulation, it is essential th&ly be a closed sub-
space of, to ensure a well-defined solution of our approxima-
s n(k) = s(Nk), vk e Z. tion problem. This will be the case {fu(k — N1)}xcz forms a
p-stable (orp-Riesz) basis (for a similar definition in the con-
The dual operatof N represents upsampling by the integetinuousL,, framework cf. [17])
factor N

If we makez = ¢/2%/, we recover the Fourier transform.
The symbol| N denotes the downsampling operator by th
integer factorV; it is defined as

sy (k) = s <N> , if N dividesk,

0, elsewhere. Veety,, A-lele, <

> ah(k — NI)

icz

< B-|lclle, (4)

Lp

B. Approximation Signal Model with0 < A4, B < .

Our signal model [cf. (2)] is similar to the ones encountered This norm equivalence implies thatc £, (by lettinge; = 6;)
in wavelet theory. For simplicity, we will present the theory imnd that/,, and vy are isomorphic Banach spaces.
1-D. The extension to multiple dimensions is straightforward This above condition is ensured by the following theorem that
through the use of tensor product basis functions. The use g§groven in the Appendix.
separable model implies that the expansion mechanism is sepafheorem 1:1f & € ¢, and {i(k — IN)}icz is a po-Riesz
rable as well; the reduction mechanism, on the other hand, Wilisis for somd < p, < oo then it is also @-Riesz basis for
not be separable unless we are dealing with the classical case ; < .

p = 2 (least squares approximation). Consequently, it is in #; and generates a Riesz basis in the
Specifically, we choose to represent all signals in terms gbnventional,-sense, then it is automatically algestable for

shifted basis functions, which are typically sampled B-splinegnyy. The following result by Aldroubét al.[18] gives a simple

A discrete signal, e.gs(k), will always denote the samples onyay to check ifh. € I; generates a Riesz basis or not.

the finest grid. Its coarser level approximatié(t) at resolution  Theorem 2: {h(k — IN)},cz is afo-Riesz basis if and only
N will use basis functiong;(k) that are a translated version ofit

some templaté n: ¢ (k) = hn(k — NI)
N-1
(k) = S chw(k = N = [diw = hu(k).  (2) 0<a<y ‘H (eﬂﬂf*i)ﬂ\’)
icz 1=0

2
< p < 4oo.
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C. Discrete/Continuous Multiresolution; B-Splines as Basis s4 @ c
Functions

The filter h = hy is obtained by sampling at the integers Reducer

a continuous basis functiop(z) € L»(R) dilated byV, i.e.,  Fig.2. Optimal reducer fof,-norms: antialiasing filter and downsampler.
hr, = ¢(k/N). We make this choice because we want the in-

terpolated version of our approximated signal to belong to tgv%ere% is the (unique) dual function of, i.e.,lc; € Vi and

spacepan{o((x/N)—D}icz,1.€.,5(x) = cap({z/N)— o
1), while iti s;(m{:)Ie)s}(k))}belong to(sp)an{%(:/iez Nz%lc/z [)cf. (h(k — N1), h(n — N1)) = 6(k — n) (biorthonormality).

(3)]. This yields a consistent discrete/continuous signal repre-The coefficients:; of the orthogonal projection of the input
sentation. The advantage of this joint model is the possibilijgnals € £, ontoVy are given by

of applying continuously defined operators commonly used in o
image processing such as derivatives or geometrical transfor- a = [3 *h } ) (7)
mations. B-splines are examples of continuous basis functions N
that we consider appropriate for this multiresolution analysi¢here

The main reasons for this choice are their maximal order ofap- o NH(z™1)
proximation for a given support (key consideration for compu- H(z) = N1 ' ' :
tational efficiency) [19]; splines are also smooth and well-be- > H (ed@mh/N)z) H (e7(27k/N)z—1)

haved (piecewise polynomials) and their simple analytic form k=0

facilitates their manipulation [20]. In addition, they satisfy a The corresponding reduction/expansion digital filtering
two-scale relation which makes them appropriate for multiscagstem is shown in Fig. 1. In this particular case, the reduction

processing [8]. Finally, as the coefficients of the filtarfor the s implemented via a prefiltet followed by a downsampler as

B-splines belong té, and generate a Riesz basigof21], they  shown in Fig. 2. Note that the Riesz condition ensures that the
satisfy the conditions oh to haveVy be a closed subspace o

f. e . . )
¢, (see Section III-B). filter h exists and is always well-defined.

B. Optimal Approximation i,

D. Projection Theorem in Banach Spaces . . .
Ject ! P Now, we deal with the general case of finding an optimal

Given the discrete signal € £,, we would like to find the ; _approximation. The difficulty of working in Banach spaces
approximatiors € Viy C £, that minimizes the errdfs — 5[|¢,. s the lack of an inner product. Practically, this means that the
The projection theorem in Banach spaces (£g),[22] states golution cannot be computed by a one step linear algorithm. In
that, sinceV’y is a convex closed subspacefpffor anys € £,,  this section, we develop an iterative optimization procedure that
there existss € Vv such that takes advantage of linear filtering and of the calculation of first

and second order derivatives.
Lo ®) The £,-norm of the approximation errar = s — 5 is a
convex function of the coefficients, which ensures that its

Thus,s is the best approximation &fin Vi, in the/,-sense. local minima are also global. This is because of the constitutive
We denotes = Py, s. Forl < p < oo, §is unique. Unicity definition of a norm (esp., triangle inequality and semilinearity)
is lost forp = 1 andp = oc; nevertheless, all the minima areand because the erredepends linearly oa. The consequence
global, ensuring that the solution to our approximation probleis that a gradient-based optimization algorithm with adaptive
is well-defined. Thus, our initial problem of calculating the minsteps will always converge to the global minimum. However,
imum error approximation translates into calculating the coeffsince forp = 1 the norm of the erroe is only piecewise dif-

s = lle, = dis. Vi) = inf Jis — sy

cientse; in (2) that describe the projecticn ferentiable, we must be prepared to encounter some difficulties
(slower convergence) asgets close to 1.
lIl. OPTIMAL APPROXIMATION 1) Theoretical Derivation of the Optimization Algo-

rithm: To speed up convergence, we propose a robust

Iln tlhlzgsectlo_n, we re(i/r tohthe state-of-the-art ZLgorlthm t((J)ptimization algorithm, the formulation of which is Hes-
calculat Q;jprOJecnons. elt_ en tum t? mprr]e gl;an glpro(—ji sian-based. The idea behind it is to optimize the coefficients
jections and present a novel iterative algorithm based on digifg] ., iy tym and to express the norm of the error as a second

filtering. order polynomial which is easily minimized. The update
) o formula for the vector of coefficients is then derived.
A. Optimal Approximation irf; Mathematically, we justify our algorithm as follows: If we fix
We will start by presenting the solution of Aldrougtial.[18]. an index!, in the expression fo§, we have
Forp = 2, our space is a Hilbert space, i.e., a Banach space with

an inner product. In that case, the calculatiodf; s takes the s(k) = Z ah(k — N1
simpler form tez
=c,h(k — Nlo) + > ah(k — NI) . (8)
5(k) = Pyys(k) =Y <$(.), Rk — Nl)> h(k — NI) (6) Fho
icz n(k)
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Fig. 3. Optimal reducer fof,-norms: Reducer 1: Gradient estimation. Reducer 2: Diagonal of the Hessian estimation. The watlatohinimizes the error
at each iteration is calculated using a line search algorithm. The filters are reversed versions of the origindl(@nes: h(—k).
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Fig. 4. One iteration of the algorithm that evalualesptimal.

Then, we rewrite the norm of the error as It is therefore legitimate to use the following simplified update
. formula
llelly, =1Is = 3IIZ,
= 37 k) P2 (s(k) — et h(k = Nlo) = n(k))2. (9) A = —\(diag H) Ve (1)
kcz

o ) ) . where we have also introduced a step size
We minimize the last expression as a functior:gfconsid- If we make)\ = p — 1, we have the equivalence with formula
ering|c(k)[P~* as independent af,, in order to get the update (1) |n the following of the paper, we will call “Hessian fixed”

(@

formula. Thus, if we know® = (..., ¢, ¢, ...c”, ...),  the algorithm described by (11) with= p — 1.

we obtain the update vector of coefficients"+1) by calcu-  We will see that the advantage of the Hessian over the gra-
lating for each index, dient-based methods is its efficiency, especially whegets
S |e(k) P 2e(k)h(k — Nlo) close to 1. It costs slightly more per iteration because the di-
@) (+1) (&) _  kez agonal of the Hessian has to be evaluated in addition to the gra-
Aq, =g, —q, == S |e(k)[P2h2(k — Nlp) dient, but we will show how to compute it efficiently, using fil-
kCZ (10) tering and downsampling.

1) _ =) e 2) Implementation of the Optimization Algorithnwe de-
and thens =8+ 5 ez Agy h(k — NI). scribe now the modular structure of the optimization algorithm

We now show that this algorithm can also be interpreted a_ﬁsigned to calculate the coefficien{®f the/,-approximation

a gradi_ent-based or quasi-Newton searc;h procedure. '!'he pag@hal. The implementation uses two reduce operations (Fig. 3)
derivative of the norm of the err¢|re||§P with respect tay is

followed by an expander (Fig. 1). The update veatar® is

de||? obtained from the error in three steps. First, gradient estimation
o= E g1(e(k)h(k — NI) (Fig. 3—upper branch), then, inverse of the diagonal of the Hes-
dc; . o A : >
kez sian estimation (Fig. 3—lower branch). Those are finally com

. . . ... bined and multiplied by the step si2eto provide the update
With g1(x) = ple|"~"s. The second order partial derivative is vector Ac¢t®. Thep diagr};m of Fig. 1 ShOV\IIJS how to recgmpute
22 ||e|l? the error at the given iteration.
aclac: =" ga(e(k)h(k — NDI(k — Nn) The value of the step sizein (11) can be made optimal in
kez the sense of minimizing the error as much as possible at each
with g2(x) = p(p — 1)|z|?~2; these define the entries of theStep. The idea is to remark that we are minimizing
(infinite dimensional) Hessian matri .
The update formula for the usual Hessian algorithm [23] takes FOA) =
the formAc? = — H~1Ve whereVe is the gradient (vector of
partial derivatives) and! is the Hessian (matrix of second order
partial derivatives). Here, the Hessian matrix is essentially diagith « = (diag H) Ve according to (11). In practice, we
onal dominant becaugg k) is decaying away from the origin. estimate an upper\(,,x) and lower @,,;,) bound forA. This

e = XY " u®h(k — N) (12)
k

Lp
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Fig.5. Convergence of the algorithm for different valuep dEach graph illustrates the decrease of the criterium (i.e., the increase of the 38R function of
the number of iterations. The axes are logarithmic. Results fop: £a3.0 andA ,.q = 0.00045, (b) p = 2.0 andAf;xcq = 0.12, (¢)p = 1.2 andAfeq = 1.0,
and (d)p = 1.05 andAgxeqa = 2.0.

value is optimized by using a line search algorithm that ras a function of the number of iterations for different values of
duces by two the length of the interv|ll,in, Amax] at €each p. The results are shown in decibels. Four variants of our algo-
step. Fig. 4 describes one iteration of the algorithm. The searithm are compared: Either gradient or Hessian-based with the
for the optimalX is made acceptable in terms of computationgdarameter calculated in an optimal fashion; gradient-based
overhead by choosing initial bounds close to the optimal, i.evjth A fixed; Hessian-based as given by (11) with= p—1. In
those calculated in the preceding iterationf’l(f)\ffi)n) < 0and allcases, our initial guess wa¥’ = 0. We observe in Fig. 5(a)
(%) > 0then the convergence is ensured by the convexitjat for high values of (p = 3.0 in this case), the performances
of f(\). Note that forp = 2 we have an exact formula to calcu-of the Hessian-based and gradient optimal algorithms are very
late \ optimal that amounts to minimizing a second order polysimilar. The convergence of the gradient-based algorithms with
nomial. We observe from Tables | and Il that the line searchfixed is worse. Fig. 5(b) is a special case as we deal with the
algorithm requires approximately 10-14 iterations wpen 2 ~ convergence of the least-squares approximations. Here, the di-
in order to yield an optimal step size The test image is the agonal of the Hessian is constant and independent of the input,
one in Fig. 6—top. Cubic splines are chosen for the interpolghich implies that the Hessian and gradient-based algorithms
tion and the scale is reduced by a factor of two. that use the same strategy for determinigre equivalent.
Fig. 5 represents a typical example of convergence of the 80 the other hand, we observe a slightly faster increase of the
gorithm for the minimization of thé,-approximation error. The ¢, — SNR for the algorithms wittk optimal over the other ones.
test signal and the parameters are the same as for the exarffle 5(c) and (d) demonstrate the behavior of the algorithms
given above. Each graph shows the decrease of the criterion ifith ps close to 1% = 1.2 andp = 1.05, respectively). Here,
crease of the SNR=—201log(||s—3|l¢, /||s]|¢,) dB], measured the algorithms with\ optimal converges in less iterations than
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TABLE | reconstruction error is measured by the SN&s defined before
GRADIENT ALGORITHM: AVERAGE (AND STANDARD DEVIATION) NUMBER OF (herep — 1'2). It is evident that the error of the approximation
ITERATIONS OF THELINE SEARCH ALGORITHM (FIG. 4) ’ . .
at level 1 is the same in both cases (26.11 dB) as we start from

Gradient || mean £ stdv the same image. As expected, the error is slightly larger for the
ﬁsjgpgizi 33’16@1683 suboptimal [18.74 dB (level 2) and 14.53 dB (level 3)] than for
gli_;)ptimal ISl optimal [18.99 dB (level 2) and 14.77 dB (level 3)] pyramid.
l1g5-optimal || 874+ 1.84 In practice, these differences are not significant and it is quite

justifiable to use the step-wise suboptimal approach to minimize
computation. Nevertheless, in the following tests we did not use

TABLE I the recursive downsampling approach but the direct one.

HESSIAN ALGORITHM: AVERAGE (AND STANDARD DEVIATION) NUMBER OF
ITERATIONS OF THELINE SEARCH ALGORITHM (FIG. 4)

IV. COMPARISON OFAPPROXIMATIONS FORDIFFERENT pS

Hessian mean =+ stdv
Ls-optimal || 10.92%0.89 In this section, we characterize the pyramid decompositions
£5-optimal 1.0£0.0 for diff | We ob t ffects: The rinai
T soptimal || 1441 £ 1.43 for di erent values O.fu. e observe two effects: The ringing
1 os-optimal || 14.29 + 1.29 is reduced and the histogram of the error gets sparsegats

closer to 1.

their counterpartsin aglobal sense. We observe a slower decrggs®inging
of the error in the first iterations of the gradient method with . . _ I

: . ; To illustrate the reduction of the ringing, we show in Fig. 7
A fixed, due to the conservative step size we have chosen to | luti imati duced 1-4) of the |
ensure convergence when we are close to the solution. 'IIHS ol\é\(—regmtj 'on apprfoxm;_a lons (Hre ucti b. ).Of et_|mage
Hessian algorithm moves as fast as the version that uses tﬁéom ig. 6—top, as a function gf. Here, the basis functions

optimal at the beginning but afterwards; it gets slower as tREE cubic B-splines and the images are interpolated back to the
diagonal of the Hessian gets larger foclose to 1 [wherp = 1 original size. Observe the overshooting (ringing) for highin

the denominator of (10) becomas, ., le(k)|~LR2(k — N1)]. Fig. 7(a) and (b). It appears grognd the nucleus an_d border of
Note that this behavior is not intuitive. the cells. On the other hand, in Fig. 7(c) and (d) the images are

In conclusion, we recommend the Hessian-based, fix8#/ch less textured. Subjectively, these approximations are more
step-size algorithm whep > 2 as it gives almost the samePleasant visually because the regions are more nearly homoge-
performance as the one that uses line searchptrse to 1, Neous.
the algorithms that take advantage\adptimal are more robust
at the price of an added computational cost. Note that each it8r- Histogram Sparcity
ation has a complexity comparable to that of fheprojection.  Now, we center our attention on the study of the histograms
What makes thé,,-algorithm computationally more expensive,qresnonding to the detail images. Ideally, we would like our
is the number of |terat_|0ns_ required for reaching the SOIUt'OBrror image to be as sparse as possible, with an histogram pre-
Baseq on the results in Fig. 5, we may conclud(.e.that 10- _fnting a high peak at zero. This would indicate that a large por-
:tnesrg[;%ngfc%? Eegs\/s:?g'rtwm%:’ \-lliltjci:i)nnd \?vrggla:llceag :::Hi' n of the image is reproduced in the low-resolution approxima-
order of ten iterations fop < 2 2 k tion. With this idea in mmd, we compare in Figs.8and 9 the his-

' tograms of the detail images for different values &ér a series

of biomedical images. In all cases, the sparsest detail histograms
correspond t@s close to 1, indicating that the gray value in the

If the basis functiong used to specify: satisfy a two-scale original image is more frequently kept in the low resolution ap-
relation, then the dyadic multiresolution for the linear case h@soximation than for largeps. For images in which the amount
the nestedness property of the vector spaces:C V,: C  of noise (due to the characteristics of the image modality) is
Voicr C --- C Vi [18], [24]. The discrete wavelet transformmoderate or low, the height of the peak at zero is impressive.
that minimizes thel,-norm exploits this nestedness by com- Furthermore, combining the visual information from the
puting the projection at one scale from the previous finer appproximated images and the detail histogram, we can derive
proximation. This hierarchical approach is not appropriate hethe following conclusions: The near zero values in the detail
In principle, one should always go back to the finest scale kistogram correspond to “large” objects in the original image
compute the coarse level approximations because of the naiere the term “large” is relative to the current scale. In other
linear structure of the reduction operator. words, the “large” objects and background are kept in the

In Fig. 6, we illustrate this distinction. We have generated tt#pproximation image while “small” objects are retained in
pyramid on the left hand side using the optirial approach the detail images. In addition, we benefit from an excellent
(we take the finest resolution image as initial image to calculgpeeservation of the shape structures for lesv The images are
all coarser approximations). The pyramid on the right hand sideore blurred for higtp (see Fig. 7).
is suboptimal in the sense that each coarse-level approximatioThe height of the peak at zero and the spread of the detalil
is computed from the previous finer level approximation. Thigistogram depend heavily on the characteristics of the image.

C. Generation of Image Pyramids
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Fig. 6. Optimal versus suboptimé] » pyramid.

The peak is higher (resp., lower), if there is more (resp., lesS\NR;,, the Kullback—-Leibler distance between the histograms
edge information in the original image. The averaging effecf the original and low resolution images and the entropy of the
characteristic of the least-squares approximation leads to a detaglidues for each of the calculatggdapproximations.
histogram with a Gaussian appearancen §ows, the averaging We observe that the results are consistent: The minimum
gets even more accentuated. The spread increases with the defgreeror (maximum SNR)) is achieved for the corresponding
of uniformity of the original histogram, independently @of  ¢,-approximation in each case. The results of the Kull-
Quantitative results for the images in Fig. 7 are given iback—Leibler distance clearly indicate that the histogram of the
Table Ill. Each column correspond to the results coming fromigage is best preserved for valuespoflose to 1. The entropy
different/,-approximation. The table displays the values of thef the difference image also tends to get smallepfolose to 1.
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Fig. 7. Expanded version of the approximations calculated using cubic splines at scale 4 for different val(@g efoptimal, (b)¢--optimal, (c)¢; .-optimal,
and (d){; o5-optimal.

Note that the last results concerning the Kullback—Leibler andFor our experiments we have chosen to compare approxima-

entropy measures are nothing but manifestations of the fact ttiahs (reduction 1:4) calculated using B-splines of degrees 0,

£1-approximation tries to preserve the original image values.1, 3, and 5 as basis functions. The results are shown in Figs. 10
Thus, our conclusion is that the most promising scheme isthed 11 forp = 2 andp = 1.05, respectively. We observe

{1 -approximation because of the following properties. that the blocking artifacts typical of piecewise constant spline
« Preservation of the structure shapes at different scargproximation [Figs. 10(a) and 11(a)] disappear for higher
which is appropriate for object detection. order splines. Most observers will also agree that the subjective

« Reduction of ringing and spurious textures. quality of spline approximations withs close to 1 (Fig. 11)

 The point structures are presented only at the finest scaledetter tharp = 2 (Fig. 10) for all degrees. Note that for the

of the detail images. This may be an advantage for sore@st-squares case the ringing gets visibly accentuated as the

applications, for example, in the detection of microcalcispline degree increases, while this is less the case fotl.

fications on mammographies. In Table 1V, we give the SNR and entropy of the difference
image that correspond to theand?, approximations calculated
for different spline degrees. We observe that we have lower
values of the entropy (maximum SNR with ps close to 1 when

We now examine the choice of the degree of our spline basising spline basis of the same degree. The miniriss@rror is
functions. Mainly, we are concerned with the tradeoff betweerached for the higher order splines. This finding is consistent
quality of approximation and computational complexity. with the standard theory of splines [25], [26]: as the degree

V. COMPARISON OFAPPROXIMATIONS FORDIFFERENT ORDERS
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Fig. 8. (a) Biomedical images, (b) corresponding histogram, and (c) histogram of the detail images (original minus the approximated versidrusingcale
cubic splines as basis functions) for different valuep.dflote the high peak at zero fprclose to 1.

n increases, the spline approximation converges to Shannon’s VI. DISCUSSION
solution which minimizes thd.,-error when the function is _ _ _
bandlimited or very lowpass (usual case for an image). THe ¢»-Pyramid Versus Median Pyramid

main drawback of the least-squares distance measure is thg{g mentioned in the introduction, median pyramids have
it does not penalize enough oscillations and ringing artifacigeen widely used in the literature because of their desirable
Interestingly, if one looks at thé -approximation, the optimal properties of edge and detail preservation [15], [27].
model turns out to be the cubic spline & 3). The fact  The reducer operator of the median pyramids computes the
that too high an order splines are not good with respect #acimated version of a median filter output. We can, as with our
£1-approximations is not surprising because the basis functiafgthod, either start from the original image for all the resolution
tend tosinc(x) whose samples are not ify. This is also |evels, or apply the successive refinement scheme. As we have
consistent with the fact that th&-distance is the one thatalready pointed out before, the results will be different.
penalizes ringing most. Our model is equivalent to a median pyramid in one particular
The £, -cubic splines are also best in terms of data comprasase: while minimizing the error in thg -sense and using as
sion (entropy minimization), combining a good order of approxhe B-spline of degree zero as the interpolation function. If the
imation with a reduction of artifacts. quality of the low-order interpolation is not satisfactory (e.g.,
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TABLE I
SNRe,, MEASURESCORRESPONDING TO THHMAGES IN FIG. 7

energy/distance || f3-optimal | ¢y-optimal | 4 2-optimal | £ gs-optimal
SNRy, (dB) 16.22 16.08 15.43 15.11
SNRy, (dB) 17.34 17.47 17.21 16.99
SNRy, , (dB) 18.38 18.79 18.99 18.90
SNRy, . (dB) 18.58 19.05 19.37 19.31
Kullback-Leibler 0.189 0.163 0.138 0.130
Entropy 4.485 4.442 4.397 4,388

because of blocking artifacts), we can simply increase the ap-+ The existence of an underlying continuous model allows
proximation order by increasing the spline degree. We will still  for the evaluation of continuously-defined operators.
be optimal in the/;-sense but our reduction operator will no ¢« The modelis flexible as it is possible to tune the parameter
longer correspond to a median filter. Naturally, the approxima- p and the degree of the B-spline which determines the
tion error decreases as our interpolation model improves. space in which the original image is projected.
The advantages of odf-approximation model over a clas-

sical median pyramid can be summarized as follows. B. Perceptual Relevance of thig Metric

¢ The reduction operator is consistent with our approxima-

tion model. There are two related aspects when computing and evaluating
¢ The error is minimized in a well-defined sense. image approximations that should be considered:
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(e) (d)

Fig. 10. Comparison of the least-squargs= 2.0) approximations calculated at scale 4 for different degrees of the splines=£d), (b)n = 1, (¢)n = 3,
and (d)n = 5. See Table IV for quantitative error information.

+ the optimization criterion and the algorithm,{projec- measuring image compression errors. They used these results

tion) used to approximate the input signal; to justify their nonlinear wavelet-based compression algorithm.

* the/,-metric used to measure the approximation error. Their findings correlate well with our results. It is clear from the
Obviously, if we know the metric that best matches our visuil'@9es thatwe have presented that ringing is disturbing visually.
perception of image quality, it makes good sense to use the CBp_eﬁl—norm comes out best_be_cause itis the one that pen_allzes
responding approximation algorithm. the oscnlatlor_ls most (esp., ringing due tp ﬁmec is b_ounded if

From a perceptual point of view, what we consider to be '€ measure it with thé, norm whereas it is not witi.,).
good result depends on the sensitivity of the human observer
to details at different frequencies and contrasts [28]. From the
examples collected in this paper and our experimentation withwe have presented a theoretical framework for obtaining mul-
the algorithms, we are tempted to conclude that4hprojec- tiresolution image approximations with non-Euclidean norms.
tions look perceptually better than the ones obtained with largeraddition, we have proposed an efficient iterative algorithm
values ofp. On the other hand, the error images fotprojec- based on digital filtering to calculate these approximations. In
tions also contain details and features that are more noticeathle experimental part, we found] -pyramids to be the most
visually. This is consistent with the observation tha&pprox- promising ones. Overall, they led to better feature preservation
imation has a stronger tendency than others to simplify imagesd resulted in less ringing artifacts. They also produced the

In [29], DeVoreet al.performed experiments to determine theparsest error images which is relevant for coding applications.
L,-norm that best matched the response of the visual systeérhese are all properties that should make them useful for mul-
They concluded that thé; -norm was the most appropriate fortiscale processing.

VII. CONCLUSIONS
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Fig. 11. Comparison of thé& -approximations calculated at scale 4 for different degrees of the splines.=4a), (b)» = 1, (c)n» = 3, and (d)n = 5. See
Table IV for quantitative error information.

TABLE IV
SNR;, MEASURES ANDENTROPY CORRESPONDING TO THE'; AND {;-APPROXIMATIONS FORDIFFERENT SCALES AND DEGREES OF THESPLINE BASIS FUNCTIONS
Degree n=20 n=1 n=3 n=>5

N £y 2 £y by £y £y 3 2

5 SNRgp (dB) 22.60 19.77 25.74  22.78 26.23 24.15 25.20 24.23
Entropy 3.995 4.043 3.495 3.757 3.494 3.645 3.648 3.650

3 SNR,, (dB) 19.79 16.73 21.39  19.09 21.76 19.87 21.29 19.92
Entropy 4.185 4.383 4.096 4.224 4.082 4.157 4149 4.159

4 SNR, (dB) 17.78 15.00 19.01 16.96 19.31 17.47 19.02 17.50
Entropy 4.526 4.610 4.410 4.487 4.386 4.442 4.426  4.443

5 SNR,, (dB) 16.51 13.87 17.62 15.70 17.90 16.10 17.68 16.13
Entropy 4.656  4.767 4.586 4.642 4.556 4.603 4.583  4.603

Another interesting finding is that cubic splines gave the besell with the fact that the cubic spline model is often the preferred
results among all other splines when the approximation was damee in applications [20]. Again, this supports the general percep-
in the £:-norm. Unlike thel,-ranking which always gives the tion that cubic B-splines offer the best compromise in terms of
advantage to higher-order approximations, this result correlatggproximation power versus the support of the basis functions.
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work. It makes use of two classical results

Proposition 1 (Young's Inequality)if b € 4, anda € £,
thenl|a 5 blle, < [Iblle, - llalle, -

Lemma 1 (Wiener's Lemma).et a € /1 with A(c?27F) #
0V f,then(a)™! « 1/A(c?7F) isin £, as well.

These are used to establish the following.

Lemma 2: Let h € ¢; generate aV-shift-invariant/;-Riesz
basis. Then, it€>-dual h defined byh = (a,jl)TN * h with
an(l) = (h(k), h(k —IN)) = (hx hT) | n,isin ¥ty as well.

Proof: Thanks to Young’s inequality, we have thaf €
¢, because

(1]

lanlle = N(hx ) vlley < s WPl < NIRIZ, < oo

Since{h(k—IN)}cz is al>-Riesz basis, the autocorrelation
function

(6]
(71

N-1

o< Z ‘ H (Cﬂw(ffi)/N) ‘2 <5
1=0

Ap(eizn)

(8]

[9]
is positive definite (cf. Theorem 2). The conditions of Wiener's
[10]

lemma are met, thusgy, € £; implies thata,j1 belongs to/; as

well. We show thafoz € {1 by using Young's inequality and the

fact that upsampling does not change the value of the norm [11]

o]

il =Nz v hlley < llay e, -1l

£1

[12]

[
1

We can now proceed with the proof of Theorem 1. s

Proof: The goal is to establish upper and lower bounds in14]

the norm equivalence

Veety Al < s, = lery = blle, < B licle,-

[15]
The upper bound is easily localized using Young’s Inequality
and the fact thafict v |le, = ||clle,

[16]
llern = Rlle, < llelle, [1Alle, -
——
i [17]
To determine a lower bound we will work with the dual filtlj@r
which is in#; as well, as a consequence of Lemma 2. Sitice [18]
andh are biorthogonal, we have thét € Vy
o [19]
s(hy =Y <$ h(k — lN)> h(k —IN)
ICZ « , [20]
c
o o o [21]
llclle, = {s*hT} <||lsxhT|| < Hh lI5lle,
INTl, £, 2 [22]
A1 [23]
with s = ¢y * h. So, we have foundi such asA||c[l,, < [24]

||CTN>5<h||[P. | ]

tesy of the Cornell University Medical Center.
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