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Least-Squares Image Resizing
Using Finite Differences
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Abstract—We present an optimal spline-based algorithm for duces the computation time and also tends to improve ro-
the enlargement or reduction of digital images with arbitrary bustness [7].
(noninteger) scaling factors. This projection-based approach can Many linear resizing techniques are available even though

be realized thanks to a new finite difference method that allows thev h limitati The standard I int
the computation of inner products with analysis functions that €y have Some limiations. \Ihe Standard ones rely on Inter

are B_Sp”nes of any degreen. A noteworthy property of the polation [8] The Simplest methOdS are nearest'neighbor and
algorithm is that the computational complexity per pixel does bilinear interpolation, which correspond to fitting the image

not depend on the scaling factora. For a given choice of basis with a spline of degree 0 and 1, respectively. The piecewise
functions, the results of our method are consistently better than ,n<tant model generates noticeable blocking artifacts, while

those of the standard interpolation procedure; the present scheme S . . .
achieves a reduction of artifacts such as aliasing and blocking and the (bi-)linear one tends to lose details through image blurring.

a significant improvement of the signal-to-noise ratio. The method Better interpolation performance is achieved by switching to
can be generalized to include other classes of piecewise polynomiahigher order models [8]; typical examples are Keys' short
funptions, expressed as linear combinations of B-splines and their kernel convolution [9], or higher order spline interpolation
derivatives. which offers a better cost-performance ratio [10]-[12]. While
Index Terms—Affine transform, boundary conditions, finite interpolation works well for image magnification, it is not en-

difference, interpolation, least-squares, oblique projection, scale, tirely suitable for image reduction because of potential aliasing

spline. problems. The standard remedy is to apply some kind of
lowpass prefiltering prior to resampling. Although a complete

|. INTRODUCTION suppression of aliasing is possible through the application of

Shannon’s ideal filter, this is not a widely used technique—it

MAGE_ resizing (magnlflcatl_on or redgcnon) IS & commong computationally expensive and tends to introduce ringing
operation in image processing [1]. It is used whenever ONC it~ cts (Gibbs oscillations)

wants to change the image resolution. For example, itis require he principal limitation of interpolation approaches is that
on a routine basis in digital photography, multimedia, and ele,

troni blishing 121, 13]. for adanting the pixel size to th ff‘n'ey are not designed to minimize information loss. It there-
ronic publishing [2], [3], for adapting the pixel size to the "€Sfore makes good sense to investigate the possibility of obtaining

olution of an output device (printer or monitor) [4], [5], and forthe best solution in the least-squares sense [13]. Indeed, the

3\7er1t)erat|ng preview images, or posting digital pictures on tl%?gnal-to—noise ratio (SNR) is a standard figure of merit used

. . . L ._inimage processing. Even though it is widely used in the field,
Another important area of applications is medical IMagNG has its limitation because it does not take into account the
typical ms_tgnces are as f_OIIOWS' o o subjective aspects of visual perception [14]. However, it has the
* Reslicing for resolution normalization. This is to compenygvantage of being easy to measure and amenable to optimiza-
sate for the fact that three-dimensiona (3-D) volumetrigy,
data (CT, SPECT or MRI) are often acquired in a non- The |east-squares solution is achieved by modifying the in-
isotropic fashion—the within-slice resolution is typ'caHYterpolation approach so that the resampling step gets replaced

finer than the across-slice resolution [6]. _ by the evaluation of inner products with the translates of a suit-
* Image zooming. It is often used to focus on details fofpe analysis functio. This computation is equivalent to ap-
diagnostic purposes. plying a continuously-defined prefilter (antialias) to the inter-

* Image pyramids for multi-scale processing. Many itefsolated function prior to resampling—the prefilter is not neces-
ative image processing algorithms can be applied ingayily ideal but is chosen to be biorthogonal to the underlying
coarse-to-fine fashion. Working with smaller images renterpolation kernel. Note that the method is conceptually sim-

ilar to a wavelet decomposition [15]—-[17], except that the scale
factor is not restricted to be a power of two. While the basic
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the procedure by replacing the optimal prefilter by a box funchoice ensures that the interpolation requirement is satisfied,;
tion analysis (B-spline of degree 0) and made it more efficiene., s(z)|,—r = sk.
by pre-computing the antiderivative of the function to be ap-
proximated. B. Affine Transformation (Conceptual Step)

Here, we present a generghzaﬂon of this method _thaf[ al'We apply the affine transformation (scaling and shifting) to
lows us to compute both oblique and orthogonal projectiops, functions(z)
(least-squares approximations) for splines of any degree
What makes the approach feasible in this more general setting is T
the new finite difference method presented in Section lll; it al- fz)=s (5 + b) )
lows anexactcomputation of the required for analysis functions i . .
that are B-splines of any degree The method works for both The image is enlarged if > 1 and shrunk ifa < 1.
reduction and magnification of images with an arbitrary scaling
factor and for any translation value. In Section V, we generalife Projection-Based Signal Approximation
the method to a whole class of piecewise polynomial functionsin the standard interpolation approach, the image gets resized
(all linear combinations of B-splines), including some withhy resamplingf () at the integers [19], as illustrated in Fig. 1.
optimal approximation properties. Another benefit of this workiere, we will consider an alternative approach in terms of ap-
is that it leads us to the definition of a new operator formalisrpiroximation theory. Specifically, we find the best approximation
for splines and multi-rate signal processing (cf. Sections Ifi(z) € V., of f(z) in some spac#,, = span, {p2(z — k)}
and 1V); thanks to these tools, we are able to simplify theuch that thel.,-approximation erroe,(f) = ||f — fl|z, is
derivation of the key formulas and we provide a presentatighinimized. From the Projection Theorem, we know that the
that is (hopefully) understandable and self-contained. least-squares solution to this problem is the orthogonal projec-

tion of f(x) ontoV,,, [20]
[I. PHILOSOPHY OF THEAPPROACH ~

f@)=Pf(z) = calk)pa(z — k) = ca,6 + pa(x)

When the image is represented using separable basis func- "

tions, the resizing problem can be solved optimally in a sep-
arable fashion. Consequently, the complexity is reduced frqmth es(k) = (f, &y(x — k), where,(z) is the dual of the
2-D 10 1-D. o L ) . analysis functionp.(x); in other words, satisfiesp, € V.,
In order to simplify the description of our algorithm, it is ad'and(é (2), ga(z — k) = &
2 ) - -

vantageous to use a continuous signal processing representation o than computing the inner prodigt &, (x — k), we
2 - ’

of pperators defined inthe pontlnuous qualn (scale change %%glsider a slightly more general and also more flexible approach
shift). For that reason, we introduce M@tal—t_o—a_nalqg OPE™ via the block diagram in Fig. 2. It corresponds to @lique
atorwhich maps discrete sequenagsto the distribution projection ontd,,, It uses an auxiliary analysis functign ()
which is essentially arbitrary.
sp o s5(z) =Y spb(z — k) First, we compute the inner products
k

c(k) = {f(z), r(z — k) )

whereé is the Dirac’s delta distribution. Using this formulation,
a digital filter gy, is represented by its equivalent continuous-, . , . . — . _ i
space impulse responge(z) = 3~ gxd(x — k). which is equivalent to prefiltering(z) with ¢, (—xz) and sam

The schematic continuous-space domain representat
of the whole algorithm is given in Fig. 2. All boxes denot

convolutions;gs, gs and hs are digital filters, whiley and jection of /() onto V,,, perpendicular t&/,, requires an ad-

;’;;nasrfi :r?]Jaetigunz?E?SiOZ)t?: r((:e(:)rrlggsgtlé: Zﬁ;i?;zg?nsmxonditional digital filtering correctiong to satisfy the biorthogo-
of a shift [convolution with§(x + b)], and of a resizing nality condition [21]. Thusg, (k) = ci(k) * g(k). The ap-

s(x_) — s(z/a) represented as@—. We now describe the four srip;glte:(ir/r?gf;??:;ii)t h.?h?;)?sv ggjljli?/glg;:ﬁgss sﬁli;t.h e
main steps of the method. : Sk

analysis functionps(z) = >, ar * @1(z — k) = gs * ¢1(z),
where g, (z) and ¢»(x) are biorthonormal. Ifpi(z) € V,,,
then we get the orthogonal projection; otherwise, we have an

The first step is to take the discrete input dgtaand to con- oblique projection [21].

struct a continuous interpolating modék) = >, cro(z—k), When computing the orthogonal projection, we obtain
where thep(x—k)'s are some specified basis functions. For thia resized image with minimum loss of information in the
purpose, we take the samplasand convolve them with an ap- least-squares sense. If instead, we choose an oblique projection,
propriate prefilterg, to get the coefficients;, = gi * si. The the approximation is only slightly suboptimal, depending
continuous-time function is obtained by convolviagz) with  on the angle betweeV,, = span{¢1(x — k)} and
¢(z). The prefilterG(z) = >, grz™ = 1/, onz™") is  V,,, = span,{pa2(z — k)} [21]. Moreover, the rate of conver-
the convolution inverse of the sequenggt). This particular gence depends on the approximation order properties of the

Pling thereafter.
%%Fhe cross-correlation sequenceyf(z) andys(x) is given
By a12(k) = (01(2), pa(z — k). If ara(k) # 6y, the pro-

A. Interpolation
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k) B. Discrete Differential Operators

20z —
ss(z) 4 95 - (x) Hd(x +b) Q{} Fs(x)

interpolation geometric
transformation

We define the backward finite difference operator as

A=6(x) —6(x—1).

This is also a discrete convolution operator (digital filter) whose
z-transform is
Fig. 1. General scheme for the standard interpolation approach. L
Alz)=1-2z"".
synthesis function alone; the analysis function has essentiall

¥W\hen working with/,-sequences, we can consider the in-
no influence on the asymptotic approximation error [22]. 9 L-S€d !

verse operaton ! defined uniquely as
D. Resampling of the Projection at the Integers AL = Z §(z —n)

_Finally, we have to resample the projection at the integers >0
(f(I) = f(x)|»=1) to get the output of the systerfy(x) = .
> f(Dé(x — D). This is achieved by postfiltering with;, = whosez-transform is
w2(k), the sampled version of the synthesis function. A7Yz) = (1 1),
If we compare the block diagram in Figs. 1 and 2, we see that
the standard interpolation approach corresponds to the simfiliean be defined as the running sum filter

fied situation wherep; (z) = 6(z) andgy, * hy, = 6. We also

T : . -1 —
see that the main difficulty with our new approach is the com- (A7 x s)y = Z Sn
putation of the inner producty (z), 1 (x — k)) involving con- n<k
tinuously-defined functions that are specified on different grid§,e thus haved—! s Axs = Ax Al xs — 5.
In our implementation, we will extend the application of
lll. SPLINES AND RELATED NOTIONS A~! to periodic sequences with zero average. In general,

Before describing our spline resizing algorithm, we introduc&~" does not preserve the zero-mean property of the input.
a new operator formalism for splines which will facilitate thén Section IV-C, we will however show how to overcome this
derivation of our method. In this section we assume that all sigifficulty. We will also show thatA~" exchanges the standard

nals f(z) and discrete sequencgsare compactly supported. Symmetric and antisymmetric boundary conditions. Note that
e = AL x s, can be implemented very efficiently using the

A. Continuous Differential Operators recursive equation
The conventional derivative operator is
Yk = Yh—1 T Sk. (3)
df(x
o C. B-Splines

The unique inverse ab is the antiderivative operator The purest form of a polynomial spline of degreds the

e = @ firydr one-sided power f-unctioz_ﬂ’}r which has_a unique singularity of
e ordern at the origin. While a polynomial spline can always be

) . . written as a sum of shifted one-sided power functions, it is more

i.e, DD™' f(z) = DT Df(z) = f(z). convenient to work with B-splines as basis functions [12]; these

The operatorD™" also corresponds to the convolution ofye obtained through the following finite difference process:
f () with the unit step function. Thén + 1)-fold convolution

of the step function yields the one-sided power functignn! B (z) = A"« ol S <a; " n + 1) . @)
where n! 2
o= z", ifz >0 Note that the shift by + 1)/2 recenters the finite difference
T 0, otherwise. operation so that the result is a centered B-spline. Since a con-

_ ) o . volution with z%} /n! is equivalent to thén + 1)-fold integral
In particular, the unit step function :aé_)F We may also write  —(n+1) \ye can rewrite the B-spline as

the (n + 1)-fold integral operator as

n n _ AN+l —(n+1) n+1
Df(""'l)f(a:) — 3;1_-1'- « f(2). p(x) =A"T" %D * 0 <37 + 5 ) . (5)

Note that the composition ruleD—(u+Dp—(ne+l)  — The centered B-spline of degredas the following remarkable
P "~ properties:

D~ (m+n2+2) corresponds to the following composition prop? oo
* positivity: 5™ (z) > 0;

erty of one-sided power functions
» compact supporf—(n +1)/2, (n + 1)/2);
x . xly? o symmetry:3(x) = g(—x);

ni+nz+1
Ty
n! ne! (n4ng+ 1Y @ * partition of unity:>", 8™*(z — k) = 1.
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0@ —k)
1 2 x
s5(t) 4 95 [+ (@) —6<x+b> p1(—) +§<} % ( hs - fi(@)
interpolation geometric projection

transformation

Fig. 2. General scheme for the proposed projection method.

The B-spline relations that are especially relevant for this pap&r Derivation of the Algorithm

are o Thus, we choose our basis functions to be B-splines.
* nith derivative In that case, our algorithm has the following parameters:
- e (M p(x) = B(x), pulz) = pU(x) and pa(z) = ().
D™ p(z) =A™« 3 (97 + 3) (6)  This implies thatai2(k) = ¢~L(k) = gm+7m2t(2)|,—, and
_ p2(z) = g5 * B2 (x).
* ny-fold integral In the sequel, we will derive our final form of the resizing
Cni Cne . i n algorithm graphically by using the exchange rules for the one-
DM (w) = A s g (x - 3) (") sided power functions and for the shift given in Figs. 4 and 5, to-

gether with the convolution rule for one-sided power functions.
with n; < nin both cases. These can all be derived rather eas‘i’he proof of the exchange rule for the one-sided power func-
using the previously defined operator formalism as shown in thgns is as follows.
Appendix. Proof: We can write the expression on the right handside
in Fig. 4 as
D. B-Spline Inner Products
All the steps in the method described in Section Il are rather /f (I) % (x —7)} dr.
standard and can be performed using digital filtering, except for a/ at
the computation of the inner product for an arbitrary resizinge then make the change of variable= /a
factor a (not assumed to be a power of two as in the case of
wavelets). The basis for our method is the following formula for / () 1 (x — au) adu = /f(u) (f _ u)" du
computing B-spline inner products and follows from the defini- antl + a +

tion of the B-spline (4) which corresponds to the expression on the left handsida

(f(@), B (x — ) = B (y) The proof for the exchange ru!e of a shi.ft bjs trivial.
We now proceed by successive modifications of the block
:An/1+1*|:D—(n1+1)f <y+ ”1+1>} diagram in Fig. 2. We have_ e_xtracted_the opera_tors betwgen
2 the marks 1 and 2 for simplicity. The final result is shown in
(8) Fig. 3(e).
In Fig. 3(a)¢(x) andy; (—z) are substituted by their explicit
Thus, we can compute the inner products rather simply Bypression using (4). Using the rules in Figs. 4 and 5, the boxes
applying finite differences to th¢n; + 1)-fold integral of are reorganized in such a way that all one-sided power functions
f. What makes an exact computation possible and tractagigj shifts are moved to the left side of the scale change-
analytically is the fact that thén, + 1)-fold integral of a a5 shown in Fig. 3(b). In this way, the support of the resampling
spline is a spline with a corresponding increase of the degr@grnel does not depend an
Specifically, ifs(z) = 3=, cx8"(z — k) where the sum is finite The rule for the convolution of one-sided power functions (2)
is applied to get Fig. 3(c). Using™ *1 « A=(»+1) = J and

DAV s(z) = 3 (A_("1+1) * C)k grimtt APty Amtl — Antmit2 e gbtain Fig. 3(d). The explicit
k time domain expression for B-splines is the key to get Fig. 3(e)
ny+1 with the final expression for the spline kernel beipngr) =
<$ — k= 2 ) : amtigrtmtl(e L mywith 7o = ((ng +1)/2)(1/a— 1) + b.

Note that we are allowed to push the sampling step toward the
resizing box because the filters located at positions 4 and 5 are
IV. SPLINE RESIZING ALGORITHM all digital.

Our reason for using B-splines—or some close relatives—és
that these are functions for which we know how to compute thé
required inner products. They also have excellent approximation/Ve now briefly summarize the main steps in the implemen-
properties [23], [24]. Moreover, they have the shortest suppéation of the method.
for a given approximation order, which means that the compu- 1) Digital prefiltering with the (symmetric) exponential
tational complexity is minimized. filter ¢ = (b")~! to getc; (interpolation coefficients)

Practical Implementation
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1 n n 2
AT ZE L6 (z o+ 25+ b) A’““— % 0 (2 + 25 e
(a)
I \ntt L 122 | g 1] 2
o E Her g e @
(b)
1 ntng+1 2
S| AT e am (iimm — 0z +71) Amtl e
(c)
1 9 1 gttt ntng+2 1 2
o A1) | Antnat2 L gnat e M O(w + BELE=) L Ho(x 4 72) Amtl e
(d)

(= k)

k0
1 i
ss(2)4 95 [o] A-(u+D) ] ¢ égf At gs 1 b | fs(a)
3

N———’
4

()
Fig. 3. Diagram that shows the full process to get our algorithm. (a) Substituti@fn(ef) and3™1 (—x) by their explicit time expression. (b) Scheme obtained
using the exchange rule fef} /n! andé(x 4 b), with 7, = ((n+1)/2) + ((n1 4 1)/2a) 4 b. (c) Application of convolution rule aof’; /n!. (d) Application of

AL A= (AD = AP L AntL = Antnit2 andr, = ((r1+1)/2)(1/a— 1) +b. (e) Equivalent form of Fig. 1 witk(z) = a™1 187t 1+1(x 4+
T2),9 = (b")7l, g = a"! = (bm1T72F1)~1 andh = b"2z. The numbers below the diagram indicate the main steps in the implementation.

| an = @ Lran | B:—‘ré—M— A1 H A D= Identity

Fig. 4. Exchange rule for’; . M

Fig. 6. ldentity diagram for symmetric boundary input signals.

—0(z +b) = @ d(z +ab) — C. Boundary Conditions and Discrete Differential Operators

1) Signal ExtensionsWe will consider periodization and
Fig. 5. Exchange rule for a shift by the two types of boundary conditions shown in Figs. 9 and 10.

o Periodization: It is easy to verify that the general projec-
from s; (input samples). The filter is implemented re_tion—basgd .resizing schgme shown in Fig. 2 h.as.a meaning not
cursively using a cascade of simple causal and anticau Q|y for f|n|te. support&gqals, but also _fop'enodlc .S|gnals..
operators as described in [25]. owever, the implementation proposed_ln Fig. 3(e) is undefined

2) (n1 + 1)-running sums corresponding to the operathPr §U(_:h Inputs becaus_e O.f step 2, which attempts to compute
A-(u+D): these are computed recursively as well bgn_mflmtg sum of. periodic data. A \{vay to. overcome this
iterating (3). ifficulty is tc_> restrict ourselves to periodic signals that have

3) Geometric transformation and resampling using a spliri]eZero meant.e., .SUCh thab 3(?7 — k) = 0, and to express

interpolation model of degrge.+n,; +1) [basis function the P-periodic signals(z) as limu—co S[—mp, (m+1)r)(z)
where si_,.p, (m+1)p)(z) is the restriction ofs(z) to the

¢()]. :
4) (nq +1)-centered finite differences, corresponding to th%upport[—mP, (m + 1)P]. The compactly supported signal

operatorA™ +1 S[—mP, (m4+1)P] (%) Can also be expressed by a convolution

5) Digital postfiltering with the sampled synthesis function _ Sz — kP
$2(x)|z=t = qr+h, wheregis an lIR filter implemented Stomp, ent 1 (2) = Spo, pi (%) * |k|z<:m (= )
using the recursive routines developed in [25]. —

The algorithm is now almost fully described. The only re- ()
maining issue is the extension to periodic signals and the condien, sinceA~! commutes with the periodization operator
tent handling of boundary conditions. The main difficulty comeH,,, () and, becauseyy, p)(x) has zero meam)=* « sy, p; is
from step 2 which involves running sum filters which, in prinalso finitely supported withirj0, P] (more precisely: within
ciple, are neither symmetric nor antisymmetric. [0, P — 1]). This implies thatA~! keeps its meaning as
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— AT =T — MH A-! HART2 | —

= 71-MH A1

A~ HO(z — VAP H0(x + 1)

At

ALl

Fig. 7. Result from applying the identity given in Fig. 6 to a finite differences operator.

— A = AT H A ""‘AS/lA— Artrt2 i § (o + [BH]) -

><(n1+1)

Fig. 8. Equivalence derived from Fig. 7.

Fig. 9. Signal extended using symmetric boundary conditions.

—_

11,

anti-mirror

Fig. 10. Signal extended using antisymmetric boundary conditions.

tends to infinity. Ifs( ) > ok Sk6(xz — k), wheresy, = spqp

verified, this is equivalent to requiring that—z) = s(z) and

that s(x) is (2N — 2)-periodic. In other words, it is sufficient

to specify what happens around the origin; the symmetry on the
other end is propagated automatically through the periodization
process.

e Antisymmetry: Another complementary technique inter-
esting to us because it is satisfied by signals that appear natu-
rally in the method consists in extending the signal using an-
tisymmetric mirror boundary conditions. It is definedsas=
—S_k—_1, andSN,1+k = —Sn_o_p, fork = 0,1,...,N—1,
repeated on the further extensions of the signal. As can readily
be verified, this is equivalent to requiring thdt-z) = —s(x —

1) and thats(x) is (2N — 2)-periodic. Note however that, un-
like the symmetric extension, this one cannot be applied to ar-
bitrary signals, as it requires that_; = —sx_2. Actually, an
antisymmetric signal is always zero mean. Once again, it is suf-
ficient to specify the antisymmetry around the origin; the anti-
symmetry on the other end is propagated automatically through
the periodization process.

2) Propagation of the Boundary Conditionginy shift-in-
variant operator preserves tligN — 2) periodicity, but not
necessarily the symmetry. We therefore need to investigate how
A andA~! propagate symmetric and antisymmetric boundary
conditions. We need also to correct for the fact that the consid-
ered periodic signals are not necessarily zero mean.

The finite differences operatax inverses symmetry. Specifi-
cally, it transforms antisymmetric into symmetric boundary con-

(periodicity) andy "~y si. = 0 (zero-mean requirement), thenditions and symmetric intshiftedantisymmetric boundary con-

we have

k mod PP

(AL s), = Z sy

=0

ditions. The following theorem claims that—! has a similar
behavior.

Theorem 1: The operatorA ! transforms symmetries ac-
cording to

e Symmetric Input:If s(z) = s(—z) ands has a zero mean,

Since we have to apply the operathr! repeatedly, a processthenu = A~! x s satisfiesu(—x) = —u(x — 1). Thus, if s
that does not preserve the zero-mean property, we will indicatatisfies symmetric boundary conditions, then' * s satisfies
in the next subsection how to enforce this property on any peairtisymmetric boundary conditions.

odic input.

e Antisymmetric Input:If s(—z) = —s(z — 1) ands has a

e Symmetry: To minimize boundary artifacts, we extend ouzero mean, then = A~ x s satisfiesu(—z) = u(x —2). Thus,
signal{sx }r=0,... n—1 Using symmetric mirror boundary con-if s satisfies antisymmetric boundary conditions, thén— 1)

ditions defined as_;, = si, andsy_1—x = sy—_14, fork =

A1 x s satisfies symmetric boundary conditions.

0,1,..., N—1.Thisprocessisrepeated onthe newly extended Proof: It is sufficient to prove the property for a finitely
signal,{sx tx=—n~+1 ... 2n—3 and so further. As can readily besupported signak(x) that satisfies the zero-mean property
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>, s(z—k) = 0, because of the definition @ —* for periodic for an integer scaling (including = 1) the method is fully
signals. reversible with no boundary artifacts.
e Symmetric Input:We have
V. GENERALIZATION OF THE METHOD

u(—x) = Z s(—e —k)  definition of A We now show that the projection method can also be imple-

k>0 . . .
mented exactly for a more general class of piecewise polynomial
=) s(z+k)  symmetry property functions.
m=0 A. Linear Combinations of Shifted B-Splines
=- Z s(z + k) zero-mean property We consider the case where the basis functions are linear
k-1 combinations of shifted splines
=—ulx —1). 5

U(@) = Y i@+ ) — hw) = F@)f"@) (@)

e Antisymmetric Input:We have

with F(w) = 3, a;e/*". These functions are piecewise
w(—z) = s(—z—k)  definition of A™* polynomial. However, they are not necessarily splines and
k>0 the knots are not necessarily uniformly spaced. Then, the

. functions ¢(x), ¢1(x) and ¢2(x) used in our algorithm

Z —s(z+k—1)  antisymmetry property depicted in Fig. 2, are defined biyv;, ;) = (0.4, ho.i),

k20 (1,4, h1,) @and(wo, ;, he ;), respectively; moreover, we have
> s(z+k—1)  zero-mean property a2(k) = ¢ = X0, j on i BNk A by = ha, ).
E<—1

u(x — 2

If we follow the same process as in Section IV-A, we end up
) with a diagram similar to Fig. 3(e) with a kernel that is now
P(x) = am ™ Z ao,ia, ;BT @+ 7 )

u i j

We have defined our inverse finite differences operator for
finitely supported signals, or zero mean periodic signals. W{1€r€7.; = ho,i — (h1,5/a) + b+ ((n1 +1)/2)(1/a - 1).
will now show how to deal with non zero medfperiodic sig-

. : . ; 2 B. Linear Combination of B-Spline Derivatives
nals in our algorithm. Let us define the moving average filter

A generating functiony(x) is said to be of ordel if the
1 D=t approximation error at stepdecays likez™ asa tends to zero.
M(z) = Z 6(x — k). Specifically, from approximation theory [22], we have
k=0

1f = fallzz = CZN Sl z2a® + o(a®)

r

ol

We can then consider the identity block diagram in Fig. 6, which
holds for symmetric boundary input signals. The key idea is thahere

| 6§ — M |. . . fa approximation off at stepa;
the output o is a signal of zero mean, while that of C; some constant that depends.ponly:
is a constant, whenever the inputAsperiodic. /4l norm of theLth derivative of.

Since the finite differences operator kills constant signals, W the case of cubic B-spline€;; = (240v/21)7*.
can write the equivalence shown in Fig. 7 for an input with sym- The necessary and sufficient condition for achieving this rate
metric boundary conditions. Furthermore, in order to implemeft decay is the reproduction of polynomials of degree L—1:
the boundary conditions as specified in Theorem 1, it is necdd- #, #°, ..., "'} € span{p(z—Fk)}xcz (Strang—Fix con-
sary to define a “symmetric” version ak~, Ag?, for sym- ditions) [26]. The quality of the approximation ¢{x) depends
metric inputs and an “antisymmetric” Versioﬁgl, for anti- Strongly on the ordeL of the interpolator and not so much on
symmetric inputs. Note thas , * is simplyA~! (delayed by one XV, (the size of the support). Nevertheles§, determines the
sample) because an antisymmetric input is of zero mean. TRafputational cost.

. ) S— M| . ) o We showed in [27], [28] that the functions that minimize
is why, the fllter disappear at this stage. This is iteryye supportV,, for a given orderl. are linear combinations of

ated(n, + 1)-times to yield the equivalence in Fig. 8. Note thag_gp|ine derivatives
the alternation between symmetric and antisymmetric boundary -
conditions adds a delay ¢fn; + 1)/2]. - d* i

Thus, in practice, wedz(will mo)éiﬁj/ the block diagram in p(x) = Z'Vk @ﬁL *() (10)
Fig. 3(e) to use an alternation @g* and A, instead of k=0
A—(m+1) adding the appropriate delay. This ensures that thénich specifies the maximum order minimal support (MOMS)
boundary conditions are correctly propagated throughout. Tleigss of functions.
modification is necessary for the behavior of the algorithm to In particular, the B-splines of degree are the smoothest
be fully consistent; in particular, this ensures thatfadd and functions for a given order of approximatioh & n + 1).
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We get a simple expression fer(z) in terms of one-sided 100 9 — emoTaton
power functions by using the relation between splines of dif- g0 |L—_projection u
ferent degrees & i
RS H ' ' H
(p(.’L’) = Z’yzDzﬂn(:p) = ZWZAZ * anl <$ + 5) ) 40 - S
=0 =0
n n—i 20 -
T n+1

=AM« P & * 6 . T T I
; T =) S 1 2 3 4

Scale

We now selectp(x), ¢1(x) and pz(x) to be linear combi-
nations of B-spline derivatives of degreen; andn., respec-
tively, with coefficientsyy_;, v1,; andyz ;. With this particular
choice, we get

ar2(k) = (p1(x), p2(z — k))

Fig. 11. Least-squares versus standard method for linear splines.

we may expect the following asymptotic improvement over the
cubic spline casgC,, /Cgs+) = 1/v/21.

VI. EXPERIMENTAL RESULTS

ny g . .
= th,j ZWJNH s Fratne—i—itl <k+ LJFT’> We used a series of back and forth experiments to evaluate
and compare the various resizing algorithms. A test image—the
: ) ) i MR scan (Fig. 17)—is scaled by a factor @fand then reset
and the final scheme is the same as Fig. 3(e) with to its initial size using the reverse transformation (scaling by
n ny a factor ofa—!) with the same algorithm. The loss of infor-
H(z) = Z’Yo,i Z’yl,ja"‘_”lAi“*ﬁ"J’"‘ —i=itl(g4r; ;) mation is measured by the relative mean square difference be-

§=0 =0

=0 =0 tween the approximation and the initial digital image, expressed
o in decibels (dB). The experiment is repeated for many scaling
andr;, ; = ((n1 +1)/2)(1/a— 1)+ (i +j)/2+b. factors and the peak signal-to-noise ratio (SNR) is represented

Interestingly, the generalized scheme has the same comgy-a function of the scale in a logarithmic plot. Scale factors
tational cost as the B-spline algorithm. The basis functions aggaller than 1 correspond to image reduction, while scale fac-
polynomials of the same degree as the corresponding splinggs |arger than 1 represent enlargement. Obviously, most infor-
they have the same support and the recursive prefilters havediigion is lost in the reduction step, not in the enlargement one.

same degree._ _ _ ) o Note, however, that magnification is not fully reversible unless
Note that this particular setting also constitutes a limit case §fe z00ming factor is an integer.

the previous one. Specifically, we can approximate the deriva-
tive operator using finite differences and make the sampling stap Least-Squares versus Interpolation

htendto 0 Our first goal was to compare the performance of our projec-

n ‘ N 1 tion algorithm with the more standard interpolation method that
p(z) =Y wD'p(x) = Lim > Vigi A B (x) fits the image with a spline of the same degree and then resam-
i=0 =0 ples it at the required rate. The detailed resultsifer 1 (linear

n \ n I AN splines) are given in Fig. 11. It is clear from this plot that the
Pw) = <Z %‘(J'w)z> B (w) 22 Vi <T> A" (w) least-squares method outperforms the standard one (bilinear in-
i=0 i=0 terpolation), even though the underlying model is the same in
n o . both cases. The visual improvement can be substantial, as illus-
= M g (w) = Fw)f™ (w) trated in Figs. 19 and 20. We observe that the small-scale de-
k=0 tails are much better preserved with our optimal approach (see
_ x ; in Figs. 19 and 20) and the contrast is enhanced because of the re-
With o = 3255 1 (7)7i(1/R)(=1)'"" andhy = kh. duction of aliasing. Fig. 18 illustrates the reduction of blocking

Among the functions that minimize the support for a giVeRyiacts of the projection method with respect to the standard

order L, one interesting case are the O-MOMS where “Ogq.

stands for optimal. They are the functions belonging to thelnterestingly, the projection method also provides some im-

MOMS family (10) that minimize the approximation €rror, o ement for image magnification. Far> 1, the gain is of

constani; . They can be determined recursively as indicatgfle order of 20 dB. The distance between the two curves when

in [27] and [28]. The expression far = 3 is a > 1 reflects the differences between the asymptotic orthog-
1 a2 onal projection constant (which is small) and the interpolation
wu(x) = 3(x) + 12 da? 33 (x). one (which is larger) [29]. We also note that the error curve ex-

hibits peaks at the integers, which simply reflects the fact that
If Lis odd,er(2) is discontinuous; ifL is evenpy,(x) is con- the signal is preserved exactly for integer zooming factors. In
tinuous but its derivative is no. So, they are at most continuoudbis particular case, the interpolation and projection methods are
The value of the constant fory(x) is C, = 50401, so that equivalent because the corresponding spline spaces are nested
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& 0 Fig. 14. SNR measures for the shift variations using the projection method. (a)
= e T, Cubic splines and (b) comparison in the performance of different splines with
= 104 T - the cubic ones.
2
8 20~ L ; ;
© projection method over the standard one in rescaling text. The
§’ 304 4-- 2=? interpolation model used was cubic.
T 40 | n=3
R § e O-MOMS B. Comparison of Basis Functions
0'4 OIB O'8 1'0 1'2 §'4 Now that we have established the superiority of the projec-
’ Scale ’ R tion method, it is interesting to compare the various basis func-

tions. In particular, we are interested in evaluating the effect of
the order parametdr. For this comparison, we use as our refer-
Fig. 13. SNR measures for the least-squares projection method: (a) cuBleCe the least-squares method with cubic splines, which corre-
splines and (b) comparison of cubic splines with= 1, 0 degree splines and sponds to the error graph in Fig. 13(a). The relative performance
0-MOMS. comparison of the various models is shown in Fig. 13(b). As ex-
pected, the SNR improves as the order of the spline increases.
(which implies that the projection error is zero). This is a prog-or small reduction factors(< 0.5), cubic splines perform 1.0
erty that holds for all B-splines of odd degrees, but not for thdB better than linear splines, and 2.5 dB better than the piece-
O-MOMS; for splines of even degrees, it is only true for od@ise constant modél. = 0). For large scale factors, this dif-
magnification factors. ference gets magnified. If we now compare the O-MOMS and
The superiority of the least-squares method is also apparenbic B-splines, which have the same supgbit = 4) and the
for the other interpolation models as shown in Fig. 12. Thsame orde(L = 4), we find that the former offer slightly better
graph displays the relative SNR improvement of least-squamssrformance across all scales).15 dB at small scales), which
versus interpolation for splines of degree 0, 1, and 3, as wetinfirms their optimality.
as the cubic O-MOMS. For small scaling factors £ 0.4), We also compared the methods when the image is only
the improvement is typically better than 2 dB, irrespective ahifted forward by a factob and backward by the same factor
the model used. The fundamental reason for the lesser perfeithout resizing. Fig. 14 shows the results. We observe that the
mance of standard interpolation is aliasing. The effect is mo@MOMS give the best value in terms of SNR, 1 dB over cubic
pronounced for large reduction factors or when the image caplines, while the linear splines (resp., piecewise constant) are
tains a lot of high frequency information. 10 dB (resp., 25 dB) below the cubic ones. Thus, it appears
Another visual example is provided in Fig. 16. Here, we olihat higher order correlates with improved shift-invariance, in
serve a substantial improvement in the perceptual quality of taecordance with the theoretical findings in [23].

(b)
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Fig. 17. Original magnetic resonance (MR) image.

C. Oblique versus Orthogonal Projection
When we pick the analysis degree different fromn, our only worked out forn < 1. More recently, we were able to ob-

method implements an oblique projection instead of an orthd@in @n explicit kernel formula [30].

onal one. In Fig. 15, we see that such an oblique projection onl?(While this new formula makes the original algorithm also ap-

brings a slight degradation of 0.4 dB whep = 0 and 0.15 dB pllcable to splines of degree higher than 1, it is much less efﬁ—
whenn, = 1 compared to the orthogonal scheme, with the a§!€Nt computationally than the approach that we are proposing
vantage of a lesser computational complexiyf; +n+1) in- here. The essential difference is that the present approach has

stead 0fD(2n.+1)]. These results are consistent with the theorg]complexity per computed output point that is independent of
developed in [22]. e scaling factor. In the original method, the complexity was

proportional to the size of the convolution kerdel + 1) +
a~!(ny + 1) and to the number of operations required to eval-
uate the spline kernel. In other words, the original method had
A. Relation to Previous Work a strong penalty for large reduction factors.

One of the main contributions of the paper is the develop- When the reduction factor is an integer, there exist alternative
ment of a method based on finite differences for computirfgtering/decimation techniques which are equivalent to the
B-spline inner products. The key idea is that the integral ofgiesent algorithm (least-squares spline approximation) [31];
spline is another spline of higher degree. We were able to féhese are also very efficient computationally, but they require
malize the approach by defining an inverse finite differences offie design of a separate prefilter for each scale factor
erator (running sum filter) and to use this tool to our advantageWhen the scale parameter is a power of 2, the method is equiv-
for computing multiple B-spline integrals. We note that the idealent to a wavelet decomposition [15] because splines satisfy a
of precomputing an integral to facilitate the evaluation of inndwo-scale difference equation.
products was introduced in [18]. However, the approach was re-
stricted to the case of a box function which corresponds to tRe
choice ofn; = 0 in the present method. We can easily trade computational speed against image

The principle of least-squares image resizing was first prquality. The most important choice is the underlying signal
posed by one of us in [13]. The initial formulation of this alimodel (the spline degree) which determines the approxi-
gorithm did not use integrals, but rather an intermediate kermahtion properties of the solution. The second parametgr,
function defined as the convolution of two B-splines of differentan be selected to obtain the optimal least-squares solution
width. In the original paper, the exact form of this kernel wa&; = =), or a slightly suboptimal one which corresponds

VII. DISCUSSION

Computational Issues
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Fig. 18. Example of image reduction by a factoe /7 using splines of degree 0. Notice that the projection method reduces blocking artifacts: (a) Reduced
image using standard method; (b) enlarged version of the image (a) £SRB88 dB); (c) reduced image using orthogonal projection; and (d) enlarged version of
the image (c) (SNR= 30.7 dB).

to oblique projection(—1 < n; < n). For the limiting case C. Extensions of the Method

n1 = —1, we recover the traditional interpolation approach the property that the integral of a spline is another spline of
provided that we define the B-spline of degree as the Dirac  higher degree is also valid on nonuniform grids. Therefore, it is
delta distribution (ideal sampler). The larger < n, the better 5154 nossible to extend the method for the conversion of nonuni-
the quality but at the expensive of more computations. form splines to uniform ones using the same least-squares prin-
The expensive part of the algorithm is the resampling wittiple [32].
the kernely [step 3 in Section 1V-B], which is equivalent to a In principle, our algorithm can also be extended to higher
spline interpolation of degree+n; +1). The cost of the rest of dimensions and to nonseparable geometric affine operators.
the procedure is negligible in comparison: it involves digital filOne may catch the intuition of this extension by stressing the
tering only—either short kernel FIR or fast recursive lIR. Thukey feature of our setting: the functiom () which appears
we can consider that the total cost per computed output pointthe general projection-based scheme of Fig. 2 is built using
is proportional to(n + n4 + 1) times the number of operationsshifted versions of functions—the one-sided power functions
required to evaluaté [B-spline of degreén +n; + 1)]. x'y—that are easily exchanged through the geometric transfor-
One practical limitation of the present approach is the potemation—the scaling operator.
tial propagation of roundoff errors during the multiple integra- The idea is thus to choose a functiprthat can easily be
tion process. This requires working with high precision aritrexchanged through the geometric transformation, and to require
metic. Our implementation uses the double type in C and cHraty; belongs to the space generated by the uniform shifts of
handle values up te; = 4 with typical image of siz&12x512.  p; in our algorithm,p(x) = 7.
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Fig. 19. Same experiment as Fig. 18, but with linear splines. Notice the aliasing reduction from (b) to (d) (less contrast of the features). Stiffeatsactne
images in Fig. 20: (a) Reduced image using standard method; (b) enlarged version of the image €a3BBIBB); (c) reduced image using orthogonal projection;
and (d) enlarged version of the image (c) (SNR35 dB).

For instance, if we wanted to implement rotations and scdhat the complexity per output point does not depend on the
ings of anV-dimensional digital signal, we could defipéx) = scaling factor. Our resizing algorithm works for arbitrary scaling
|||, that is, a radial basis function. This radial basis functiofactors (image magnification or reduction). We believe that it
can be localized using a digital filtéx,,; that is to sayA ,+p de-  should be useful in applications where image quality is a key
fines a function that has some appropriate decgjxfis— oo. concern.

In our algorithm, this localization filter is simply the finite dif- The formulation of the resizing problem that has been pre-
ferences operatah™*!, which transforms:’} into a B-spline sented is rather general. By varying some key parameters, we
of degreen. We would finally need to compute the convolutiorswitch between optimal least-squares solution, oblique projec-
of the localized radial basis function withto get the function tion and interpolation. We have also described algorithmic solu-

¢ shown in Fig. 3(e). tions for basis functions other than B-splines, the most notable
example being the O-MOMS.
VIIl. CONCLUSIONS A demonstration of our method is available on the web at

. . http://bi .epfl.ch/d /resize.
In this paper, we have generalized Leeal’s method for p-bigwin.eptl.chidemorresize

image resizing using both oblique and orthogonal projections.
We have demonstrated that the new method outperforms the
standard interpolation techniques. It is especially advantageou3o show the power of our operator formalism, we derive the
for image reduction because of the built-in antialiasing mechiavo key formulas for differential calculus.

nism. An attractive property of the present implementation is n;th derivative:D™ 5" (x) = A™ % "~ (x + ny /2).

APPENDIX



MUNOZ et al: LEAST-SQUARES IMAGE RESIZING USING FINITE DIFFERENCES

1377

(al

(b)

Fig. 20. Difference between the original and the enlarged version of the reduced image obtained in Fig. 19 with the linear spline resizing mgtiodsrda)

method and (b) orthogonal projection.

Proof: [2]

1
Dnlﬁn(x) — D™ *An—i—l*D_(n—i—l)*(S(x—i—t)

5 3

using (4) )

=AM AT D= (D4 *6(3:—1— [5]

*6(x+n—21)

conmutativity of“ « 7 andA™ xA™™ = |

=AM xgnTne (a:—i— %)

n+1—ny
2

(6]
(7]

using (7) [8]

el )

nyi-fold integral: D™ 3™ (z) = A™™ % g7 (z — (n1/2)).

Proof: [10]
—(m) gn —(m) . AnHL L y—(nt1) n+1
D™ (x) =D x AP % D *0 | x4+ > [11]
—AT™M An+n1+l *D*(n+n1+1)
n+1+n ni [12]
*6<x+72 )*6(3:—?) [13]
AT n—+n1 _ ﬂ
=T g (2= ). [14
| ]
[15]
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