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Abstract—We present an optimal spline-based algorithm for
the enlargement or reduction of digital images with arbitrary
(noninteger) scaling factors. This projection-based approach can
be realized thanks to a new finite difference method that allows
the computation of inner products with analysis functions that
are B-splines of any degree . A noteworthy property of the
algorithm is that the computational complexity per pixel does
not depend on the scaling factor . For a given choice of basis
functions, the results of our method are consistently better than
those of the standard interpolation procedure; the present scheme
achieves a reduction of artifacts such as aliasing and blocking and
a significant improvement of the signal-to-noise ratio. The method
can be generalized to include other classes of piecewise polynomial
functions, expressed as linear combinations of B-splines and their
derivatives.

Index Terms—Affine transform, boundary conditions, finite
difference, interpolation, least-squares, oblique projection, scale,
spline.

I. INTRODUCTION

I MAGE resizing (magnification or reduction) is a common
operation in image processing [1]. It is used whenever one

wants to change the image resolution. For example, it is required
on a routine basis in digital photography, multimedia, and elec-
tronic publishing [2], [3], for adapting the pixel size to the res-
olution of an output device (printer or monitor) [4], [5], and for
generating preview images, or posting digital pictures on the
Web.

Another important area of applications is medical imaging;
typical instances are as follows.

• Reslicing for resolution normalization. This is to compen-
sate for the fact that three-dimensiona (3-D) volumetric
data (CT, SPECT or MRI) are often acquired in a non-
isotropic fashion—the within-slice resolution is typically
finer than the across-slice resolution [6].

• Image zooming. It is often used to focus on details for
diagnostic purposes.

• Image pyramids for multi-scale processing. Many iter-
ative image processing algorithms can be applied in a
coarse-to-fine fashion. Working with smaller images re-
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duces the computation time and also tends to improve ro-
bustness [7].

Many linear resizing techniques are available even though
they have some limitations. The standard ones rely on inter-
polation [8]. The simplest methods are nearest-neighbor and
bilinear interpolation, which correspond to fitting the image
with a spline of degree 0 and 1, respectively. The piecewise
constant model generates noticeable blocking artifacts, while
the (bi-)linear one tends to lose details through image blurring.
Better interpolation performance is achieved by switching to
higher order models [8]; typical examples are Keys’ short
kernel convolution [9], or higher order spline interpolation
which offers a better cost-performance ratio [10]–[12]. While
interpolation works well for image magnification, it is not en-
tirely suitable for image reduction because of potential aliasing
problems. The standard remedy is to apply some kind of
lowpass prefiltering prior to resampling. Although a complete
suppression of aliasing is possible through the application of
Shannon’s ideal filter, this is not a widely used technique—it
is computationally expensive and tends to introduce ringing
artifacts (Gibbs oscillations).

The principal limitation of interpolation approaches is that
they are not designed to minimize information loss. It there-
fore makes good sense to investigate the possibility of obtaining
the best solution in the least-squares sense [13]. Indeed, the
signal-to-noise ratio (SNR) is a standard figure of merit used
in image processing. Even though it is widely used in the field,
it has its limitation because it does not take into account the
subjective aspects of visual perception [14]. However, it has the
advantage of being easy to measure and amenable to optimiza-
tion.

The least-squares solution is achieved by modifying the in-
terpolation approach so that the resampling step gets replaced
by the evaluation of inner products with the translates of a suit-
able analysis function . This computation is equivalent to ap-
plying a continuously-defined prefilter (antialias) to the inter-
polated function prior to resampling—the prefilter is not neces-
sarily ideal but is chosen to be biorthogonal to the underlying
interpolation kernel. Note that the method is conceptually sim-
ilar to a wavelet decomposition [15]–[17], except that the scale
factor is not restricted to be a power of two. While the basic
principle of this projection method was introduced in [13], an
exact least-squares implementation was only demonstrated for
splines of degree 0 and 1. The practical limitation was the diffi-
culty to perform an exact numerical implementation of the op-
timal prefilter for higher order splines. Leeet al. developed a
higher order spline resizing algorithm by replacing the orthog-
onal projection of [13] by an oblique one [18]. They simplified
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the procedure by replacing the optimal prefilter by a box func-
tion analysis (B-spline of degree 0) and made it more efficient
by pre-computing the antiderivative of the function to be ap-
proximated.

Here, we present a generalization of this method that al-
lows us to compute both oblique and orthogonal projections
(least-squares approximations) for splines of any degree.
What makes the approach feasible in this more general setting is
the new finite difference method presented in Section III; it al-
lows anexactcomputation of the required for analysis functions
that are B-splines of any degree. The method works for both
reduction and magnification of images with an arbitrary scaling
factor and for any translation value. In Section V, we generalize
the method to a whole class of piecewise polynomial functions
(all linear combinations of B-splines), including some with
optimal approximation properties. Another benefit of this work
is that it leads us to the definition of a new operator formalism
for splines and multi-rate signal processing (cf. Sections III
and IV); thanks to these tools, we are able to simplify the
derivation of the key formulas and we provide a presentation
that is (hopefully) understandable and self-contained.

II. PHILOSOPHY OF THEAPPROACH

When the image is represented using separable basis func-
tions, the resizing problem can be solved optimally in a sep-
arable fashion. Consequently, the complexity is reduced from
2-D to 1-D.

In order to simplify the description of our algorithm, it is ad-
vantageous to use a continuous signal processing representation
of operators defined in the continuous domain (scale change and
shift). For that reason, we introduce thedigital-to-analog oper-
ator which maps discrete sequencesto the distribution

where is the Dirac’s delta distribution. Using this formulation,
a digital filter is represented by its equivalent continuous-
space impulse response .

The schematic continuous-space domain representation
of the whole algorithm is given in Fig. 2. All boxes denote
convolutions; , and are digital filters, while and

are true functions of the continuous variable. The affine
transformation is represented via the combination
of a shift [convolution with ], and of a resizing

represented as . We now describe the four
main steps of the method.

A. Interpolation

The first step is to take the discrete input dataand to con-
struct a continuous interpolating model ,
where the ’s are some specified basis functions. For this
purpose, we take the samplesand convolve them with an ap-
propriate prefilter to get the coefficients . The
continuous-time function is obtained by convolving with

. The prefilter is
the convolution inverse of the sequence . This particular

choice ensures that the interpolation requirement is satisfied;
i.e., .

B. Affine Transformation (Conceptual Step)

We apply the affine transformation (scaling and shifting) to
the function

The image is enlarged if and shrunk if .

C. Projection-Based Signal Approximation

In the standard interpolation approach, the image gets resized
by resampling at the integers [19], as illustrated in Fig. 1.
Here, we will consider an alternative approach in terms of ap-
proximation theory. Specifically, we find the best approximation

of in some space
such that the -approximation error is
minimized. From the Projection Theorem, we know that the
least-squares solution to this problem is the orthogonal projec-
tion of onto [20]

with , where is the dual of the
analysis function ; in other words, satisfies
and .

Rather than computing the inner product , we
consider a slightly more general and also more flexible approach
via the block diagram in Fig. 2. It corresponds to anoblique
projection onto It uses an auxiliary analysis function
which is essentially arbitrary.

First, we compute the inner products

(1)

which is equivalent to prefiltering with and sam-
pling thereafter.

The cross-correlation sequence of and is given
by . If , the pro-
jection of onto perpendicular to requires an ad-
ditional digital filtering correction to satisfy the biorthogo-
nality condition [21]. Thus, . The ap-
propriate correction filter is the convolution inverse of :

. This is equivalent to using the
analysis function ,
where and are biorthonormal. If ,
then we get the orthogonal projection; otherwise, we have an
oblique projection [21].

When computing the orthogonal projection, we obtain
a resized image with minimum loss of information in the
least-squares sense. If instead, we choose an oblique projection,
the approximation is only slightly suboptimal, depending
on the angle between and

[21]. Moreover, the rate of conver-
gence depends on the approximation order properties of the
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Fig. 1. General scheme for the standard interpolation approach.

synthesis function alone; the analysis function has essentially
no influence on the asymptotic approximation error [22].

D. Resampling of the Projection at the Integers

Finally, we have to resample the projection at the integers
( ) to get the output of the system

. This is achieved by postfiltering with
, the sampled version of the synthesis function.

If we compare the block diagram in Figs. 1 and 2, we see that
the standard interpolation approach corresponds to the simpli-
fied situation where and . We also
see that the main difficulty with our new approach is the com-
putation of the inner products involving con-
tinuously-defined functions that are specified on different grids.

III. SPLINES AND RELATED NOTIONS

Before describing our spline resizing algorithm, we introduce
a new operator formalism for splines which will facilitate the
derivation of our method. In this section we assume that all sig-
nals and discrete sequencesare compactly supported.

A. Continuous Differential Operators

The conventional derivative operator is

The unique inverse of is the antiderivative operator

i.e., .
The operator also corresponds to the convolution of

with the unit step function. The -fold convolution
of the step function yields the one-sided power function
where

if

otherwise.

In particular, the unit step function is . We may also write
the -fold integral operator as

Note that the composition rule
corresponds to the following composition prop-

erty of one-sided power functions

(2)

B. Discrete Differential Operators

We define the backward finite difference operator as

This is also a discrete convolution operator (digital filter) whose
-transform is

When working with -sequences, we can consider the in-
verse operator defined uniquely as

whose -transform is

It can be defined as the running sum filter

we thus have .
In our implementation, we will extend the application of

to periodic sequences with zero average. In general,
does not preserve the zero-mean property of the input.

In Section IV-C, we will however show how to overcome this
difficulty. We will also show that exchanges the standard
symmetric and antisymmetric boundary conditions. Note that

can be implemented very efficiently using the
recursive equation

(3)

C. B-Splines

The purest form of a polynomial spline of degreeis the
one-sided power function which has a unique singularity of
order at the origin. While a polynomial spline can always be
written as a sum of shifted one-sided power functions, it is more
convenient to work with B-splines as basis functions [12]; these
are obtained through the following finite difference process:

(4)

Note that the shift by recenters the finite difference
operation so that the result is a centered B-spline. Since a con-
volution with is equivalent to the -fold integral

, we can rewrite the B-spline as

(5)

The centered B-spline of degreehas the following remarkable
properties:

• positivity: ;
• compact support: ;
• symmetry: ;
• partition of unity: .
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Fig. 2. General scheme for the proposed projection method.

The B-spline relations that are especially relevant for this paper
are

• th derivative

(6)

• -fold integral

(7)

with in both cases. These can all be derived rather easily
using the previously defined operator formalism as shown in the
Appendix.

D. B-Spline Inner Products

All the steps in the method described in Section II are rather
standard and can be performed using digital filtering, except for
the computation of the inner product for an arbitrary resizing
factor (not assumed to be a power of two as in the case of
wavelets). The basis for our method is the following formula for
computing B-spline inner products and follows from the defini-
tion of the B-spline (4)

(8)

Thus, we can compute the inner products rather simply by
applying finite differences to the -fold integral of

. What makes an exact computation possible and tractable
analytically is the fact that the -fold integral of a
spline is a spline with a corresponding increase of the degree.
Specifically, if where the sum is finite

IV. SPLINE RESIZING ALGORITHM

Our reason for using B-splines—or some close relatives—is
that these are functions for which we know how to compute the
required inner products. They also have excellent approximation
properties [23], [24]. Moreover, they have the shortest support
for a given approximation order, which means that the compu-
tational complexity is minimized.

A. Derivation of the Algorithm

Thus, we choose our basis functions to be B-splines.
In that case, our algorithm has the following parameters:

, and .
This implies that and

.
In the sequel, we will derive our final form of the resizing

algorithm graphically by using the exchange rules for the one-
sided power functions and for the shift given in Figs. 4 and 5, to-
gether with the convolution rule for one-sided power functions.
The proof of the exchange rule for the one-sided power func-
tions is as follows.

Proof: We can write the expression on the right handside
in Fig. 4 as

We then make the change of variable

which corresponds to the expression on the left handside.
The proof for the exchange rule of a shift byis trivial.
We now proceed by successive modifications of the block

diagram in Fig. 2. We have extracted the operators between
the marks 1 and 2 for simplicity. The final result is shown in
Fig. 3(e).

In Fig. 3(a), and are substituted by their explicit
expression using (4). Using the rules in Figs. 4 and 5, the boxes
are reorganized in such a way that all one-sided power functions
and shifts are moved to the left side of the scale change
as shown in Fig. 3(b). In this way, the support of the resampling
kernel does not depend on.

The rule for the convolution of one-sided power functions (2)
is applied to get Fig. 3(c). Using and

we obtain Fig. 3(d). The explicit
time domain expression for B-splines is the key to get Fig. 3(e)
with the final expression for the spline kernel being

with .
Note that we are allowed to push the sampling step toward the
resizing box because the filters located at positions 4 and 5 are
all digital.

B. Practical Implementation

We now briefly summarize the main steps in the implemen-
tation of the method.

1) Digital prefiltering with the (symmetric) exponential
filter to get (interpolation coefficients)
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Fig. 3. Diagram that shows the full process to get our algorithm. (a) Substitution of� (x) and� (�x) by their explicit time expression. (b) Scheme obtained
using the exchange rule forx =n! and�(x+ b), with � = ((n+1)=2)+ ((n +1)=2a)+ b. (c) Application of convolution rule ofx =n!. (d) Application of
� �� = I ,� �� = � and� = ((n +1)=2)(1=a�1)+b. (e) Equivalent form of Fig. 1 with�(x) = a � (x+
� ), g = (b ) , q = a = (b ) andh = b . The numbers below the diagram indicate the main steps in the implementation.

Fig. 4. Exchange rule forx .

Fig. 5. Exchange rule for a shift byb.

from (input samples). The filter is implemented re-
cursively using a cascade of simple causal and anticausal
operators as described in [25].

2) -running sums corresponding to the operator
; these are computed recursively as well by

iterating (3).
3) Geometric transformation and resampling using a spline

interpolation model of degree [basis function
].

4) -centered finite differences, corresponding to the
operator .

5) Digital postfiltering with the sampled synthesis function
, where is an IIR filter implemented

using the recursive routines developed in [25].

The algorithm is now almost fully described. The only re-
maining issue is the extension to periodic signals and the consis-
tent handling of boundary conditions. The main difficulty comes
from step 2 which involves running sum filters which, in prin-
ciple, are neither symmetric nor antisymmetric.

Fig. 6. Identity diagram for symmetric boundary input signals.

C. Boundary Conditions and Discrete Differential Operators

1) Signal Extensions:We will consider periodization and
the two types of boundary conditions shown in Figs. 9 and 10.

Periodization: It is easy to verify that the general projec-
tion-based resizing scheme shown in Fig. 2 has a meaning not
only for finite supportsignals, but also forperiodic signals.
However, the implementation proposed in Fig. 3(e) is undefined
for such inputs because of step 2, which attempts to compute
an infinite sum of periodic data. A way to overcome this
difficulty is to restrict ourselves to periodic signals that have
a zero mean, i.e., such that , and to express
the -periodic signal as
where is the restriction of to the
support . The compactly supported signal

can also be expressed by a convolution

Then, since commutes with the periodization operator
and, because has zero mean, is

also finitely supported within (more precisely: within
). This implies that keeps its meaning as
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Fig. 7. Result from applying the identity given in Fig. 6 to a finite differences operator.

Fig. 8. Equivalence derived from Fig. 7.

Fig. 9. Signal extended using symmetric boundary conditions.

Fig. 10. Signal extended using antisymmetric boundary conditions.

tends to infinity. If , where
(periodicity) and (zero-mean requirement), then
we have

Since we have to apply the operator repeatedly, a process
that does not preserve the zero-mean property, we will indicate
in the next subsection how to enforce this property on any peri-
odic input.

Symmetry:To minimize boundary artifacts, we extend our
signal using symmetric mirror boundary con-
ditions defined as , and , for

. This process is repeated on the newly extended
signal, and so further. As can readily be

verified, this is equivalent to requiring that and
that is -periodic. In other words, it is sufficient
to specify what happens around the origin; the symmetry on the
other end is propagated automatically through the periodization
process.

Antisymmetry:Another complementary technique inter-
esting to us because it is satisfied by signals that appear natu-
rally in the method consists in extending the signal using an-
tisymmetric mirror boundary conditions. It is defined as

, and , for ,
repeated on the further extensions of the signal. As can readily
be verified, this is equivalent to requiring that

and that is -periodic. Note however that, un-
like the symmetric extension, this one cannot be applied to ar-
bitrary signals, as it requires that . Actually, an
antisymmetric signal is always zero mean. Once again, it is suf-
ficient to specify the antisymmetry around the origin; the anti-
symmetry on the other end is propagated automatically through
the periodization process.

2) Propagation of the Boundary Conditions:Any shift-in-
variant operator preserves the periodicity, but not
necessarily the symmetry. We therefore need to investigate how

and propagate symmetric and antisymmetric boundary
conditions. We need also to correct for the fact that the consid-
ered periodic signals are not necessarily zero mean.

The finite differences operator inverses symmetry. Specifi-
cally, it transforms antisymmetric into symmetric boundary con-
ditions and symmetric intoshiftedantisymmetric boundary con-
ditions. The following theorem claims that has a similar
behavior.

Theorem 1: The operator transforms symmetries ac-
cording to

Symmetric Input:If and has a zero mean,
then satisfies . Thus, if
satisfies symmetric boundary conditions, then satisfies
antisymmetric boundary conditions.

Antisymmetric Input:If and has a
zero mean, then satisfies . Thus,
if satisfies antisymmetric boundary conditions, then

satisfies symmetric boundary conditions.
Proof: It is sufficient to prove the property for a finitely

supported signal that satisfies the zero-mean property
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, because of the definition of for periodic
signals.

Symmetric Input:We have

definition of

symmetry property

zero-mean property

Antisymmetric Input:We have

definition of

antisymmetry property

zero-mean property

We have defined our inverse finite differences operator for
finitely supported signals, or zero mean periodic signals. We
will now show how to deal with non zero mean-periodic sig-
nals in our algorithm. Let us define the moving average filter

We can then consider the identity block diagram in Fig. 6, which
holds for symmetric boundary input signals. The key idea is that

the output of is a signal of zero mean, while that of

is a constant, whenever the input is-periodic.
Since the finite differences operator kills constant signals, we

can write the equivalence shown in Fig. 7 for an input with sym-
metric boundary conditions. Furthermore, in order to implement
the boundary conditions as specified in Theorem 1, it is neces-
sary to define a “symmetric” version of , , for sym-
metric inputs and an “antisymmetric” version, , for anti-
symmetric inputs. Note that is simply (delayed by one
sample) because an antisymmetric input is of zero mean. That

is why, the filter disappear at this stage. This is iter-
ated -times to yield the equivalence in Fig. 8. Note that
the alternation between symmetric and antisymmetric boundary
conditions adds a delay of .

Thus, in practice, we will modify the block diagram in
Fig. 3(e) to use an alternation of and instead of

, adding the appropriate delay. This ensures that the
boundary conditions are correctly propagated throughout. This
modification is necessary for the behavior of the algorithm to
be fully consistent; in particular, this ensures that forodd and

for an integer scaling (including ) the method is fully
reversible with no boundary artifacts.

V. GENERALIZATION OF THE METHOD

We now show that the projection method can also be imple-
mented exactly for a more general class of piecewise polynomial
functions.

A. Linear Combinations of Shifted B-Splines

We consider the case where the basis functions are linear
combinations of shifted splines

(9)

with . These functions are piecewise
polynomial. However, they are not necessarily splines and
the knots are not necessarily uniformly spaced. Then, the
functions , and used in our algorithm
depicted in Fig. 2, are defined by ,

and , respectively; moreover, we have
.

If we follow the same process as in Section IV-A, we end up
with a diagram similar to Fig. 3(e) with a kernel that is now

where .

B. Linear Combination of B-Spline Derivatives

A generating function is said to be of order if the
approximation error at stepdecays like as tends to zero.
Specifically, from approximation theory [22], we have

where
approximation of at step ;
some constant that depends ononly;
norm of the th derivative of .

In the case of cubic B-splines, .
The necessary and sufficient condition for achieving this rate

of decay is the reproduction of polynomials of degree :
(Strang–Fix con-

ditions) [26]. The quality of the approximation of depends
strongly on the order of the interpolator and not so much on

(the size of the support). Nevertheless, determines the
computational cost.

We showed in [27], [28] that the functions that minimize
the support for a given order are linear combinations of
B-spline derivatives

(10)

which specifies the maximum order minimal support (MOMS)
class of functions.

In particular, the B-splines of degree are the smoothest
functions for a given order of approximation ( ).
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We get a simple expression for in terms of one-sided
power functions by using the relation between splines of dif-
ferent degrees

We now select , and to be linear combi-
nations of B-spline derivatives of degree, and , respec-
tively, with coefficients , and . With this particular
choice, we get

and the final scheme is the same as Fig. 3(e) with

and .
Interestingly, the generalized scheme has the same compu-

tational cost as the B-spline algorithm. The basis functions are
polynomials of the same degree as the corresponding splines,
they have the same support and the recursive prefilters have the
same degree.

Note that this particular setting also constitutes a limit case of
the previous one. Specifically, we can approximate the deriva-
tive operator using finite differences and make the sampling step

tend to 0

with and .
Among the functions that minimize the support for a given

order , one interesting case are the O-MOMS where “O”
stands for optimal. They are the functions belonging to the
MOMS family (10) that minimize the approximation error
constant . They can be determined recursively as indicated
in [27] and [28]. The expression for is

If is odd, is discontinuous; if is even, is con-
tinuous but its derivative is no. So, they are at most continuous.
The value of the constant for is , so that

Fig. 11. Least-squares versus standard method for linear splines.

we may expect the following asymptotic improvement over the
cubic spline case: .

VI. EXPERIMENTAL RESULTS

We used a series of back and forth experiments to evaluate
and compare the various resizing algorithms. A test image—the
MR scan (Fig. 17)—is scaled by a factor ofand then reset
to its initial size using the reverse transformation (scaling by
a factor of ) with the same algorithm. The loss of infor-
mation is measured by the relative mean square difference be-
tween the approximation and the initial digital image, expressed
in decibels (dB). The experiment is repeated for many scaling
factors and the peak signal-to-noise ratio (SNR) is represented
as a function of the scale in a logarithmic plot. Scale factors
smaller than 1 correspond to image reduction, while scale fac-
tors larger than 1 represent enlargement. Obviously, most infor-
mation is lost in the reduction step, not in the enlargement one.
Note, however, that magnification is not fully reversible unless
the zooming factor is an integer.

A. Least-Squares versus Interpolation

Our first goal was to compare the performance of our projec-
tion algorithm with the more standard interpolation method that
fits the image with a spline of the same degree and then resam-
ples it at the required rate. The detailed results for (linear
splines) are given in Fig. 11. It is clear from this plot that the
least-squares method outperforms the standard one (bilinear in-
terpolation), even though the underlying model is the same in
both cases. The visual improvement can be substantial, as illus-
trated in Figs. 19 and 20. We observe that the small-scale de-
tails are much better preserved with our optimal approach (see
Figs. 19 and 20) and the contrast is enhanced because of the re-
duction of aliasing. Fig. 18 illustrates the reduction of blocking
artifacts of the projection method with respect to the standard
one.

Interestingly, the projection method also provides some im-
provement for image magnification. For , the gain is of
the order of 20 dB. The distance between the two curves when

reflects the differences between the asymptotic orthog-
onal projection constant (which is small) and the interpolation
one (which is larger) [29]. We also note that the error curve ex-
hibits peaks at the integers, which simply reflects the fact that
the signal is preserved exactly for integer zooming factors. In
this particular case, the interpolation and projection methods are
equivalent because the corresponding spline spaces are nested
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Fig. 12. Least-squares versus standard method for linear splines.

Fig. 13. SNR measures for the least-squares projection method: (a) cubic
splines and (b) comparison of cubic splines withn = 1; 0 degree splines and
O-MOMS.

(which implies that the projection error is zero). This is a prop-
erty that holds for all B-splines of odd degrees, but not for the
O-MOMS; for splines of even degrees, it is only true for odd
magnification factors.

The superiority of the least-squares method is also apparent
for the other interpolation models as shown in Fig. 12. This
graph displays the relative SNR improvement of least-squares
versus interpolation for splines of degree 0, 1, and 3, as well
as the cubic O-MOMS. For small scaling factors ( ),
the improvement is typically better than 2 dB, irrespective of
the model used. The fundamental reason for the lesser perfor-
mance of standard interpolation is aliasing. The effect is more
pronounced for large reduction factors or when the image con-
tains a lot of high frequency information.

Another visual example is provided in Fig. 16. Here, we ob-
serve a substantial improvement in the perceptual quality of the

Fig. 14. SNR measures for the shift variations using the projection method. (a)
Cubic splines and (b) comparison in the performance of different splines with
the cubic ones.

projection method over the standard one in rescaling text. The
interpolation model used was cubic.

B. Comparison of Basis Functions

Now that we have established the superiority of the projec-
tion method, it is interesting to compare the various basis func-
tions. In particular, we are interested in evaluating the effect of
the order parameter. For this comparison, we use as our refer-
ence the least-squares method with cubic splines, which corre-
sponds to the error graph in Fig. 13(a). The relative performance
comparison of the various models is shown in Fig. 13(b). As ex-
pected, the SNR improves as the order of the spline increases.
For small reduction factors ( ), cubic splines perform 1.0
dB better than linear splines, and 2.5 dB better than the piece-
wise constant model . For large scale factors, this dif-
ference gets magnified. If we now compare the O-MOMS and
cubic B-splines, which have the same support and the
same order , we find that the former offer slightly better
performance across all scales ( dB at small scales), which
confirms their optimality.

We also compared the methods when the image is only
shifted forward by a factor and backward by the same factor
without resizing. Fig. 14 shows the results. We observe that the
O-MOMS give the best value in terms of SNR, 1 dB over cubic
splines, while the linear splines (resp., piecewise constant) are
10 dB (resp., 25 dB) below the cubic ones. Thus, it appears
that higher order correlates with improved shift-invariance, in
accordance with the theoretical findings in [23].
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Fig. 15. Loss in performance by using oblique projection instead of
least-squares. (a) Full scale range [0.2 : 1.4] and (b) reduced scale range
[0.2 : 1.0] to magnify the difference at low scale factors.

C. Oblique versus Orthogonal Projection

When we pick the analysis degree different from , our
method implements an oblique projection instead of an orthog-
onal one. In Fig. 15, we see that such an oblique projection only
brings a slight degradation of 0.4 dB when and 0.15 dB
when compared to the orthogonal scheme, with the ad-
vantage of a lesser computational complexity [ in-
stead of ]. These results are consistent with the theory
developed in [22].

VII. D ISCUSSION

A. Relation to Previous Work

One of the main contributions of the paper is the develop-
ment of a method based on finite differences for computing
B-spline inner products. The key idea is that the integral of a
spline is another spline of higher degree. We were able to for-
malize the approach by defining an inverse finite differences op-
erator (running sum filter) and to use this tool to our advantage
for computing multiple B-spline integrals. We note that the idea
of precomputing an integral to facilitate the evaluation of inner
products was introduced in [18]. However, the approach was re-
stricted to the case of a box function which corresponds to the
choice of in the present method.

The principle of least-squares image resizing was first pro-
posed by one of us in [13]. The initial formulation of this al-
gorithm did not use integrals, but rather an intermediate kernel
function defined as the convolution of two B-splines of different
width. In the original paper, the exact form of this kernel was

Fig. 16. Resizing method using cubic splines applied to text with a scale factor
0.33; top—original text; bottom—reduced image: (left) using standard method
and (right) using orthogonal projection.

Fig. 17. Original magnetic resonance (MR) image.

only worked out for . More recently, we were able to ob-
tain an explicit kernel formula [30].

While this new formula makes the original algorithm also ap-
plicable to splines of degree higher than 1, it is much less effi-
cient computationally than the approach that we are proposing
here. The essential difference is that the present approach has
a complexity per computed output point that is independent of
the scaling factor. In the original method, the complexity was
proportional to the size of the convolution kernel

and to the number of operations required to eval-
uate the spline kernel. In other words, the original method had
a strong penalty for large reduction factors.

When the reduction factor is an integer, there exist alternative
filtering/decimation techniques which are equivalent to the
present algorithm (least-squares spline approximation) [31];
these are also very efficient computationally, but they require
the design of a separate prefilter for each scale factor.

When the scale parameter is a power of 2, the method is equiv-
alent to a wavelet decomposition [15] because splines satisfy a
two-scale difference equation.

B. Computational Issues

We can easily trade computational speed against image
quality. The most important choice is the underlying signal
model (the spline degree) which determines the approxi-
mation properties of the solution. The second parameter,,
can be selected to obtain the optimal least-squares solution

, or a slightly suboptimal one which corresponds
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Fig. 18. Example of image reduction by a factora =

p
� using splines of degree 0. Notice that the projection method reduces blocking artifacts: (a) Reduced

image using standard method; (b) enlarged version of the image (a) (SNR= 25.8 dB); (c) reduced image using orthogonal projection; and (d) enlarged version of
the image (c) (SNR= 30.7 dB).

to oblique projection . For the limiting case
, we recover the traditional interpolation approach

provided that we define the B-spline of degree as the Dirac
delta distribution (ideal sampler). The larger , the better
the quality but at the expensive of more computations.

The expensive part of the algorithm is the resampling with
the kernel [step 3 in Section IV-B], which is equivalent to a
spline interpolation of degree . The cost of the rest of
the procedure is negligible in comparison: it involves digital fil-
tering only—either short kernel FIR or fast recursive IIR. Thus,
we can consider that the total cost per computed output point
is proportional to times the number of operations
required to evaluate [B-spline of degree ].

One practical limitation of the present approach is the poten-
tial propagation of roundoff errors during the multiple integra-
tion process. This requires working with high precision arith-
metic. Our implementation uses the double type in C and can
handle values up to with typical image of size .

C. Extensions of the Method

The property that the integral of a spline is another spline of
higher degree is also valid on nonuniform grids. Therefore, it is
also possible to extend the method for the conversion of nonuni-
form splines to uniform ones using the same least-squares prin-
ciple [32].

In principle, our algorithm can also be extended to higher
dimensions and to nonseparable geometric affine operators.
One may catch the intuition of this extension by stressing the
key feature of our setting: the function which appears
in the general projection-based scheme of Fig. 2 is built using
shifted versions of functions—the one-sided power functions

—that are easily exchanged through the geometric transfor-
mation—the scaling operator.

The idea is thus to choose a functionthat can easily be
exchanged through the geometric transformation, and to require
that belongs to the space generated by the uniform shifts of
; in our algorithm, .
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Fig. 19. Same experiment as Fig. 18, but with linear splines. Notice the aliasing reduction from (b) to (d) (less contrast of the features). See also thedifference
images in Fig. 20: (a) Reduced image using standard method; (b) enlarged version of the image (a) (SNR= 31.9 dB); (c) reduced image using orthogonal projection;
and (d) enlarged version of the image (c) (SNR= 35 dB).

For instance, if we wanted to implement rotations and scal-
ings of an -dimensional digital signal, we could define

, that is, a radial basis function. This radial basis function
can be localized using a digital filter ; that is to say, de-
fines a function that has some appropriate decay as .
In our algorithm, this localization filter is simply the finite dif-
ferences operator , which transforms into a B-spline
of degree . We would finally need to compute the convolution
of the localized radial basis function withto get the function

shown in Fig. 3(e).

VIII. C ONCLUSIONS

In this paper, we have generalized Leeet al.’s method for
image resizing using both oblique and orthogonal projections.
We have demonstrated that the new method outperforms the
standard interpolation techniques. It is especially advantageous
for image reduction because of the built-in antialiasing mecha-
nism. An attractive property of the present implementation is

that the complexity per output point does not depend on the
scaling factor. Our resizing algorithm works for arbitrary scaling
factors (image magnification or reduction). We believe that it
should be useful in applications where image quality is a key
concern.

The formulation of the resizing problem that has been pre-
sented is rather general. By varying some key parameters, we
switch between optimal least-squares solution, oblique projec-
tion and interpolation. We have also described algorithmic solu-
tions for basis functions other than B-splines, the most notable
example being the O-MOMS.

A demonstration of our method is available on the web at
http://bigwww.epfl.ch/demo/resize.

APPENDIX

To show the power of our operator formalism, we derive the
two key formulas for differential calculus.

th derivative:
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Fig. 20. Difference between the original and the enlarged version of the reduced image obtained in Fig. 19 with the linear spline resizing methods. (a)Standard
method and (b) orthogonal projection.

Proof:

using (4)

conmutativity of and

using (7)

-fold integral: .
Proof:
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