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ABSTRACT

We propose a new technique to perform nonuniform to
uniform grid conversion: first, interpolate using nonuni-
form splines, then project the resulting function onto a
uniform spline space and finally, resample. We derive a
closed form solution to the least-squares approximation
problem. Our implementation is computationally ex-
act and works for arbitrary sampling rates. We present
examples that illustrate advantages of our projection
technique over direct interpolation and resampling. The
main benefit is the suppression of aliasing.

1 Introduction

Non-uniform to uniform grid conversion covers a wide
range of applications. Examples of applications are
format conversion for display or processing purposes
and curve resampling in computer graphics [1]. An-
other promising application field is signal reconstruc-
tion from non-uniformly distributed samples coming
from domains such as metrology, biomedical [2], [3], or
robotics. Commonly used methods for that reconstruc-
tion inludes iterative algorithms, modified Fourier trans-
forms and interpolation.

In this paper, we solve the problem of approximating
a non-uniform spline f(z) with a uniform spline of the
form s(x) = >, cx " (x—k), where 3" () is the B-spline
of degree-n.

The simplest approach would be to sample f(z) uni-
formly and then compute the spline interpolant of these
samples. Its main drawback is the introduction of alias-
ing when the sampling density is not high enough. A
standard remedy is to apply some kind of analog pre-
filtering prior to sampling.

Here, we propose a more sophisticated approach that
is optimal in the sense that the L, approximation error
between the non-uniform spline and its uniform repre-
sentation is minimized.

As we will be treating the problem in the continuous
domain, we are avoiding the possible ill-posedness of the
discrete matrix formulation [4].

We will restrict ourselves to 1-D signals only. It is
however possible to extend the method to nonuniform
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N-D interpolation using thin-plate splines, for instance.

2 Principle of the Approach

From spline sampling theory [5], we know that, in order
to approximate a function f(z) on some uniform spline
space V" = span{f3" (¢ — k) }xez, the best is to use the
principle of minimum-error signal approximation, that
is, to calculate the orthogonal projection of f(z) onto
V™. We may also compute an oblique projection with
a corresponding small loss of performance, provided the
analysis function is well chosen [6], for instance a spline
of degree n;.
The corresponding projection formula is

8($) = Z(f(m)7ﬁ~n (:L‘ - k)>L2ﬂn(m - k)v (1)

k

where B"(m) is the analysis function and 8" (z) the syn-
thesis function. To have a projector, these functions
must be biorthonormal: (37 (), * (2 — k))1, = & [7).

If [;’(1) € V™, we have an orthogonal projection; oth-
erwise we have an oblique projection.

In practice, it is easier to compute Ly inner-products
with a B-spline 87! rather than with the analysis func-
tion [~7’” Thus, if we define

e = (f(z),p" (z - k), (2)
then we can obtain the projection as follows:
s(z) =Y (ep # b= PFmFypn (o — k), (3)
k

where b~ (?*+71+1) ig an IIR spline filter that has a fast
recursive implementation as described in [8, 9].

Thus, the only remaining difficulty is to compute (2);
i.e., the inner products of f(z) with B-splines of de-
gree nj.

3 Nonuniform Splines

Before explaining how to compute these inner products
in an efficient and exact manner, we need to introduce
some operators and definitions that are helpful to solve
our problem.



3.1 Continuous Differential Operators

The conventional derivative operator is

Df(:L‘) = %

Its inverse is the integral operator
Do) = [ st

3.2 Discrete Differential Operators
3.2.1 Non-Uniform Grid

Given the integers ¢ and n > 0, we define the divided
differences of the polynomial f of order n as

n+1
D Al F) = S J(Ax)
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3.2.2 Uniform Grid

In the uniform case, we get

01 nli@) = LS (] ) s

were A™ 1s the nth order backward finite difference op-
erator.

3.3 B-Splines
3.3.1 Non-Uniform B-Splines

We call B?(z) the normalized non-uniform B-spline of
degree n > 0 associated with the knots A;, ...
it is given by

s Aignt1;

B} (I) = (77, + 1)[/\1'7 = '7/\i+n+1](33 - /\)i
with z7} = max(x,0)" (one-sided power function).

The support of B is finite. More precisely, B! (z) = 0
if z & [Ai, Nitn+1]. This is due to the localization prop-
erties of the divided differences with respect to polyno-
mials.

We can get the B-spline of degree n from the one
of degree (n — 1) by applying De Boor’s recursion for-
mula [10],

n+1 r =N 1
Bl — B?
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3.3.2 Uniform B-Splines

The uniform B-splines are usually defined using finite
differences instead of divided ones. The centered B-
splines, which appear in (1), are given by

<

ey = AnH T s (o T
B (z) = A *n!*5<1+ 3 )
Using the equivalence
, f(z) = D™+ f(z)
n! N '

the uniform B-splines can be expressed as

B (x) = A" w D= HD) 4§ <CE—|— n—zi—l) .

4 Computing Inner Products

As we said before, the difficulty of the method is to
compute the inner product of the non-uniform spline
with a uniform one. The key formula is derived easily
from the uniform B-spline definition

(f,07 (x — k)
A+l pe(mt) g (k LM + 1) .

Ck
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In other words, provided that we have the uniform sam-
ples of D=(m1+1) ¢ (k + 7112_-1-1)’ we can compute the B-
spline coefficients c; by simple digital filtering. So,
e = (hx I)(k), where I(k) = D=+ ¢ (k—}- %),
and H(z) = (1 — z)™*! ((ny + 1)th finite difference
filter).

Thus, it is of critical importance to be able to compute
the (ny + 1)-fold integral of a non-uniform spline. The
recursive formula we use for the calculation is derived
from recursion (4) and integration formulas of a non-
uniform spline [11]. Specifically,

_ n— A itn+1 — s n
i>i
(4)
5 Practical Implementation of the Algorithm

The main steps in the algorithm are summarized below
and shown in Fig. 1.
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Figure 1: General scheme for the method (orthogonal
projection)




e Interpolation

Either the spline f(z) = 3, a; B? () is known, or it
is specified by non-uniform samples of f(z) at knot
positions Agx. In this latter case, the coefficients
a; of the interpolation are the solution of a band-
diagonal system of equations.

¢ Integration

In Sections 3 and 4, we have presented all the tools
we need to calculate the (ny + 1)-fold integral of
f(z). We write

D—lf(m)zzaiD—lBln( )_E Bn+1 )

)

with

We then define

I(l‘) = D_(n1+1)f(gj) = Za;(n1+1)B?+n1+1($)

i

The basic idea is that the (ny 4+ 1)-fold integral of
a non-uniform spline of degree n i1s a non-uniform
spline of degree (n + ny + 1).

The coefficients a;(nl-l_l) are pre-computed by re-
cursive application of (5). Likewise, we may also
update the B-spline basis functions by using De
Boor’s recursion formula (4).

¢ Sampling

The next step is the resampling of the above inte-
gral at the points (k + %)

i) = D () |y (6)

(1) 1
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¢ Digital Filtering

At this stage we apply (n1+1) centered finite differ-
ences corresponding to the filter with z-transform
AMHL 3 (1 — z)™*+L Finally, we postfilter with
the TIR filter 5~ (*+71+1) gpecified in (3).

6 Examples

The goal of this section is to point out the improve-
ment we get in terms of aliasing suppression by using
our projection method over standard interpolation and
resampling.

We use as test a signal composed of two well differenti-
ated components: a high frequency supperimposed onto
a low frequency one. The signal is a cubic nonuniform
spline (Fig. 2).
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Figure 2: Test signal which is a non-uniform cubic
spline.

When we just resample it at uniform sample locations
and interpolate it with a uniform spline, we observe that
the spline curve is constrained to pass through the sam-
pling points (Fig. 3).

When the projection method is applied, the resulting
uniform spline curve tries to adjust itself to minimize
the difference with the nonuniform spline curve leading
to a much better performance in terms of Lo-error as
shown in Fig. 4.

The sampling points for the uniform interpolation are
the same in both cases.

7 Conclusions

We have presented a refined tool to convert non-uniform
splines into uniform ones. The approach is efficient com-
putationally; its complexity per output point is constant
and independent of the knot spacing of the input signal.
It 1s easy to check that the cost of an oblique projection
into V" perpendicular to V™! is approximately equiv-
alent to a (non-uniform) spline interpolation of degree
(n4+mny+1).

Experimental results show that our method outper-
forms standard interpolation as our solution is optimal
in the least-squares sense. Moreover, the implicit ana-
log prefiltering step in our approximation formula (1)
reduces aliasing.
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