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Image Denoising in Mixed Poisson–Gaussian Noise
Florian Luisier, Member, IEEE, Thierry Blu, Senior Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract—We propose a general methodology (PURE-LET) to
design and optimize a wide class of transform-domain thresh-
olding algorithms for denoising images corrupted by mixed
Poisson–Gaussian noise. We express the denoising process as a
linear expansion of thresholds (LET) that we optimize by relying
on a purely data-adaptive unbiased estimate of the mean-squared
error (MSE), derived in a non-Bayesian framework (PURE:
Poisson–Gaussian unbiased risk estimate). We provide a practical
approximation of this theoretical MSE estimate for the tractable
optimization of arbitrary transform-domain thresholding. We
then propose a pointwise estimator for undecimated filterbank
transforms, which consists of subband-adaptive thresholding
functions with signal-dependent thresholds that are globally opti-
mized in the image domain. We finally demonstrate the potential
of the proposed approach through extensive comparisons with
state-of-the-art techniques that are specifically tailored to the
estimation of Poisson intensities. We also present denoising results
obtained on real images of low-count fluorescence microscopy.

Index Terms—Filterbank, Gaussian noise, image denoising,
MSE estimation, Poisson noise, thresholding, unbiased risk
estimate.

I. INTRODUCTION

T HE two predominant sources of noise in digital image ac-
quisition are:

1) the stochastic nature of the photon-counting process at the
detectors;

2) the intrinsic thermal and electronic fluctuations of the ac-
quisition devices.

Under standard illumination conditions, the second source of
noise, which is signal-independent, is stronger than the first
one. This motivates the usual additive-white-Gaussian-noise
(AWGN) assumption. However, in many applications such as
fluorescence microscopy or astronomy, only a few photons
are collected by the photosensors, due to various physical
constraints (low-power light source, short exposure time, pho-
totoxicity). Under these imaging conditions, the major source
of noise is strongly signal-dependent. Consequently, it is more
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reasonable to model the output of the detectors as a Poisson-dis-
tributed random vector. The problem is then to estimate the
underlying intensities of Poisson random variables, potentially
further degraded by independent AWGN. In this paper, we pro-
pose fast and high-quality nonlinear algorithms for denoising
digital images corrupted by mixed Poisson-Gaussian noise.

Among various image-denoising strategies, the trans-
form-domain approaches in general, and in particular the
multiscale ones, are very efficient for AWGN reduction (e.g.,
[1]–[3]). As many natural images can be represented by few
significant coefficients in a suitable basis/frame, the associated
transform-domain processing amounts to a (possibly multi-
variate) thresholding of the transformed coefficients, which
results in a fast denoising procedure. Since the present work lies
within this scope of transform-domain thresholding strategies,
we discuss hereafter the main multiscale techniques that have
been considered for Poisson intensity estimation. Note that
there are also non-multiscale methods for Poisson denoising,
e.g., [4]–[6].

A. Related Work

Since the Poisson statistics are generally more difficult to
track in a transformed domain than the traditional Gaussian
ones, a natural solution consists in “Gaussianizing” the Poisson
measurements. This is usually performed by applying a non-
linear mapping (e.g., a square root) to the raw data, an approach
that has been theorized by Anscombe in [7] and first exploited
in denoising applications by Donoho in [8]. The so-called
Anscombe variance-stabilizing transform (VST) has been later
generalized by Murtagh et al. to stabilize the variance of a
Poisson random variable corrupted by AWGN [9]. After stabi-
lization, any high-quality AWGN denoiser can be applied (e.g.,
[1]).

Several works take advantage of the fact that the unnormal-
ized Haar wavelet transform1 has the remarkable property of
preserving Poisson statistics in its lowpass channel. Fryzlewicz
et al. have proposed a VST based on the observation that the
scaling coefficients at a given scale are good local estimates of
the noise variances of the same-scale wavelet coefficients [10].
Their approach gave state-of-the-art denoising results (in the
minimum mean-squared error sense) at the time of its publica-
tion (2004). Another interesting property of the unnormalized
Haar transform applied to Poisson data is that the statistical rela-
tion between a scaling coefficient (parent) and its child (scaling
coefficient at the next finer scale) is very simple; the distribution
of a child conditioned on its parent is binomial. These proper-
ties have been exploited in a Bayesian framework in [11]–[14],
as well as in a user-calibrated hypothesis testing [15]. Hirakawa

1See Fig. 1 for a filterbank implementation of the unnormalized Haar wavelet
transform.
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Fig. 1. Filterbank implementation of the unnormalized discrete Haar wavelet transform and principle of the class of denoising algorithms described in [19]. The
superscript � � � � � � � indicates the level of decomposition; � is the vector of noisy scaling coefficients (� is thus the noisy input); � is the vector of noisy wavelet
coefficients; ��� is the subband-dependent thresholding function; ���� (resp. ����) is the vector of the estimated noise-free wavelet (resp. scaling) coefficients.

et al. have taken advantage of the Skellam distribution of the un-
normalized Haar wavelet coefficients to derive a so-called Skel-
lamShrink [16], [17], which can be viewed as a Poisson variant
of Donoho’s et al. SUREshrink [18]. Recently, we proposed a
non-Bayesian framework to estimate Poisson intensities in the
unnormalized Haar wavelet domain (PURE-LET [19], see Fig. 1
for an illustration of its principle). The qualitative and computa-
tional efficiency of this approach results from the combination
of the following two key ingredients:

1) A prior-free unbiased estimate of the expected
mean-squared error (MSE) between the unknown original
image and the denoised one. Under an AWGN hypothesis,
this estimator is known as Stein’s unbiased risk estimate
(SURE) [20], while, for Poisson data, we called it PURE,
which stands for Poisson’s unbiased risk estimate. Note
that, contrary to the Bayesian approach, the noise-free
image is not considered as random in [19].

2) A linear parameterization of the denoising process,
through a linear expansion of thresholds (LET). The op-
timal parameters of this expansion are then the solution
of a system of linear equations, resulting from the min-
imization of the subband-dependent quadratic unbiased
estimate of the MSE.

In the more standard case of Gaussian noise reduction,
better results have been usually obtained with wavelets that are
smoother than Haar, and/or with shift-invariant transformations
(e.g., the undecimated wavelet transform). This has motivated
researchers to devise Poisson-intensity estimators applicable
to arbitrary multiscale transforms. Kolaczyk has developed (a
pair of) soft/hard-thresholds for arbitrary wavelet shrinkage of
“burst-like” Poisson intensities [21]. This pair of thresholds
can be seen as an adapted version of Donoho’s et al. universal
threshold that was designed for AWGN [22]. This approach
was generalized to arbitrary kinds of Poisson-distributed data
by Charles and Rasson [23]. Based on the statistical method
of cross validation, Nowak et al. derived a wavelet shrinkage,
whose threshold is locally adapted to the estimated noise
variance [24]. The modulation estimator devised by Antoniadis
and Spatinas [25], which is based on cross-validation as well,
covers all univariate natural exponential families with quadratic
variance functions, of which Gaussian and Poisson distributions
are two particular cases. Sardy et al. proposed a generalization
of Donoho and Johnstone’s wavelet shrinkage for a broad class
of exponential noise distributions, including the Poisson case
[26]. Their estimator is the solution of a log-likelihood problem,
regularized by the addition of a wavelet-domain -penalty.
Using the concept of multiscale likelihood factorizations, Ko-
laczyk and Nowak introduced complexity-penalized estimators

that can also handle a wide class of distributions (Gaussian,
Poisson, and multinomial) [27]. This methodology was further
exploited by Willett et al. who proposed a platelet-based pe-
nalized likelihood estimator that has been demonstrated to be
particularly efficient for denoising piecewise-smooth signals
[28]. Recently, the VST-based approach has been revitalized
thanks to the contributions of Jansen, who combined VST
with multiscale Bayesian models [29], and Zhang et al. who
proposed a multiscale VST that can better stabilize very low
intensity signals, and showed how it can be efficiently used
with the latest multiresolution transformations (e.g., curvelets)
[30]. This latter VST solution can also stabilize Poisson data
embedded in AWGN [31].

Most of the denoising algorithms discussed in this section
have been carefully evaluated by Besbeas et al. [32] using 1-D
data. Most of them are specifically designed for pure Poisson
noise. To the best of our knowledge, there are very few denoising
algorithms that can properly handle mixed Poisson-Gaussian
noise.

B. Contributions

In this work, we extend the PURE-LET approach in three
main directions. First, we lift the restricted use of the unnor-
malized Haar wavelet transform by generalizing to arbitrary (re-
dundant) transform-domain (nonlinear) processing. Second, we
consider a more realistic noise model: a Poisson random vector
degraded by AWGN, for which we derive a new theoretically
unbiased MSE estimate; this new estimate, for which we keep
the name PURE, combines both SURE and PURE. Third, we
show that PURE can be used to globally optimize a LET span-
ning several (redundant) bases.

Because we are dealing with transformations that are not nec-
essarily orthonormal anymore, the denoising process has to be
optimized in the image domain, to ensure a global MSE min-
imization [3], [33]. To make tractable the optimization of ar-
bitrary transform-domain processing, we also need a practical
approximation of the PURE. All these extensions allow us to
get the best (in the minimum PURE sense) linear combination
of the processed subbands coming from complementary trans-
forms, such as the undecimated wavelet transform (appropriate
for piecewise-smooth images) and the overcomplete block-dis-
crete cosine transform (effective in sparsely representing tex-
tured images).

This paper is organized as follows. In Section II, we intro-
duce the theoretical basis of this work. We first derive an unbi-
ased estimate of the MSE for an arbitrary processing of Poisson
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data degraded by AWGN, and then propose a practical approxi-
mation of this general result. A pointwise estimator for undeci-
mated filterbank transforms is presented in Section III and com-
pared with some state-of-the-art approaches in Section IV. Re-
sults on real fluorescence-microscopy data are finally shown in
Section V.

II. THEORY

Definitions and Notations

• A random variable follows a Poisson distribution of in-
tensity if and only if its conditional probability
density function is . We use the
standard notation .

• A random variable follows a Gaussian distribution with
zero-mean and variance if and only if its probability
density function is . We use the
standard notation .

Throughout this paper, for a given vector , we
use the notation to refer to its th component, where

. The variable denotes a vector of inde-
pendent Poisson random variables of underlying intensities

, with . A realization of can be thought of
as a noisy measurement of the intensity signal . Note that,
in contrast with Bayesian approaches, is considered to be
deterministic in the present work.

We further assume that the noisy measurements are de-
graded by i.i.d. AWGNs of known variance , so that

. The final observation vector is therefore given by

(1)

Our goal is then to find an estimate that is the closest
possible to the original signal in the minimum MSE sense, that
is, we want to minimize

A. Useful Properties of the Poisson and Gaussian Random
Variables

1) Property 1 (Stein’s Lemma): Let , where
is independent of and let be
a (weakly) differentiable real-valued vector function such that

. Then

where is the divergence of
the function and stands for the mathematical expecta-
tion taken over all realizations of the random variable .

This is a standard result in the statistical literature, known as
“Stein’s lemma,” which was first established by Charles Stein
[20]. An alternative proof can also be found in [3].

2) Property 2: Let and let be a real-
valued vector function and let the family of vectors
be the canonical basis of . Then

where .
This property can be thought of as the “Poisson’s equivalent”

of Stein’s lemma. A proof of a similar result can be found, for
instance, in [19], [34], and [35].

B. PURE: An Unbiased MSE Estimate for Poisson Data
Degraded by AWGN

In practice, we obviously do not have access to the original
noise-free signal . Therefore, we cannot compute the actual
MSE and minimize it. However, we can rely on its unbiased
estimate given in the following theorem.

Theorem 1: Let be the random variable defined in (1) and
let be an -dimensional (weakly) dif-
ferentiable real-valued vector function such that

. Then, the random variable

(2)

is an unbiased estimate of the expected MSE, that is,

Proof: By expanding the expectation of the squared error
between and its estimate , we obtain

(3)

We can now evaluate the two expressions which involve the un-
known data and are given here.

1) Since is independent of and , we can write the
following sequence of equalities:

(4)

2) We notice that

(5)

Putting back (4) and (5) into (3) finally demonstrates The-
orem 1.

In the remainder of this paper, the unbiased MSE estimate for
mixed Poisson–Gaussian noise defined in (2) will be referred
to as PURE. It is a generalization of SURE [20], which was
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derived for AWGN only, and the PURE we recently exposed
in [19], which was devised for pure Poisson noise reduction in
the unnormalized Haar wavelet domain. Note that the result of
Theorem 1 was given in [36] without proof, where it was applied
to linear image deconvolution.

The variance of the PURE estimator notably depends on the
number of samples , as well as on the number of parameters
(degrees of freedom) involved in . Therefore, provided that the
solution is sufficiently constrained, PURE remains very close to
the actual MSE in image processing, due to the high number of
available samples.

C. Taylor-Series Approximation of PURE

Unfortunately, the presence of the term in Theorem 1
makes PURE impractical to evaluate for an arbitrary nonlinear
processing. Indeed, in order to compute just one component

of , one would need to apply the whole de-
noising process to a slightly modified version of the noisy input.
This operation would have to be repeated times to get the
full vector . Such a “brute force” approach is thus pro-
hibitive in practice, considering that a typical image contains

pixels. Instead, we propose to use the first-order
Taylor-series approximation of given by

for all . Consequently, provided that the above
approximation is reasonable (i.e., that varies slowly), the
function is well approximated by , where

is the vector made of
the first derivative of each function with respect to . The
PURE unbiased MSE estimate defined in (2) is, in turn, well ap-
proximated by2

(6)

Note that, if the processing is linear, then the two MSE esti-
mates (2) and(6) are identical.

D. PURE for Transform-Domain Denoising

Here, we derive an expression for the MSE estimate given
in (6), in the particular case of a transform-domain pointwise
processing . The principle of transform-domain denoising is

2To be fully rigorous, we must further assume that each � is twice differen-
tiable with respect to � .

Fig. 2. Principle of transform-domain denoising for signal-dependent noise.

illustrated in Fig. 2: once the size of the input and output data are
frozen, the linear decomposition and reconstruction operators
are characterized by the matrices
and , respectively, that satisfy the
perfect reconstruction property .

Dealing with a signal-dependent noise makes it generally dif-
ficult to express the observation model in the transformed do-
main. Therefore, we assume here that a (coarse) “map” of the
signal-dependent noise variance can be obtained in the trans-
formed domain, by applying a linear transformation (typically,
a smoothing) to the noisy data ,
as shown in Fig. 2. The denoised estimate can be thus finally
expressed as a function of the noisy input signal as

(7)

where is a pointwise (non-
linear) processing.

Note that the PUREshrink and the PURE-LET algorithms in-
troduced in [19] belong to the general class of processing de-
fined in(7). In that case, and implement the (unnormal-
ized) Haar wavelet decomposition and reconstruction, respec-
tively (see Fig. 1). and then represent the Haar wavelet
and scaling coefficients , respectively.

Corollary 1: For the transform-domain pointwise processing
defined in (7), the MSE estimate given in(6) can be reformu-
lated as (8), shown at the bottom of the page, with the following
definitions.

• The vector is
made of the first derivative, with respect to its first variable,
of each function .

• The vector
is made of the first derivative, with respect to its second
variable, of each function .

• The vector
is made of the first derivative, with

(8)
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respect to its first variable and second variable, of each
function .

• The vector
is made of the second derivative, with respect to its first
variable, of each function .

• The vector
is made of the second derivative, with respect to its second
variable, of each function .

• The operator “ ” denotes the Hadamard (element-by-ele-
ment) product between two matrices.
Proof: Using the result given in (6) and the fact that

, we can further develop
as

(9)

Similarly, we have that

(10)

and, consequently, that

(11)

(12)

(13)

Putting back (11), (12), and (13) into (6) finally leads to the
desired result (8).

E. The PURE-LET Strategy

Similarly to what has been proposed for SURE-based de-
noising [2], [3], [33], [37], we describe the denoising function

as the linear expansion of thresholds (LET) defined as

(14)

Thanks to this linear parameterization, PURE becomes
quadratic in the ’s. Therefore, the search for the op-
timal (in the minimum PURE sense) vector of parameters

boils down to the solution of the following
system of linear equations: for , we have

(15)

When using the first-order Taylor-series approximation of
PURE defined in Section II-D, we obtain a similar system of

linear equations that involves the same matrix and an ap-
proximated given by

III. POINTWISE ESTIMATOR FOR UNDECIMATED

FILTERBANK TRANSFORMS

Here, we show how to use the result of Corollary 1 to glob-
ally optimize a subband-dependent pointwise thresholding ap-
plied to the coefficients of the -band undecimated filterbank
depicted in Fig. 3. In this case, the decomposition and recon-
struction matrices are made of circulant submatrices

and given by

(16)
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Fig. 3. Undecimated �-band analysis-synthesis filterbank.

Fig. 4. GDC of the low-pass channel of an undecimated filterbank.

Although all of the results presented in this section are derived
for 1-D signals, they can be straightforwardly extended to higher
dimensional signals by considering separable filters.

A. Choice of —Group-Delay Compensation (GDC)

In an undecimated wavelet transform (UWT), the scaling co-
efficients of the lowpass residual at a given scale could be
used as a reliable estimation of the signal-dependent noise vari-
ance for each bandpass subband from the same scale , up to
the scale-dependent factor . However, except for the
Haar wavelet filters, there is a group-delay difference between
the output of the lowpass and bandpass channels that needs to be
compensated for. Contrary to the highpass group delay compen-
sation (GDC) filter derived for interscale prediction in critically
sampled orthonormal filterbank proposed in [2], we are looking
here for an allpass filter with real coefficients such that

and (see Fig. 4)

(17)

where and are the orthonormal scaling and wavelet
filters, respectively, and is an arbitrary sym-
metric or anti-symmetric filter.

In the case of symmetric filters characterized by
, the shortest-support GDC filter is simply given by

. Note that this result can also be used for nearly
symmetric filters, such as the Daubechies symlets. From a theo-
retical point of view, considering arbitrary wavelet filters would
be interesting as well, but would probably be less useful here
because, in our observations, the best denoising performances
are achieved by symmetric (Haar) or nearly symmetric (sym8)
filters.

The matrix is then defined as
, with

where is the coefficient of the filter

In an overcomplete -block discrete cosine transform
(BDCT) representation, the low-pass residual band can directly
serve as a coarse estimate of the noise variance3 for each
bandpass subband, since the filters of the BDCT all have the
same group delay.

B. Computation of Transform-Dependent Terms

To compute the MSE estimate (8), we need to evaluate several
terms that depend only on the choice of transformation.

1) Computation of :
In the case of periodic boundary conditions, we have that

for

for

where, for multiscale filterbanks, is the down-
sampling factor. For an overcomplete BDCT, ,
where is the size of the considered blocks.

2) Computation of , ,
, and :

Contrary to , the computation of the remaining
terms does not generally lead to simple expressions that
are independent from the coefficients of the underlying fil-
ters. However, all diagonal terms presented in this section
can still be easily computed offline, using the numerical
Monte-Carlo-like algorithm described in [3]. In particular,
this numerical scheme applies when the various matrices
are not explicitly given or when nonperiodic boundary ex-
tensions are performed.

Note that the vectors , , , and
are obtained by analyzing the noisy data with

the considered undecimated filterbank using modified analysis
filters with coefficients , , , and

, respectively.

C. Thresholding Function

We propose to use a subband-dependent pointwise thresh-
olding function defined for by

(18)

For the sake of conciseness, we drop the subband subscripts
in this section and denote by (resp. ) any of the ’s

(resp. ’s).
In the case of Poisson data, we need a signal-dependent trans-

form-domain threshold to take into account the nonstationarity

3Up to the scaling factor � � � .
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Fig. 5. Possible realization of the proposed thresholding function (20) in a par-
ticular subband of an undecimated Haar wavelet representation.

of the noise. If we consider unit-norm filters, the variance of
the AWGN is preserved in the transformed domain. An estima-
tion of the variance of the Poisson-noise component is given by
the magnitude of (built as described in Section III-A), up to
the scale-dependent factors and for
a multiscale transform and for an overcomplete BDCT, respec-
tively. Therefore, we propose the signal-dependent threshold

(19)

which is then embedded in a subband-dependent thresholding
function, similar to the one proposed in [3] for AWGN reduction
in redundant representations

(20)
To compute the MSE estimate given in (8), a differentiable

(at least up to the second order) approximation of the abso-
lute-value function is required. In practice, we suggest to use

( , typically) instead of in the threshold
defined in (19). As observed in Fig. 5, the proposed thresh-
olding function can be perceived as a smooth hard-thresholding.
Thanks to the use of a signal-dependent threshold, each trans-
formed coefficient is adaptively thresholded according to its es-
timated amount of noise.

D. Implementation

In the generalized PURE-LET framework for -band undec-
imated filterbank, the whole transform-domain thresholding is
rewritten as

(21)

Fig. 6. Validity of the first-order Taylor-series approximation of some non-
linear functions � . The first row shows the SNR of the approximation of the
component � of the PURE vector �. The values of � � � � are
plotted in the second row.

Fig. 7. Reliability of the PURE-based optimization of the LET parameters.
The blue (online version) curve (“�” markers) represents the output PSNRs ob-
tained by a PURE-based optimization of the LET parameters without restriction,
taking all nonlinear terms into consideration. The red (online version) curve (“�”
markers) displays the output PSNRs obtained by a restricted PURE-based op-
timization of the LET parameters, where all the nonlinearly processed subband
� ��� with � � �� have been disregarded. The output PSNRs obtained by
the MSE-based optimization of the LET parameters (without restriction) is the
baseline (“�” markers).

The parameters that minimize the MSE estimate given in
(6) are then the solution of the system of linear equations

, where, for ,

(22)

For very low intensity signals (typically such that ,
), the first-order Taylor-series approximation of some non-

linear functions might be inaccurate, leading (22) to be an
unreliable approximation of the th component of the PURE
vector given in (15). To illustrate this scenario in the case of
an undecimated Haar wavelet representation, we have plotted
in the first row of Fig. 6 the
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TABLE I
COMPARISON OF MULTISCALE-BASED POISSON NOISE REMOVAL ALGORITHMS

Output PSNRs hvae been averaged over 10 noise realizations, except for the Platelet algorithm.

between (for and ) and its approximation ,
as a function of the average noise-free signal energy

. Any nonlinearly pro-
cessed subband for which the SNR of the approximation
is below a given threshold (around 40 dB, typically), should be
disregarded from the LET (i.e., its LET coefficient set to
zero). In practice, we need to identify the badly approximated
functions without knowing the SNR of the approximation. For
this identification, we propose an empirical approach that is
based on the following observation: We notice in the first row
of Fig. 6 that the SNR of the approximation is an increasing
function of the average signal energy. We further observe that,
for a given average signal energy, the quality of the approxima-
tion increases as the iteration depth increases. Consequently,
we suggest to keep only those nonlinearly processed subbands

for which is above a given threshold
. We experimentally found that any value was a

reasonable choice4 (see the second row of Fig. 6). Thanks to
this restriction, the PURE-based optimization of the parameters
gives similar PSNR results to the MSE-based optimization, even
when the latter considers all the nonlinearly processed subbands

, as shown in Fig. 7.

4For all the experiments presented in this paper, we have used � � ��.

E. Denoising in Mixed Bases

In order to get the best out of several transforms, we propose
to make the LET span several transformed domains with com-
plementary properties (e.g., UWT and overcomplete BDCT)

(23)

PURE is then used to jointly optimize the weights of this linear
combination of processed subbands. In this case, the union
of several transforms can be interpreted as an overcomplete
dictionary of bases which sparsely represents a wide class of
natural images. The idea of combining several complementary
transforms was exploited in the context of AWGN reduction
by Starck et al. in [38] and Fadili et al. in [39]. The use of
an overcomplete dictionary, either fixed in advance (as in our
case) or trained, is at the core of the K-SVD-based denoising
algorithm of Elad et al. [40].
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Fig. 8. (a) Part of the original Moon image at peak intensity 20. (b) Noisy version, ���� � ����� dB. (c) Denoised with a translation-invariant Haar-Fisz [10]
algorithm, ���� � 	
��� dB in 28 s. (d) Denoised with Anscombe [7] + BLS-GSM[1], ���� � 	
��
 dB in 38 s. (e) Denoised with translation-invariant
Platelet [28], ���� � 	
��� dB in 2234 s. (f) Denoised with the proposed UWT PURE-LET, ���� � 	��	� dB in 7.5 s.

IV. SIMULATIONS

Here, we propose to compare our PURE-LET ap-
proach with three multiscale-based methods in simulated
experiments.

• A variant of the Haar-Fisz algorithm described in
[10]: The Haar–Fisz VST is followed by Donoho’s
SUREshrink [18] applied to each bandpass subband
of an undecimated Haar wavelet transform. Since the
Haar–Fisz transform is not shift-invariant, 20 “external”
cycle-spins (CS) are also applied to the whole algorithm
(Haar–Fisz VST + UWT-SUREshrink + Haar–Fisz in-
verse VST), as suggested in [10].

• A standard variance-stabilizing transform followed by
a high-quality AWGN denoiser: As VST, we have re-
tained the generalized Anscombe transform (GAT)[9],
which can also stabilize Poisson random variables de-
graded by AWGN. For the denoising part, we have
considered Portilla et al. BLS-GSM [1], which consists
of a multivariate estimator resulting from Bayesian
least-squares (BLS) optimization, assuming Gaussian
scale mixtures (GSM) as a prior for neighborhoods of

coefficients at adjacent positions and scales5. Applied
in a full steerable pyramid, this algorithm stands among
the best state-of-the-art multiresolution-based methods
for AWGN reduction.

• A state-of-the-art denoising algorithm specifically
designed for Poisson intensity estimation: We have
retained Willett and Nowak’s Platelet approach [28].
Their Poisson intensity estimation consists in opti-
mizing (through a penalized likelihood) the coefficients
of polynomials fitted to a recursive dyadic partition of
the support of the Poisson intensity6. The near shift-in-
variance of their approach is achieved by averaging
the denoising results of several cycle-spins (20, in our
experiments).

The tuning parameters of these three methods have been
set according to the values given in the corresponding pa-
pers/MATLAB codes.

We have tested our PURE-LET approach with three undeci-
mated transformations: the Haar UWT (suitable for piecewise-

5Matlab code available at: http://www.io.csic.es/PagsPers/JPortilla/de-
noise/software/index.htm

6Matlab code available at: http://nislab.ee.duke.edu/NISLab/Platelets.html
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TABLE II
COMPARISON OF MULTISCALE-BASED MIXED POISSON–GAUSSIAN NOISE REMOVAL ALGORITHMS

Fig. 9. (a) Part of the original Barbara image at peak intensity 30. (b) Noisy version, ���� � 15.87 dB. (c) Denoised with GAT [9] + BLS-GSM [1],
���� � 26.19 dB in 32 s. (d) Denoised with the proposed BDCT PURE-LET, ���� � 27.00 dB in 47 s.

smooth images), the 16 16 overcomplete BDCT (efficient for
textured images), and a dictionary containing the basis functions
of both transforms. This latter option allows to take the best (in
the minimum PURE sense) combination of the two complemen-
tary transformations. As a measure of quality, we use the peak
signal-to-noise ratio (PSNR), defined as

where is the maximum intensity of the noise-free image.
Various input PSNRs have been obtained by rescaling the orig-
inal images between and .

A. Poisson Noise Reduction

In Table I, we compare our method with the state-of-the-art
multiresolution-based denoising algorithms for Poisson-inten-
sity estimation (no further AWGN degradation). When avail-
able, we have also reported the results recently obtained by
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Fig. 10. (a) Observed data: single acquisition (two-color image). (b) “Ground truth” (average of 100 acquisitions). (c) Single acquisition denoised with Platelets
[28] in 1240 s. (d) Single acquisition denoised with the proposed UWT PURE-LET in 15 s.

Lefkimmiatis et al. with their multiscale Poisson-Haar hidden
Markov tree (PH-HMT) algorithm [14]. As observed, we obtain,
on average, the best PSNR results. The Haar-Fisz algorithm is
consistently outperformed by our method, and usually by the
two algorithms specifically designed for Poisson-intensity es-
timation. We can notice that the Anscombe+BLS-GSM solu-
tion becomes more competitive as the peak intensities increase,
whereas the other approaches are not restricted to high-inten-
sity images. We obtain similar or better results than the Platelet
and the PH-HMT methods, which are also competitive with the
recent approach described in [30]. However, the major draw-
back of these two recent approaches is their computation time.
Denoising the 256 256 grayscale Cameraman image at peak
intensity 20 requires around 1300 s (65 s per cycle-spin) for the
Platelet and 92 s for the PH-HMT. By contrast, the execution
of 20 cycle-spins of the Haar-Fisz algorithm lasts 5.7 s, the
Anscombe+BLS-GSM takes 7.7 s, whereas our PURE-LET
algorithm lasts 1.3 s using the Haar UWT, 12.2 s in the 16 16
BDCT, and 13.5 s considering the UWT/BDCT dictionary, re-
spectively. In most cases, the simple Haar UWT gives optimal
or nearly optimal results, except for textured images at relatively
high input PSNR.

In Fig. 8, we show a visual result of the various algo-
rithms applied on Moon image. We can notice that the

PURE-LET denoised image exhibits very few artifacts, without
over-smoothing, contrary to the other methods.

B. Mixed Poisson-Gaussian Noise Reduction

We show in Table II the PSNR results obtained by
GAT+BLS-GSM and by the proposed algorithm, when es-
timating Poisson intensity degraded by AWGN. Here again,
the best results are obtained by our PURE-LET approach, on
average. In particular, at low intensities, the GAT fails to stabi-
lize the noise variance and thus, huge gains dB can be
obtained with a direct handling of Poisson statistics. The visual
comparison of both algorithms is given in Fig. 9 for Barbara
image. The various textures present in this particular image are
better restored with the proposed PURE-LET algorithm applied
in a BDCT representation than with the competing methods.

V. APPLICATION TO REAL FLUORESCENCE

MICROSCOPY IMAGES

We propose now to apply our denoising algorithm to real flu-
orescence microscopy images [Fig. 10(a)], acquired on a Leica
SP5 confocal laser scanning microscope at the Department of
Biology of the Chinese University of Hong Kong. The dataset
contains 100 instances of 512 512 images of fixed tobacco
cells, labeled with two fluorescent dyes (GFP in the green
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channel and Alexa568 in the red channel). The average of the
100 images provides a “ground truth” for visual comparison
[Fig. 10(b)]. We refer to [41] for a general introduction to
fluorescence microscopy and to [42] for a detailed investigation
on the various sources of noise in confocal microscopy.

In order for our data to fit the noise model described in (1), we
need to first subtract the offset value of the CCD detectors, and
then, divide by their amplification factor . These two param-
eters, as well as the variance of the AWGN, are determined
from the data. In practice, a robust linear regression is first per-
formed on a collection of local estimates of the sample mean
and sample variance [43], [44]; then, the slope of the fitted line
gives the amplification factor . The parameters and can
be estimated independently in signal-free regions of the image.

We have applied our UWT PURE-LET algorithm indepen-
dently on each channel of a single image from the dataset. As
observed in Fig. 10(d), the proposed algorithm considerably re-
duces the level of noise, and is still able to recover most of the
activated red spots. By contrast, we also display in Fig. 10(c)
the result obtained after 20 CS of the Platelet algorithm, where
it can be seen that the noise has been effectively reduced but
fewer activated red spots have been preserved.

VI. CONCLUSION

In this paper, we have provided an unbiased estimate of
the MSE for the estimation of Poisson intensities degraded by
AWGN, a practical measure of quality that we called PURE.
We have then defined a generic PURE-LET framework for
designing and jointly optimizing a broad class of (redundant)
transform-domain nonlinear processing. To obtain a computa-
tionally fast and efficient algorithm for undecimated filterbank
transforms, we have proposed a first-order Taylor-series ap-
proximation of PURE. For each nonlinearly processed subband,
the reliability of this approximation can be controlled, ensuring
near optimal MSE performances for the considered class of
algorithms.

As an illustrative algorithm, we have devised a pointwise sub-
band-dependent thresholding. In each bandpass subband, the
amount of shrinkage is related to the signal-dependent noise
variance, estimated from suitably chosen lowpass coefficients.
The resulting denoising algorithm is faster than other state-of-
the-art approaches that make use of redundant transforms. It
gives better results, both quantitatively (lower MSE) and quali-
tatively, than the standard VST-based algorithms. The proposed
solution also favorably compares with some of the most recent
multiscale methods specifically devised for Poisson data.

Finally, we have shown that our PURE-LET strategy consti-
tutes a competitive solution for fast and high-quality denoising
of real fluorescence microscopy data.
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