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SURE-LET for Orthonormal Wavelet-Domain
Video Denoising
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Abstract—We propose an efficient orthonormal wavelet-domain
video denoising algorithm based on an appropriate integration
of motion compensation into an adapted version of our re-
cently devised Stein’s unbiased risk estimator-linear expansion
of thresholds (SURE-LET) approach. To take full advantage of
the strong spatio-temporal correlations of neighboring frames,
a global motion compensation followed by a selective block-
matching is first applied to adjacent frames, which increases their
temporal correlations without distorting the interframe noise
statistics. Then, a multiframe interscale wavelet thresholding is
performed to denoise the current central frame. The simulations
we made on standard grayscale video sequences for various noise
levels demonstrate the efficiency of the proposed solution in
reducing additive white Gaussian noise. Obtained at a lighter
computational load, our results are even competitive with most
state-of-the-art redundant wavelet-based techniques. By using
a cycle-spinning strategy, our algorithm is in fact able to
outperform these methods.

Index Terms—Block-matching, Stein’s unbiased risk estimator-
linear expansion of thresholds (SURE-LET), video denoising,
wavelet.

I. Introduction

V IDEO PROCESSING has been an active area of research
in the past 20 years. Despite the recent advances in image

sequence acquisition and transmission, denoising still remains
an essential step before performing higher level tasks, such
as coding, compression, object tracking or pattern recognition.
Since the origins of the degradations are numerous and diverse
[imperfection of the charge-coupled device (CCD) detectors,
electronic instabilities, thermal fluctuations, etc.], the overall
noise contribution is often modeled as an additive (usually
Gaussian) white process, independent from the original un-
corrupted image sequence [1].
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The huge amount of correlations present in every video
sequences has quite early led the researchers to develop
combined spatio-temporal denoising algorithms, instead of
sequentially applying available 2-D tools. The emergence of
new multiresolution tools, such as the wavelet transform [2],
[3] then gave an alternative to the standard noise reduction
filters that were used for video denoising [4]–[7]. Now, the
transform-domain techniques in general, and the wavelet-based
in particular [8]–[15], have been shown to outperform these
spatio-temporal linear and even nonlinear filtering.

In this letter, we stay within the scope of wavelet-domain
video denoising techniques. More precisely, and contrary to
most of the existing techniques [8]–[11], [14], [15], we con-
sider an orthonormal wavelet transform rather than redundant
representations, because of its appealing properties (energy
and noise statistics preservation) and its lower computational
complexity. To take into account the strong temporal corre-
lations between adjacent frames, we work out a multiframe
wavelet thresholding based on the recently devised Stein’s
unbiased risk estimator-linear expansion of thresholds (SURE-
LET) strategy [16] and on its multichannel extension [17]. The
principle is to parametrize our wavelet estimator as a linear
expansion of thresholds (LET) and minimize an extended
version of Stein’s unbiased risk estimator (SURE) [18] to
determine the best linear parameters of this expansion. To
increase the correlations between adjacent frames, we com-
pensate for interframe motion using a global motion compen-
sation followed by a selective block-matching procedure. The
selectivity is obtained by first performing a coarse interframe
motion detection and then only matching those blocks inside
which, a significant motion occurred. Thanks to its selectivity,
the proposed block-matching has a negligible influence on
the interframe noise covariance matrix. This latter point is
crucial for the efficiency of our SURE-LET algorithm. Instead,
standard block-matching [19] would make it difficult to track
the interframe noise statistics.

This letter is organized as follows. In the next section,
we recall the SURE-LET principle and show its multiframe
expression; in Section III, we first present a selective block-
matching algorithm that can be well integrated in the SURE-
LET framework, and then expose the proposed multiframe
interscale wavelet thresholding; in Section IV, we demonstrate
the efficiency of our solution by comparing the results with
those obtained by some state-of-the-art redundant techniques.
To better outline the potential of our approach, we also provide
the results of a cycle-spinning version (five shift averages) of
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our algorithm; the quality attained is on par with the best video
denoising algorithms.

II. SURE-LET Principle

We denote an original (unknown) video sequence of T

frames containing N pixels by

v = [v1 v2 . . . vN ] with vn = [vn,1 vn,2 . . . vn,T ]T. (1)

We also define a unitary T × 1 vector et such that eT
t vn = vn,t ,

and we assume that the observed noisy video sequence is given
by u = v + n, where n is an additive white Gaussian noise
independent of v, with known T × T interframe covariance
matrix R.

In an orthonormal wavelet representation, the observation
model is preserved in the transformed domain, as well as the
interframe noise covariance matrix R. Therefore, each noisy
wavelet coefficient yj

n ∈ RT , j = 1 . . . J, n = 1 . . . Nj is given
by

yj
n = xj

n + bj
n where bj

n ∼ N (0, R). (2)

Hereafter, we recall the general principle of the SURE-LET
[16] denoising strategy, and show how it can be adapted to
video denoising.

A. Stein’s Unbiased Risk Estimate (SURE)

SURE [18] is an unbiased statistical estimate of the mean-
squared error (MSE) between an original unknown signal and
a processed version of its noisy observation. This estimate
depends only on the observed data and does not require any
prior assumption on the noise-free signal. The only statistical
assumption is made on the noise: additive and Gaussian.

Denoting by v̂, an estimate of the noise-free video v, we
can define the global MSE as

MSE =
1

NT

T∑
t=1

N∑
n=1

eT
t (v̂n − vn)(v̂n − vn)Tet

︸ ︷︷ ︸
N×MSEt

=
1

NT

T∑
t=1

J∑
j=1

Nj∑
n=1

eT
t (x̂j

n − xj
n)(x̂j

n − xj
n)Tet

︸ ︷︷ ︸
Nj×MSEj

t

(3)

where eT
t x̂j

n = θ
j
t (yj

n, pj
n) is the nth pixel of the jth wavelet

subband of the denoised frame t. It is obtained by thresholding
the nth pixel of the jth wavelet subband of the noisy frame
t, taking into account (some of) its neighboring frames. From
now on, we will drop the subband superscript “j” and the
time frame indication “t” for the sake of clarity, when no
ambiguities arise.

Considering this multiframe processing θ : RT × RT → R,
the MSE of any wavelet subband j of any frame t can be
estimated without bias by

ε =
1

N

N∑
n=1

[ (
θ(yn, pn) − eT

t yn

)2
+2eT

t R∇1θ(yn, pn)−NeT
t Ret

]
.

(4)

Here, pn denotes any random variables statistically indepen-
dent of yn. ∇1 stands for the gradient operator relatively to the
first variable of the function θ, i.e., yn (see [17]).

B. Linear Expansion of Thresholds (LET)

The thresholding function is specified by a linear combina-
tion of basic thresholding functions, a strategy that we have
coined LET, that is

θ(yn, pn) = [aT
1 aT

2 . . . aT
K]︸ ︷︷ ︸

aT

⎡
⎢⎢⎢⎣

θ1(yn, pn)
θ2(yn, pn)

...
θK(yn, pn)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
θ(yn,pn)

(5)

where a and θ are both KT × 1 vectors. Each θk : RT ×
R

T −→ R
T is an arbitrary vector-valued thresholding that

will be specified in Section III-C.
Thanks to this linear parameterization, the optimal—in the

minimum ε sense—parameters of (5) are the solution of a
linear system of equations

aopt = M−1C (6)

where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M =
N∑

n=1

θ(yn, pn)θ(yn, pn)T

C =
N∑

n=1

(
θ(yn, pn)yT

n − (∇1θ(yn, pn)
)T

R
)

et .

In video denoising, SURE is particularly robust (i.e., close to
the actual MSE) due to the high number of available samples.
Therefore, it can be reliably used to optimize a large number
of parameters (K > 100 per frame).

III. Algorithm

The video is going to be denoised frame by frame, by
considering a sliding temporal window of τ (odd) neighbor-
ing frames centered around the current frame. For instance,
the denoising of the reference frame t will involve frames
t − (τ − 1)/2 to t + (τ − 1)/2.

The various steps of the proposed algorithm (Fig. 1) are the
following. We first align all the neighboring frames (global
registration) and compensate for their (local) motion, with
respect to the the frame t. Then, this reference frame is
processed in the wavelet domain, using thresholds based on the
values of the wavelet coefficients of the aligned neighboring
frames, and on their own coarser scale coefficients (multi-
frame interscale SURE-LET thresholding). Finally, an inverse
wavelet transform is performed on the denoised coefficients
of this reference frame. These steps are detailed in Sections
III-A, III-B, and III-C.

A. Global Motion Compensation

As a global motion model, we can simply consider the
translations due to camera motions (pan/tilt). The optimal
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Fig. 1. Overview of the proposed denoising algorithm.

integer shift sopt required to register a given frame t + �t with
respect to the reference frame t, is the index of the maximum
of the cross-correlation function between the two frames [14],
[20], that is

sopt = argmaxs F−1
{
Ut(·)U∗

t+�t(·)
}

(s) (7)

where F−1 {·} denotes the inverse discrete Fourier transform
and Ut(ω), Ut+�t(ω) are respectively the discrete Fourier
transforms of the reference frame and of the current frame.

B. Local Motion Compensation by Selective Block-Matching

A global motion model does not reflect the local interframe
motions. Block-matching [19] is a standard procedure used
in video processing to compensate for these local interframe
motions. Here, each of the τ − 1 neighboring frames is
replaced by a version that is motion-compensated with respect
to the reference frame. Considering one of these neighboring
frames, motion compensation is performed as follows: the
reference frame is divided into blocks;1 then, for each block
of this frame, a search for similar blocks is performed in the
neighboring frame; the compensated frame is then built by
pasting the best matching block of the neighboring frame at
the location of the reference block. Several parameters are
therefore involved.

1) The size of the considered blocks: We found that
rectangular blocks of fixed size 8 × 16 were a good
trade-off between accurate motion estimation, robustness
toward noise and computational complexity. Note, that a
rectangular shape is well-adapted to the standard video
format, which are not of squared size.

2) The size of the search region: Here again, the trade-
off evoked above led us to consider a square region
of 15 × 15 pixels centered around the position of the

1In this letter, we only consider nonoverlapping blocks. Note that better
peak signal-to-noise ratio (PSNR) results ( 0.2–0.7 dB) can be obtained with
overlapping blocks, but the computational burden then becomes heavier.

Fig. 2. (a) Frame no. 3 of the Tennis sequence: PSNR = 22.11 dB. (b) Frame
no. 6 of the Tennis sequence (reference frame): PSNR = 22.11 dB. (c) Detected
motion with corresponding blocks to be matched. (d) Motion compensated
frame no. 3.

reference block. Note that we obtained similar results
with a rectangular search region of 11 × 21 pixels.

3) The criterion used for measuring the similarity between
blocks: The two most popular measures of similarities
are the mean of the absolute difference and the MSE.
We experimentally observed that the MSE gave slightly
better results.

4) The way of exploring the search region: We retained the
exhaustive search because of its simplicity and accuracy.
Note that there is a huge amount of literature (e.g., [21]–
[23]) exposing fast algorithms for efficiently exploring
the search region.

Instead of trying to find the best matches for every block
of the reference frame, we consider only blocks where a
significant motion occurred. Indeed, in noisy video sequences
there is a strong risk of matching the noise component in the
still regions. In that case, the interframe noise becomes locally
highly correlated [see Fig. 3(b)]. To avoid this risk and still be
able to consider the interframe noise as stationary (with a good
approximation), we propose to perform motion compensation
only in the blocks, where a significant motion between frames
was detected, as illustrated in Fig. 2.

The proposed motion detection involves the following two
steps.

1) In order to be robust with respect to noise, the consid-
ered frames are smoothed by the following regularized
Wiener filter:

H(ω) =

⎧⎨
⎩

1 − |N(ω)|2
|U(ω)|2 , if |U(ω)|2 > λ1|N(ω)|2

0, otherwise
(8)

where |N(ω)|2 and |U(ω)|2 are respectively the power
spectrum of the noise (constant for white Gaussian
noise) and of the noisy frame. λ1 ≥ 1 is the regular-
ization parameter; its value will be discussed hereafter.

2) The MSEs between the two considered frames are
then computed inside each block. The minimum of
these MSEs (MSEmin) is considered as the “no motion
level.” Consequently, the block-matching will be only
performed for those blocks of the reference frame having
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a MSE above a given threshold of motion λ2 MSEmin,
where λ2 ≥ 1.

In our experiments, we found that any values of λ1 and
λ2 chosen in the range [2; 3] gave similar results (±0.1 dB).
A smaller value of these two parameters will decrease the
robustness with respect to noise. A higher value of the regu-
larization parameter λ1 will oversmooth the frames, decreasing
the accuracy of the subsequent block-matching. A higher value
of the parameter λ2 will speed up the algorithm, but the
subsequent motion compensation will be less effective. In
practice, we have selected λ1 = λ2 =

√
6.

The block-matching itself is performed on the smoothed
frames, in order to decrease the sensitivity to noise. For
each frame and for each detected block, the minimum MSE
(computed between the reference block and its best matching
block) is stored; the inverse of the average of these MSEs
will then serve as a weight qt for the considered frame t in
the subsequent wavelet-domain thresholding (Section III-C).
These weights are especially important when there is no
or little correlation between adjacent frames; this situation
appears when, for example, a quick change of camera occurs.

The proposed selective block-matching procedure has two
key advantages.

1) It leads to a fast local motion compensation, despite the
fact that an exhaustive search is performed.

2) The interframe noise covariance matrix can be as-
sumed to be unaffected by the local motion compen-
sation [Fig. 3(c)], contrary to standard block-matching
[Fig. 3(b)].

C. Multiframe Interscale Wavelet Thresholding

Once the motion between a reference frame and a rea-
sonable number of adjacent frames has been compensated, a
2-D orthonormal wavelet transform is applied to each motion-
compensated frame. Each highpass subband of the reference
frame is then denoised according to the generic procedure
described in Section II-B, (5), in which K = 4 and

θ(yn, pn) = aT
1 γ(pT

nWpn)γ(yT
nWyn)yn︸ ︷︷ ︸

θ1(yn,pn)

+ aT
2 γ(pT

nWpn)γ(yT
nWyn)yn︸ ︷︷ ︸

θ2(yn,pn)

+ aT
3 γ(pT

nWpn)γ(yT
nWyn)yn︸ ︷︷ ︸

θ3(yn,pn)

+ aT
4 γ(pT

nWpn)γ(yT
nWyn)yn︸ ︷︷ ︸

θ4(yn,pn)

(9)

where

1) γ(x) = exp
(
− |x|

2λ2
3

)
and γ(x) = 1 − γ(x) are two

discriminative functions that classify the wavelet coef-
ficients in four groups, based on their magnitude and
the magnitude of their parent pn.2 λ3 is a threshold that
rules this categorization of the wavelet coefficients. The

2These interscale predictors (parents) pn are obtained by a rigorous proce-
dure based on group-delay compensation (see [17]).

Fig. 3. (a) Interframe noise covariance matrix for the 11 first frames of
the noisy Tennis sequence before motion compensation (frame no. 6 is the
reference frame). (b) Interframe noise covariance matrix after a standard
block-matching algorithm. (c) Interframe noise covariance matrix after the
proposed selective block-matching algorithm.

numerous3 linear parameters involved in the multiframe
thresholding bring a high level of flexibility to the de-
noising process. As a consequence, the nonlinear param-
eter λ3 does not require a data-dependent optimization;
we experimentally found that λ3 = λ2 = λ1 =

√
6 gave

the best results. Note that this value is the same that we
used for multichannel denoising in [17].

2) Each ak is a τ × 1 vector of linear parameters that is
optimized for each subband by the procedure described
in Section II-B, (6).

3) W = QTR−1
τ Q is a τ × τ weighting matrix that takes

into account:
a) the potential interframe signal-to-noise (SNR) dis-

parities, through the inverse of the τ×τ interframe
noise covariance matrix Rτ ;

b) the potential weak interframe correlations, through
the weights qt resulting from the block-matching
(Section III-B) and stored in the τ×τ diagonal ma-
trix Q. The weights are normalized to ensure that
the Frobenius norm of Q, ‖Q‖2 =

√
trace{QTQ}

= 1.

D. Computational Complexity

To denoise a given reference frame using its τ neighboring
frames, the computational complexity of our algorithm can be
evaluated as follows.

1) Global motion compensation: O((τ − 1) · N · log2(N)).
2) Local motion compensation: O((τ − 1) · Bx · By · Rx ·

Ry · N
Sx·Sy

), where Bx × By = 8 × 16 is the block size,
Rx × Ry = 15 × 15 the size of the search region and
(Sx, Sy) = (8, 16) the step size between two adjacent
reference blocks.

3) Orthonormal discrete wavelet transform: O(τ · N ·
log2(N)).

4) Construction of the interscale predictor: O(τ · N ·
log2(N)).

5) Application of the interscale wavelet thresholding: O(τ ·
K · N).

When summing up all these operations, we get approximately
2800 operations per pixel (ops/pix) to denoise one N = 288 ×
352 frame using its τ = 11 neighboring frames. However, since
the proposed block matching procedure is selective, the actual
number of operations is much lower in practice.

3Four times the considered number of adjacent frames per subband.
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IV. Experiments

We propose now to evaluate the performance of our algo-
rithm in comparison to some other state-of-the-art video
denoising methods (all are redundant).

1) Pižurica et al. sequential wavelet domain and temporal
filtering (SEQWT) [9]: A spatially adaptive Bayesian
shrinkage is applied in the undecimated wavelet-domain,
followed by a recursive temporal filtering.

2) Zlokolica et al. wavelet domain recursive spatio-
temporal filtering (WRSTF) [10]: In the undecimated
wavelet domain, motion estimation and adaptive tem-
poral filtering are recursively performed, followed by an
intraframe spatially adaptive filter.

3) Dabov et al. video block-matching and 3-D filtering
(VBM3D) [24]: The first step of this hybrid two-step
algorithm consists of a 3-D spatio-temporal block-
matching followed by a 3-D wavelet-domain hard-
thresholding. A first denoised estimate is then obtained
by an aggregation of the redundant blockwise estimates.
The second step is very similar, except that: the block-
matching is performed on the first estimate; the 3-D
wavelet transform is replaced by a 2-D discrete cosine
transform, followed by a 1-D wavelet transform and the
hard-thresholding is replaced by a Wiener filter. Up to
our knowledge, the PSNRs obtained by the VBM3D are
among the best published so far for video denoising.

4) Jovanov et al. algorithm [15]: This very recent video
denoising algorithm extends the SEQWT by integrating
a filtered version of the motion field estimated by a
standard real-time video codec. Contrary to the other
video denoising methods evaluated in this section, this
algorithm is designed for real-time applications, and
thus, it uses one previous frame only.

The results of the above first two denoising algorithms
can be downloaded at http://telin.ugent.be/ vzlokoli/Results−J/.
Some noise-free and noisy video sequences can be down-
loaded at http://bigwww.epfl.ch/luisier/VideoDenoising/, to-
gether with our own denoising results. The results of the
VBM3D have been obtained by running the corresponding
MATLAB code.4 The authors of [15] have kindly provided us
with their denoised sequences. This allows a fair comparison
between the various methods. The noisy video sequences
have been simulated by adding (without clipping) independent
white Gaussian noises of given variance σ2 on each frame,
i.e., R = σ2Id. For our algorithm, we performed four levels
of decomposition of an orthonormal wavelet transform using
Daubechies symlet filters with eight vanishing moments [3].
τ = 11 adjacent frames (five past, five future and the current
frame) were considered in our multiframe interscale thresh-
olding (9) to denoise each current frame.

In Fig. 4, we show the peak signal-to-noise ratio (PSNR =
10 log10

2552

MSE dB) in each frame of various video sequences
at various input PSNRs. We can observe that our nonredun-
dant solution achieves globally, and for almost every frame,
significantly better results than the three purely wavelet-based

4Available at: http://www.cs.tut.fi/˜foi/GCF-BM3D /#ref software.

Fig. 4. Comparison of the PSNR evolution for various video sequences and
denoising algorithms.“�” markers refer to the proposed algorithm, “∗” to [9],
“◦” to [10], “
” to [15] (to be added), and “×” to [24].

techniques. Yet, it is usually outperformed by the more sophis-
ticated VBM3D. We must point out that these results are very
encouraging since we are only considering a nonredundant
procedure, whereas the other algorithms take advantage of
their redundancy. Note that significantly better results can be
obtained by increasing the shift-invariance of the proposed
algorithm. Indeed, by averaging five cycle-spins (CS) of the
whole denoising process, we can reach a PSNR gain of up to
1 dB (see Table I), while maintaining a reasonable computa-
tional complexity (at most ∼ 5 × 2800 = 14 000 ops/pix).

In Table I, we show a global PSNR comparison of the
various algorithms. As observed, the nonredundant variant
of the proposed algorithm consistently gives higher PSNR
(+1 dB) than the other redundant wavelet-based approaches,
while being usually outperformed by the VBM3D. Yet, we
notice that the slightly redundant variant of our algorithm is
very competitive with the state-of-the-art VBM3D.

We have also reported in Table I the results obtained by
the recent K-means singular value decomposition (K-SVD)
video denoising algorithm [25]. Note that, for this algorithm,
the noisy videos have been clipped prior to denoising and
the denoised videos have been clipped and cropped prior to
PSNR computation.5 This brings a significant gain (up to 1 dB)
over the other denoising algorithms compared in this section
(especially under heavy noise conditions).

From a computational standpoint, the method described
in [25] requires ∼75 000 ops/pix, which corresponds to the
cost of averaging 26 CS of the proposed algorithm. In [24],
there is no analysis of algorithm’s complexity. However, based
on the complexity formula given in their paper on image de-
noising [26], we obtain an overall number of ∼15 500 ops/pix
(similar to averaging ∼5 CS of the proposed algorithm). From
a visual point of view, our solution provides a good trade-off
between noise reduction and preservation of small features
(see Fig. 5).

5Private communication with the authors of [25].
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TABLE I

Comparison of Some State-of-the-Art Video Denoising Algorithms

σ 5 10 15 20 25 30 50 100
Input PSNR 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13
Method Tennis 240 × 352
SEQWT [9] N/A 30.96 28.34 26.88 N/A N/A N/A N/A
WRSTF [10] N/A 32.57 30.45 28.96 27.83 N/A N/A N/A
VBM3D [24] 37.82 34.14 32.10 30.39 28.84 27.41 24.81 22.13
Proposed 37.38 33.52 31.41 29.96 28.85 27.94 25.50 22.60
Proposed (5 CS) 37.81 34.01 31.90 30.44 29.32 28.41 26.04 23.42
K-SVD [25] 38.16 34.33 32.10 30.51 29.32 28.43 26.34 N/A
Method Flowers 240 × 352
SEQWT [9] N/A 29.62 27.10 25.32 N/A N/A N/A N/A
WRSTF [10] N/A 30.77 28.10 26.33 24.92 N/A N/A N/A
VBM3D [24] 36.51 32.04 29.66 28.07 26.82 25.74 21.53 17.27
Proposed 36.22 31.63 29.11 27.31 25.89 24.76 21.73 18.54
Proposed (5 CS) 36.59 32.18 29.75 27.99 26.59 25.44 22.32 18.93
K-SVD [25] 36.73 32.16 29.69 28.03 26.80 25.56 22.80 N/A
Method Foreman 288 × 352
WRSTF [10] N/A 35.33 33.14 31.55 30.30 N/A N/A N/A
VBM3D [24] 40.21 37.19 35.59 34.39 33.39 32.52 29.75 24.02
Proposed 39.60 36.13 34.13 32.73 31.61 30.71 28.15 24.85
Proposed (5 CS) 40.26 36.87 34.94 33.54 32.42 31.49 28.91 25.75
Method Bus 288 × 352
WRSTF [10] N/A 32.78 30.40 28.76 27.46 N/A N/A N/A
VBM3D [24] 37.28 32.88 30.49 28.95 27.81 26.93 24.40 20.74
Proposed 37.45 33.13 30.69 28.99 27.74 26.74 24.04 21.12
Proposed (5 CS) 37.97 33.79 31.39 29.71 28.46 27.45 24.67 21.62

Note: PSNRs displayed in this table correspond to the averaged values over frames 10–20 of the various video sequences, using frames 5–25 to avoid
potential boundary artifacts in the temporal dimension. PSNR results of the K-SVD have not been obtained under the same conditions as the other algorithms
(see the text).

Fig. 5. (a) Part of the frame no. 29 of the Bus video sequence. (b) Noisy
version of it: PSNR = 20.17 dB. (c) Result of [15]: PSNR = 26.82 dB.
(d) Result of [24]: PSNR = 27.92 dB. (e) Result of nonredundant SURE-LET:
PSNR = 27.58 dB. (f) Result of SURE-LET (5 CS): PSNR = 28.36 dB.

V. Conclusion

In this letter, we have presented a relatively simple and
yet very efficient orthonormal wavelet-domain video denois-
ing algorithm. Thanks to a proper selective block-matching
procedure, the effect of motion compensation on the noise
statistics became negligible, and an adapted multiframe inter-
scale SURE-LET thresholding could be applied. The proposed
algorithm has been shown to favorably compare with most
state-of-the-art redundant wavelet-based approaches, while

having a lighter computational load. However, it is necessary
to increase the shift-invariance of the proposed solution to
reach the same level of performance as the very best video
denoising algorithms available [24], [25].
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