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1. Introduction

1.1. Motivation and objectives

ABSTRACT

We present a fast algorithm for image restoration in the presence of Poisson noise. Our
approach is based on (1) the minimization of an unbiased estimate of the MSE for
Poisson noise, (2) a linear parametrization of the denoising process and (3) the
preservation of Poisson statistics across scales within the Haar DWT. The minimization
of the MSE estimate is performed independently in each wavelet subband, but this is
equivalent to a global image-domain MSE minimization, thanks to the orthogonality of
Haar wavelets. This is an important difference with standard Poisson noise-removal
methods, in particular those that rely on a non-linear preprocessing of the data to
stabilize the variance.

Our non-redundant interscale wavelet thresholding outperforms standard variance-
stabilizing schemes, even when the latter are applied in a translation-invariant setting
(cycle-spinning). It also achieves a quality similar to a state-of-the-art multiscale
method that was specially developed for Poisson data. Considering that the computa-
tional complexity of our method is orders of magnitude lower, it is a very competitive
alternative.

The proposed approach is particularly promising in the context of low signal
intensities and/or large data sets. This is illustrated experimentally with the denoising of
low-count fluorescence micrographs of a biological sample.

© 2009 Elsevier B.V. All rights reserved.

device is typically shot-noise limited, i.e., the measure-
ment noise is strongly signal dependent. Thus, opting for a
non-additive, non-Gaussian model can yield significant
restoration-quality improvements in such applications.
In this paper we present a novel algorithmic solution

“Additive white Gaussian noise” is a ubiquitous model
in the context of statistical image restoration. In many
applications, however, the current trend towards quanti-
tative imaging calls for less generic models that better
account for the physical acquisition process. The need for
such models is particularly stringent in biomicroscopy,
where live samples are often observed at very low light
levels, due to acquisition-time and phototoxicity con-
straints [1]. In this regime, the performance of the imaging
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for denoising low-count images. Motivated by practical
applications in biomedical imaging, we aim at a tractable
compromise between restoration quality, computational
complexity and automation. Specifically, our goals are the
following. First, we want a method that is designed for
Poissonian noise, which is the most common model for
low-intensity imaging. Second, the method should satisfy
strict constraints in terms of computational cost and
memory requirements, so as to be able to process large
data sets. Finally, we want the algorithm to require as less
user input as possible in order to facilitate its application
and to enhance the reproducibility of its results.


www.sciencedirect.com/science/journal/sigpro
www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2009.07.009
mailto:cedric.vonesch@epfl.ch

416 F. Luisier et al. / Signal Processing 90 (2010) 415-427

1.2. The PURE-LET approach

To address the aforementioned challenges, our method
is based on the following concepts.

The fundamental tool is a statistical estimate of the
mean square error (MSE), or “risk”, between the (unknown)
noiseless image and the processed noisy image. Owing to
the Poisson noise hypothesis, we refer to this result as the
Poisson unbiased risk estimate (PURE); this is the
equivalent of Stein’s unbiased risk estimate (SURE) which
holds for Gaussian statistics. In particular, we develop an
interscale PURE that we believe to be novel. We then
minimize this MSE estimate over a collection of “accep-
table” denoising processes to find the best one, in
the sense of the signal-to-noise ratio (SNR), which is a
widespread measure of restoration quality [2]. To our
knowledge, this is actually the first reported use of an
(unbiased) MSE estimate in the Poisson-noise case for
image processing.

The efficiency of our method stems from the use of a
simple unnormalized Haar-wavelet transform and from the
concept of linear expansion of thresholds (LET): the
“acceptable” denoising processes are expressed as a linear
combination of elementary denoising processes, from
which only the weights are unknown. It is these weights
that are then computed by minimizing the PURE, through
the resolution of a simple linear system of equations. This
means that all the parameters of the algorithm are adjusted
completely automatically, without requiring user input.

For each subband, our restoration functions involve
several parameters, which provides more flexibility than
standard single-parameter thresholding functions. Impor-
tantly, the thresholds are adapted to local estimates of the
(signal-dependent) noise variance; this is a fundamental
difference with our previous work [3]. These estimates are
derived from the corresponding low-pass coefficients at
the same scale; the latter are also used to incorporate
interscale relationships into the denoising functions.
The resulting procedure can be easily integrated into the
wavelet decomposition, which is non-redundant. The MSE
estimate is optimized independently for each subband by
exploiting the orthogonality of the Haar wavelet basis.

As a result, our algorithm has low computational
complexity and modest memory requirements. These are
valuable features for denoising large data sets, such as
those typically produced in biomedical applications.
Importantly, this computational efficiency is not traded
for quality. On the contrary, the algorithm yields improved
results compared to traditional Gaussian-inspired ap-
proaches, and it performs competitively with a state-
of-the-art multiscale method that was specially developed
for Poisson data.

1.3. Related work

In the context of image denoising, several works are
based on the fact that Poisson statistics are preserved
across scales in the low-pass channels of an unnormalized
Haar wavelet transform. This fundamental property was
for example used by Timmermann and Nowak [4] to

construct a multiscale Bayesian model of the image; an
extension for estimating all parameters of the model using
the expectation-maximization algorithm was derived in
[5]. A similar model was proposed independently by
Kolaczyk for 1D signals [6], using the concept of recursive
dyadic partition. The aforementioned property was also
used within a user-calibrated hypothesis-testing approach
for astrophysical imaging [7].

Notice that the Bayesian framework has also been used
in conjunction with more involved multiscale transforma-
tions than the Haar transform. For example, Sardy et al. [8]
considered a general ¢;-penalized-likelihood framework
for arbitrary wavelet bases and noise models, including
the Poisson case. More recently, Willett and Nowak have
proposed a platelet-based penalized-likelihood estimator
that was shown to be very efficient for denoising
piecewise-smooth images [9].

A widespread alternative to the direct handling of
Poisson statistics is to apply variance-stabilizing trans-
forms (VSTs)—with the underlying idea of exploiting the
broad class of denoising methods that are based on
a Gaussian noise model [10]. Since the seminal work of
Anscombe [11], more involved VSTs have been proposed,
such as the Haar-Fisz transform [12]. Such approaches
belong to the state-of-the-art for 1D wavelet-based
Poisson noise removal [2,12]. They have been combined
with various other methodologies, e.g., Bayesian multi-
scale likelihood models that can be applied to arbitrary
wavelet transforms [13]. Very recently, a hybrid approach
that combines VSTs, hypothesis testing, ¢;-penalized
reconstruction and advanced redundant multiscale repre-
sentations has been proposed by Zhang et al. [14].

With the exception of cross-validation methods
[8,15,16], however, the potential of purely data-driven
techniques seems to have remained under-exploited for
the wavelet-based restoration of images corrupted by
Poisson noise. What we claim to be original in the present
paper is the combination of a risk estimate for Poisson
statistics with the Haar multiresolution, which leads to a
fast denoising procedure. In particular, up to our knowl-
edge, the use of a Poisson MSE estimate is unreported,
at least in the signal/image processing literature, not to
mention the more sophisticated interscale extension that
we have worked out.

While this paper was under review, we became aware
of the independent work of Hirakawa and Wolfe [31],
which is related to the results presented here.

1.4. Organization of the paper

The paper is organized as follows. In Section 2,
we derive an unbiased risk estimate for a broad class
of Poisson denoising algorithms formulated in the Haar-
wavelet domain. In Section 3, we specify several such
algorithms based on our previous work and experimental
insights. In Section 4, we compare our approach to typical
variance-stabilizing methods, as well as a recent algo-
rithm specifically designed for Poisson statistics. Finally
we present results obtained with real fluorescence-
microscopy data in Section 5.
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2. Theory

Recall that m is a Poisson random variable of intensity
e R if and only if

k
P(m:k):e*/‘% (1)

for every k € N; we use the standard notation m~2(u).
Throughout this paper, for a given vector v € RY, we use
the notation v, to refer to its n-th component, where
ne{l,...,N}. m will denote a vector of N independent
Poisson random variables m, of underlying intensities y,,
i.e.,, mp~2(1,). A realization of m can be thought of as a
noisy measurement of the intensity signal u. Note that in
contrast with Bayesian approaches, u is considered to be
deterministic in the present work. Based on the measure-
ment m, our goal is to find an estimate j that is the closest
possible to the original signal in the minimum mean
squared error (MSE) sense; that is, we want to minimize

N
D Gt — ).
n=1

The MSE is directly related to the peak-signal-to-noise
ratio (PSNR), which is the most common measure of
restoration quality in the denoising literature:

2
PSNR = 10log;, <I(;[“§’é> :

where I is the maximum intensity of the noise-free
signal. In addition, the MSE has nice mathematical
properties that greatly facilitate its manipulation and
optimization in comparison with other quality measures.

1. 51
MSE = llit — > =

=

2.1. Some useful properties of the Poisson distribution

The Poisson distribution enjoys the following useful
properties.

Property 1. The sum of independent Poisson random
variables is also a Poisson random variable, whose intensity
is the sum of the original intensities.

For example, my + my~2(uy + py).

Property 2. If m~2(u) and 0: R — R is a real function
such that &{|0(m)|} < oo, then

&{ul(m)} = &{mo(m — 1)},

where &{-} stands for the mathematical expectation operator.
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Proof.

k
Epom) = 3 uodo’ e

keN
k
u _

= Ok —1)————e#

keNZ\(O) (k—1)

k

= > kok—1ler

keN
= &{mO(m — 1)}.

Note that Property 2 is the Poisson equivalent of Stein’s
lemma for Gaussian statistics [17]; similar results can be
found e.g., in [18,19]. As a straightforward application of
this property, we note that we have

w2 = &mam — 1)),

Finally we state a result dating back to [20] that
will be useful for the experimental part of this work
(Section 5). O

Property 3 (Binomial selection). Let m~2%(¢,n) be a bino-
mial random variable, where 1 €[0,1] represents the
probability of success. If the number of trials ¢e N is
random and follows a Poisson distribution with mean A, then
m is itself Poisson distributed with mean pu = ni.

2.2. The unnormalized Haar discrete wavelet transform

The unnormalized Haar discrete wavelet transform
(DWT) can be seen as a standard two-channel filterbank
(see Fig. 1). The analysis pair of lowpass/highpass filters is
given in the z-transform domain by

Ho»)=1+2z7",
Gu2=1-2z1.

The corresponding synthesis pair is

Hs(2) = 1Ha(z"),

Gs(2) = 1Ga(z ™).

In this work, the unnormalized Haar scaling coefficients
of the measurement m at scalesj = 1,...,] are denoted by
s ¢ RN, where N;=N/2, and & € RY stands for the
associated wavelet coefficients (we assume that the signal
dimension is divisible by 2/). Setting s® =m, these
coefficients are obtained from the following sums and

) | j S5/ 1 e
5  Sumesdheme ! ;
| G, (@) —» s/ ——  applied “—»@ G, (2 :
! ! recursively ! !

Fig. 1. Filter bank implementation of the unnormalized discrete Haar wavelet transform and principle of the class of denoising algorithms described by

(2). The scheme is applied recursively on the low-pass channel output.
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differences:

sh=sh, +s5,
d =1 -1

2n-1

forj=1,....J.

The original sequence m =s° is simply recovered by
computing

S = (sh+ /2 _
{sz,fl —h—dyz =l
Similarly, we denote by ¢/ and & the scaling and wavelet
coefficients of the original signal u at a given scale j.
Note that, by linearity of the wavelet transform, we have
{{d’}_é’ and &{s)} = o’,.

The key properties of the unnormalized Haar DWT are
the following.

1. It is an orthogonal transform. In particular, we can split
the MSE into subband-specific error terms:

MSE — 2 ||a —d| +i£||$’—ﬁ||2
- N =N '
This implies that we can minimize the MSE for each
subband independently, while ensuring a global sig-
nal-domain MSE minimization.

2. At a given scale j, the scaling coefficients of an input
vector of independent Poisson random variables are
also independent Poisson random variables, thanks to
Property 1 of the Poisson distribution.

2.3. PURE: a Haar-wavelet-domain Poisson unbiased risk
estimate

In principle, the estimate &' may be constructed using
all available subbands of the measurement y; in practice,
however, standard thresholding techniques only use the
corresponding wavelet subband of the measurement, &'
In the sequel, we will consider denoising algorithms
where & also depends on the scaling coefficients at the
same scale s/. This means that we have the following
functional relationship:

J=0d,s). (2)

As usual, the lowpass residual is not processed, i.e., 6/ = §/.
Our algorithmic framework is illustrated in Fig. 1.

The above choice is advantageous from a computa-
tional standpoint because such a restoration procedure
can be implemented in parallel with the wavelet decom-
position, which yields the scaling coefficients s’ as a
by-product. Furthermore, this framework comprises ad-
vanced denoising schemes that exploit interscale depen-
dencies via the scaling coefficients s/ (see Section 3.2.3).
Finally, it allows us to minimize MSE; = |0/(d,s/) —
52 /N; independently for each wavelet subband We will
thus focus on a fixed scale and drop the superscript j to
simplify the notations.

The MSE is a very popular measure of restoration
quality in phantom experiments, where the ground-truth

signal is known. However, it is not accessible in real
situations where the original noise-free signal is un-
known. Our approach is thus to construct a statistical
estimate of this quantity that solely depends on the
measurement. This type of estimators is very accurate in
the context of image processing, because it can rely
on a large number of samples. In the sequel, we borrow
the term risk from the statistics literature, to refer to the
expectation of the MSE.

In the Gaussian case, the scaling coefficients s"vare
statistically independent of the wavelet coefficients & (in
an orthogonal wavelet domain). This is in contrast with
the Poisson case, for which & and s/ are statistically
dependent and even correlated. This makes the derivation
of a bivariate (i.e., involving both & and s') SURE-like MSE
estimate less obvious. In the following theorem, we give
an expression of an unbiased estimate of the MSE in a
given subband j of the unnormalized Haar DWT defined in
Section 2.2. This novel result serves as a data-dependent
quantitative measure to be minimized for Poisson in-
tensity estimation. The family of vectors (e;),_;.
denotes the canonical basis of RV, i.e., all components of
e, are zero, except for the n-th component, which is equal
to one.

Theorem 1. Let 6(d,s) = ¢(d,s/) be an estimate of the
noise-free wavelet coefficients 6 = &. Define 0*(d,s) and
6 (d,s) by

07 (d,s) =
0,(d,s) =

On(d + €;,5 — €y),
On(d — e, s —€p).

(3)
Then the random variable

1 -
g = 5 (10@.9)° + |d|* —1"s —d'(0"(d.s)
J

+6%(d,s)) —s"(0"(d,s) - 67(d,s))) (4)

is an unbiased estimate of the MSE for the subband under
consideration, i.e., &{gj} = &{MSE;}.

Proof. The proof relies centrally on the fact that, within a
given scale the scaling coefficients are independent
Poisson random variables. We consider the case where
j=1, so that we can use m=s! and pu = ¢/~ to avoid
superscripts.

We first develop the squared error between ¢ and its
estimate 0(d,s), using the fact that J is a deterministic
quantity:

£110d,s) — 3117} = £{10(d.5)1*} + 1812 —2 £{5"0(d. )} .
) an
(5)
Now, we can evaluate the two expressions (III) that
involve the unknown data 6.

(1) 1812 = Sy O
We notice that

(6n)* = E{fign(Man — Man_1)} + 6 {Uyn_

(map_1 — mMop)}.
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By applying Property 2 for 0(m)=m — my,_; and
for 0(m) = m — my,, by using the fact that m,, and
my,_1 are statistically independent, we get

(6n)* = E{(Man — Mop_1)* — (Mo + Mop_1)} =
éy{(dn)z — Sn}.

Therefore ||5||2N= s{d)? —17s).
(1) &16"0(d,s)} = 3, | 6(0n0n(d, 9)):
We can successively write

6E{0n0n(d,s)}
= &{ppntn(d,s)) — E{pty,_10n(d,s)}
Prep2 E{Mpn0n(d — ey, s — €)}
— &{Map_10n(d + €4, — €)}

_ o Mon —Mopq +
- (5{42 0, (d,s) + 0, (d, s))}
o (Mop +Mop 1 +
+ g{f(en d,s)— 0, s))}
= 26100, (@.9) + 05, 5))
2 Elsn(0;(d.9) — 05, s)).

Thus 261870, s)} = £1d" (0 (d,s) + 07 (d,s))}+
&(sT(07(d,s) — 07 (d,s))}.

Putting these results back into (5) gives the desired
equality. For j>2, the proof is based on the same
idea. O

We will refer to (4) as the Poisson unbiased risk estimate
(PURE). This estimate involves finite differences of the
restoration function (instead of derivatives in the Gaus-
sian case). It can be used to evaluate the restoration
quality of any algorithm of the form (2) in terms of MSE. In
the next section, we will consider algorithms that depend
on a set of parameters, and we will minimize the PURE in
order to obtain their optimal values.

2.4. Extension to multidimensional signal denoising

While the above result (4) is stated in a 1D setting,
it can easily be extended to arbitrary dimensions when
using the separable Haar DWT. Indeed, Theorem 1
essentially relies on the fact that the wavelet coefficients
are differences of Poisson random variables. In higher
dimensions, it suffices to observe that the wavelet
coefficients are differences of sums of scaling coefficients;
these sums are still Poisson distributed, according to
Property 1.

3. PURE-based wavelet thresholding
3.1. PUREshrink

As a benchmark for illustrating our approach, we
propose a wavelet-domain estimator which consists
in applying the popular soft-threshold with a PURE-
optimized threshold. Our PUREshrink estimator can be
viewed as the transposition of Donoho and Johnstone’s

Gaussian SUREshrink [21] to Poisson noise removal. An
important difference is that the method described in [21]
forces the threshold T to be smaller than the universal
threshold (otherwise it is set to the value of the universal
threshold); this is known to be suboptimal for image-
denoising applications [22]. Our threshold optimization
totally relies on the minimization of the PURE (without
restrictions).

Contrary to the Gaussian case, where the noise is
stationary and completely described by its variance,!
for Poisson data, the amount of noise directly depends
on the intensity we want to estimate. Thus, for deciding
on the amount of shrinkage, we use a threshold T that is
proportional to the square root of the scaling coefficient at
the same location and scale. This quantity is an estimate
of the local noise standard deviation, so that it is a good
reference for assessing the significance of a wavelet
coefficient. Indeed, each wavelet coefficient of the un-
normalized Haar transform follows a Skellam distribution
[23], whose variance is equal to the sum of the two
underlying Poisson intensities, i.e., approximately the
corresponding scaling coefficient. Note that in the Haar-
Fisz transform [12], the scaling coefficients are also
considered as an estimate of the local noise variance and
thus used to stabilize it. The PUREshrink estimator is
therefore defined as

05UREshrink(d, s; a) = sign(d,)max(|dn| — a+/|sql,0), (6)

where, for each wavelet subband, the parameter a is
set to the value that minimizes the PURE (4) with
0(d S) — 0PUREshrink(d s: (1).

3.2. PURE-LET

We will now introduce a family of more elaborate
denoising functions and compare them with the basic
PUREshrink procedure. Following our recently devised
SURE-LET strategy [3], we propose to consider a wavelet
estimator that is formulated as a linear expansion of
thresholds (LET), i.e.,

K
HLET(d, S; a) = z akOk(d, S),
k=1

where the 6,’s are generic estimators that can be chosen
arbitrarily. In this section, we will gradually specify more
elaborate estimators 6, (e.g., by taking into account
redundant information across scales), and we will show
how these choices yield substantially improved denoising
quality.

Thanks to this linear parameterization, the unbiased
estimate of the MSE in (4) is quadratic with respect to the
parameters a € R¥. Therefore, its minimization boils
down to the resolution of a linear system of equations
with small dimension K:

a:M’lc, (7)

! The noise is usually assumed to be zero-mean.
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where for 1 <k, ¢ <K,
¢ = [d' (0, (d.s) + 0{(d.s)) + (0, (d,5) — 0;(d,))]/2,
My, = 0,(d,$)"0,(d, ).
(8)
The definition of 8} (d,s) and 6} (d,s) is similar to (3).

3.2.1. Basic thresholding function

Similarly to [22], we propose a linearly parameterized
thresholding function with K = 2 parameters (a; and a,),
whose n-th component is defined by

2
07, s: [0y ao]") = aydy + ay (1 —exp ( 2‘2{3) ) dn.  (9)

In this expression, the linear parameters a; and a, define a
compromise between two regimes: either the wavelet
coefficient d, is kept as is (signal preservation) or it is
shrinked towards zero (noise suppression). The exponen-
tial function has the advantage of being smooth, which
reduces the variance of the estimator.

As in the PUREshrink estimator, the threshold T is
directly linked to the local noise variance, estimated from
the magnitude of the corresponding scaling coefficient
|sn|. However, thanks to the degrees of freedom provided
by the two linear parameters a; and a,, the value of this
threshold does not need to be optimized. By running
several simulations, we found that T? = 6|s,| constituted
a good choice, inducing no significant loss compared
to a subband-optimized threshold. Our experiments (see

Lowpass: s

Interscale predictor: d
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Fig. 3) show that the above thresholding function
is already more efficient (approx. +0.25dB) than the
previously presented PUREshrink (6).

3.2.2. Interscale sign dependencies

The integration of interscale dependencies has
already been shown to bring a substantial improvement
in the context of additive Gaussian white noise removal
[22]. Therefore, we propose here an analogous inter-
scale wavelet thresholding, but for Poisson intensity
estimation. The idea is to exploit the scaling coefficients
s to “predict” and reinforce the significant wavelet
coefficients of d at the same scale. Indeed, the scaling
coefficients offer improved SNR because they arise from
Poisson random variables with summed intensities. They
also contain all the information about coarser-scale
wavelet coefficients.

To construct an interscale predictor of the wavelet
coefficient d,, we simply compute the difference between
the two scaling coefficients that surround s,:

dn=Sp_1 — Snt1-

The whole procedure boils down to applying a centered
gradient filter on the low-pass subband, as illustrated in
the diagram of Fig. 2.

By taking a closer look at Fig. 2, it can be observed that
the signs of the interscale predictor coefficients are
consistent with those of the corresponding highpass
subband. This suggests adding a term proportional to this
interscale predictor into the simple thresholding function

Highpass subband: d

{;"1

Used to estimate

G
{

1.:,%1'.

Fig. 2. The interscale predictor of subband HL; (resp. LH;, resp. HH;) is obtained by horizontally (resp. vertically, resp. horizontally and vertically) filtering
the same-scale lowpass subband LL; with the centered gradient filter, whose z-transform is z=! — z.
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Fig. 3. PSNR improvements brought by the PURE-LET strategy over PUREshrink (Formula (6): “O” markers), for two standard grayscale images. Formula
(9): “o” markers. Formula (10): “A” markers. Formula (11): “0” markers). Oracle results for Formula (11) are shown with “x” markers: (A) Cameraman;

(B) MIT.
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Fig. 4. Visual quality of the various estimators presented in Section 3. (A) Part of the original MRI slice (Imax = 20). (B) Noisy realization of it:
PSNR = 22.31dB. (C) Denoised by PUREshrink (6): PSNR = 29.53 dB. (D) Denoised by PURE-LETO (9): PSNR = 29.81dB. (E) Denoised by PURE-LET1 (10):

PSNR = 31.19.dB. (F) Denoised by PURE-LET2 (11): PSNR = 31.43 dB.

(9), leading to
05, s:[ar ap a3 = 0577°(d, s: [ay @2]") + as (Sn—1 — Sn+1)-
—

dn

(10)

This simple strategy brings significant improvements
(approximately +0.5dB). This was confirmed by multiple
experiments on standard grayscale images; some of these
simulations are reported in Fig. 3.

3.2.3. Interscale amplitude-sign dependencies

Further improvements can be obtained by grouping
together wavelet coefficients of similar magnitudes [22].
To increase the robustness towards noise, this grouping is
based on the magnitude of a smoothed version p of the
previously defined interscale predictor d. The smoothed
version of the interscale predictor is simply obtained by
applying a normalized Gaussian kernel on the absolute
value of d, i.e., p, = 3 1dklfn_» Where f, =eK/2/y27.
The proposed interscale wavelet thresholding is thus
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Table 1

Comparison of multiscale Poisson noise removal algorithms.

F. Luisier et al. / Signal Processing 90 (2010) 415-427

Images Peppers (256 x 256) Cameraman (256 x 256)
Imax 120 60 30 20 10 5 1 120 60 30 20 10 5 1
Input PSNR 23.92 2092 1791 16.17 13.14 1012 3.14 24.05 21.03 18.03 16.27 13.27 10.25 3.28
Non-redundant
Anscombe + SUREshrink (OWT sym8) 29.29 2727 24.85 23.56 2147 19.77 15.32 28.53 26.37 24.26 23.29 21.81 19.61 15.36
Haar—Fisz + SUREshrink (OWTsyms8) 29.27 2730 24.54 23.82 21.98 21.03 18.69 28.49 26.40 24.36 23.69 22.39 20.93 18.57
Platelet 29.07 27.44 25.73 24.92 23.23 21.57 18.17 28.29 26.79 25.44 24.60 23.24 2149 18.70
Interscale PURE-LET (OWT Haar) 30.28 28.51 26.72 25.70 23.81 21.99 18.92 30.07 28.28 26.54 25.55 23.94 22.42 19.18
Redundant
Haar—Fisz + SUREshrink (25 cyclic shifts of OWT sym8) 30.29 28.37 25.45 24.49 22.43 21.53 18.90 29.35 27.30 25.09 24.46 23.02 21.46 18.71
Platelet (2 cyclic shifts) 30.61 28.52 27.08 26.11 24.34 22.13 18.88 29.34 27.84 26.21 25.32 24.05 22.35 19.34
Interscale PURE-LET (2 cyclic shifts of OWT Haar) 30.79 29.07 27.27 26.18 24.29 22.52 19.33 30.36 28.56 26.87 25.89 24.32 22.76 19.67
Images MIT (256 x 256) Moon (512 x 512)
Imax 120 60 30 20 10 5 1 120 60 30 20 10 5 1
Input PSNR 25.78 22.78 19.76 18.02 14.98 1197 4.99 26.27 23.25 20.23 18.48 1547 12.46 547
Non-redundant
Anscombe + SUREshrink (OWT sym8) 28.80 26.70 24.10 22.58 2121 18.14 13.93 29.00 26.92 24.83 24.09 22.99 21.38 18.37
Haar—Fisz + SUREshrink (OWT sym8) 28.78 26.74 24.25 22.88 21.78 20.00 16.03 29.03 26.89 25.01 24.33 23.55 22.78 21.98
Platelet 28.25 26.44 24.70 23.47 21.65 20.18 16.24 2716 26.01 25.05 24.60 23.96 23.63 22.97
Interscale PURE-LET (OWT Haar) 30.03 27.92 25.96 24.85 23.01 21.18 1743 29.62 27.97 26.56 25.87 24.92 24.23 23.16
Redundant
Haar—Fisz + SUREshrink (25 cyclic shifts of OWT sym8) 29.67 27.67 2521 23.77 22.64 20.89 16.59 29.61 27.39 25.40 24.68 23.83 23.06 22.09
Platelet (2 cyclic shifts) 29.23 27.66 25.64 24.63 22.99 21.27 17.27 2799 26.76 25.60 25.09 24.28 23.74 22.69
Interscale PURE-LET (2 cyclic shifts of OWT Haar) 30.47 28.41 26.55 25.34 23.49 21.63 17.82 29.77 28.09 26.70 25.97 24.99 24.28 23.19
Note: Output PSNRs have been averaged over 10 noise realizations, except for the Platelet approach.
Table 2
Cycle-spinning: PSNR improvement and computation time.
Algorithms Non-redundant 2 cyclic shifts 25 cyclic shifts

PSNR (dB) Time (s) PSNR (dB) Time (s) PSNR (dB) Time (s)
Cameraman at 17.25dB
Haar—Fisz + SUREshrink 24.01 0.06 24.49 0.11 24.83 1.3
Interscale PURE-LET 26.09 0.19 26.45 0.37 26.75 4.6
Platelet 25.01 445 25.83 89 2717 1112
MIT at 18.98dB
Haar—Fisz + SUREshrink 23.47 0.06 24.10 0.11 24.64 1.3
Interscale PURE-LET 25.48 0.19 26.02 0.37 26.43 4.6
Platelet 24.10 36 25.33 72 26.80 891

Note: Output PSNRs and computation times have been averaged over 10 noise realizations, except for the Platelet approach.

finally defined as

2
04(d,s:a,b) = exp (— 15"; |> 0= (d,s; a)
n

+ (1 —EXp<_

The above thresholding function has mainly two regimes:
when the squared magnitude of the predictor p, is small
with respect to the local noise variance, LET2 essentially

P2
12|s5|

))0,25“«1, s;b). (11)

behaves like LET1 with parameter a; when p?2 is large with
respect to the local noise variance, LET2 essentially
behaves like LET1 with parameter b. This “classification”
based on the predictor coefficients increases the adaptiv-
ity of the denoising process.

In Figs. 3 and 4, it is seen that this latter interscale
wavelet estimator clearly gives the best results, both
quantitatively and visually, among all estimators pre-
sented here. Note that the PURE-based adjustment of the
parameters a and b gives a SNR gain that is very close to
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Fig. 5. (A) The original Pneumatix image (Imax = 30), by courtesy of the following website: http://pubimage.hcuge.ch:8080/. (B) Noisy realization of it:
PSNR = 20.27 dB. (C) Denoised with Haar —Fisz + SUREshrink (25 cyclic shifts of OWT sym8): PSNR = 29.16 dB in 1.3 s. (D) Denoised with Platelet (25 cyclic
shifts): PSNR = 29.52dB in 960 s. (E) Denoised with our non-redundant PURE-LET (OWT Haar): PSNR = 29.21dB in 0.2 s. (F) Denoised with our redundant
PURE-LET (25 cyclic shifts of OWT Haar): PSNR = 29.73dB in 4.4s.

the optimum (which is obtained from an oracle adjust- e A standard procedure, which consists of three
ment of these parameters using the knowledge of the steps:
original image). 1. Apply a variance-stabilizing transformation (VST)

on the Poisson-distributed data. In the experiments,
we have tried the Anscombe [11] and the Haar-Fisz

4. Results on simulated data [12] transforms.
2. Use any available denoiser designed for additive
We now propose to compare our PURE-based approach Gaussian white noise removal: we have chosen
with the following multiscale methods in simulated Donoho and Johnstone’s (subband-dependent)

experiments: SURE-shrink [21].
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Fig. 6. PSNR improvements brought by the direct handling of Poisson statistics (PURE-LET (OWT Haar): “O” markers) over VST + SURE-LET schemes
(Anscombe + SURE-LET (OWT Haar): “A” markers; Haar—Fisz + SURE-LET (OWT Haar): “o” markers): (A) Peppers; (B) MIT.

3. Apply the corresponding inverse variance-stabilizing
transformation to the denoised data to finally get an
estimation of the underlying Poisson intensities.

This type of approach has the advantage of giving
relatively good results at low computational cost;
moreover it is easily reproducible.

e A more involved algorithm: we have retained Willett
and Nowak’s Platelet approach,> [24,9] which stands
among the state-of-the-art algorithms for Poisson
intensity estimation [14].

For all wavelet-based methods presented in this section,
we use the same number of decomposition levels, i.e.,
4 (resp. 5) for 256 x 256 (resp. 512 x 512) images. The
input peak-signal-to-noise ratios (PSNR) are adjusted by
rescaling the original test images, from a maximum
intensity of 120 to a minimum of 1.

Table 1 summarizes the PSNRs obtained by the various
algorithms, both in a non-redundant and in a redundant
framework (using cycle spinning [25]). It can be observed
that the PURE-based approach clearly outperforms
(around +1.5dB, on average) the standard VST-based
wavelet denoisier applied in an orthonormal wavelet basis.
Note that the retained basis (Daubechies’ symlets with
eight vanishing moments [26]) is smoother—and
thus more suitable for image-restoration tasks—than the
basic Haar wavelets that we use. Our solution also gives
significantly better PSNRs (~0.5—1dB) than the non-
redundant version of the Platelet approach. In most cases,
the proposed algorithm gives even better results (between
0.5 and 1.5dB, on average) than the VST-based threshold-
ing applied in a redundant cycle-spinning framework, and
results similar to two cyclic shifts of Platelets.

Table 2 gives more insights concerning the tradeoff
between the degree of redundancy and the computation
time of the various algorithms. The Platelet procedure

2 Matlab code downloadable at: http://www.ee.duke.edu/~willett/
Research/platelets.html.
3 Available at: http://bigwww.epfl.ch/luisier/Test-Images.zip.

achieves the best PSNRs when considering a high number
(25) of cyclic shifts. However, these results are obtained
at a prohibitive computational cost. Cyclic shifts of our
PURE-based approach also brings some gains (around
1dB), despite the fact that an independent “shift-wise”
PURE minimization is sub-optimal (as shown in [3,27] for
the Gaussian case). There is probably room for improve-
ment by deriving a rigorous unbiased estimate of the MSE
for redundant processing of Poisson data; but this is
outside the scope of the present paper.

As shown in Fig. 5, our interscale PURE-LET algorithm
removes most of the Poisson noise, without over-smooth-
ing the underlying intensities. Moreover, from a computa-
tional point of view, it takes only ~0.5s to denoise a
512 x 512 image with the current Matlab implementation
of our algorithm; this corresponds to the optimiza-
tion of 90 parameters. Under the same conditions, the
execution of the cycle-spinning SUREshrink (25 cyclic
shifts) combined with the Haar-Fisz variance-stabilizing
transform requires ~5.5s, while a single shift of the
Platelets lasts 150s, on average.

We also compared the proposed PURE-LET algorithm
with our previously described interscale SURE-LET strat-
egy, specifically devised for Gaussian noise statistics [22].
For a fair comparison, we used an adapted implementa-
tion of the SURE-LET algorithm that involved the same
number of parameters as the present PURE-LET method.
We also considered the same wavelet transformation, i.e.,
OWT Haar, for both techniques. As can be seen in Fig. 6,
applying the SURE-LET strategy in the VST-domain is
less efficient for small intensities (over 0.5dB loss for
intensities lower than 10). This can be attributed to the
rigorous minimization of an estimate of the actual MSE
that is performed by the proposed PURE-LET algorithm.

To conclude this series of synthetic experiments, let us
highlight the two main aspects of our approach:

1. We use sophisticated denoising functions with multi-
ple linear parameters per subband (LET representation)
that are able to process, among others, interscale
dependencies; these typically outperform a simple


http://www.ee.duke.edu/~willett/Research/platelets.html
http://www.ee.duke.edu/~willett/Research/platelets.html
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http://bigwww.epfl.ch/luisier/Test-Images.zip
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Fig. 7. Schematic representation of a photomultiplier tube (PMT).

thresholding with one parameter per subband (see
Fig. 3).

2. The parameters are adjusted using a noisy data-based
estimate of the MSE that is statistically unbiased; this
typically yields better results than alternative adjust-
ment methods (see Fig. 6).

It is the combination of these two facts that makes our
method competitive with the state of the art, as shown in
Table 1.

5. Application to real biological data

In this last section, we describe the application of our
denoising algorithm to real fluorescence-microscopy
images of biological samples. The images were acquired
on a Leica TCS SP5 confocal microscope at the Imaging
Center of the IGBMC (Institut de Génétique et de Biologie
Moléculaire et Cellulaire, Illkirch, France). This microscope
is equipped with a water-cooled scan-head and low-noise
PMTs* (Hamamatsu R 9624). We refer to [1] for a general
introduction to fluorescence microscopy.

5.1. Brief description of the acquisition process

The measurement process is the same for every scan
position (pixel); it is illustrated in Fig. 7 and can be
summarized as follows (see e.g., [28] for a more detailed
description). The number of photons arriving at the PMT
during the integration time follows a Poisson distribution
of mean A determined by the source intensity. Each
photon may traverse the protection window, penetrate the
photocathode and be converted to an electron with a
certain probability #; this probability is known as the
quantum efficiency of the PMT and is on the order
of 30% for the best models. The conversion process can
be seen as a binomial selection [20,29] and according to
Proposition 3, the number of electrons at the output of the
photocathode (= photoelectrons) follows a Poisson dis-
tribution of mean u = 5. The number of photoelectrons
represents a shot-noise-corrupted measurement m of the
intensity signal u in our framework.

The electrons are then multiplied (via several ampli-
fication stages) and converted to an electric current that is

4 PMT stands for photomultiplier tube.

integrated and quantized. The recorded signal is essen-
tially proportional to the number of photoelectrons;
although the amplification factor may fluctuate in prac-
tice, recent work [30] suggests that the newest PMTs with
high first-stage gain have the ability to discriminate
between multi-photoelectron events, at least for low
count numbers. Under this assumption the measurement
process is purely shot-noise limited and one can estimate
the number of photoelectrons by adequately renormaliz-
ing the data.

5.2. Data preprocessing and verification of the statistical
model

Our normalization procedure is based on the char-
acteristic property of a Poisson random variable that its
mean is equal to its variance. Thus, by dividing the data by
the amplification factor (gain), we should approximately
retrieve this behavior.

To validate our approach, we acquired a set of 100
images of the same object (a Caenorhabditis elegans
embryo) under low illumination intensity. We could thus
compute estimates of the mean and variance for every
pixel. The amplification factor (gain) was determined by
fitting a linear function to these mean-variance measure-
ments. After dividing by the gain (and subtracting a
constant corresponding to the offset of the detector), the
frequency distribution of the pixel values was found to be
in good agreement with Poisson statistics. Fig. 8 shows the
histogram of the normalized pixel values for those pixels
whose mean was equal to a given value u (£5%).

In practice one cannot use multiple realizations of the
same image to obtain the amplification gain. We found
that estimates of the local mean and variance based on
spatial averaging can yield a good estimate of the gain.
This approach has been used for the results presented in
the next subsection.

5.3. Denoising of color fluorescence micrographs

Fig. 9(A) shows the confocal image of a C elegans
embryo labeled with three fluorescent dyes. We repro-
duced very noisy experimental conditions by reducing the
laser power and using short exposure times. The three
color channels were processed separately.

The result of the SUREShrink algorithm with a
Haar-Fisz transform and 25 cyclic shifts is shown in
Fig. 9(C). The result of our algorithm is sharper and shows
less artifacts (Fig. 9(D)). Besides, it is less noisy than the
image shown in Fig. 9(B), which corresponds to a 4 times
longer exposure time.

6. Conclusion

The above results suggest that our PURE-based
approach is a promising alternative for denoising Pois-
son-corrupted images. Although our PURE-LET method
is based on a maximally decimated Haar wavelet trans-
form, it yields results that are comparable or superior to
standard translation-invariant approaches. At the same
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Fig. 8. Comparison of the Poisson distribution with the histogram of the normalized data for x = 5,10, 15.

Fig. 9. (A) Input image for denoising (scan frequency of 1000 Hz). (B) Reference image (average of four images at 1000 Hz). (C) Input image denoised with
Haar—Fisz + SUREshrink (25 cyclic shifts of OWT sym8). (D) Input image denoised with our interscale PURE-LET (OWT Haar).

time, our algorithm has substantially lower computational
complexity and smaller memory requirements than the
latter.

These are appealing features for applications in
dynamic fluorescence microscopy, where biologists must
often acquire large time-lapse image series under very
low light conditions. Our method potentially allows for a
reduction in exposure time and/or laser intensity, which
are critical parameters when imaging fast-moving live
samples.

The methodology presented here paves the way for
further research. We are currently working on an exten-
sion of our method that is applicable to a more general
noise model, suitable for imaging situations that are not

necessarily shot-noise-limited. We are also trying to adapt
the method to more general (possibly redundant) wavelet
transforms, or even arbitrary linear transforms. This could
allow to overcome one of the limitations of wavelet
representations, which is that they are mostly suitable for
piecewise smooth signals, and less well for textured
images. These extensions will be the subject of a future
report.
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