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SURE-LET Multichannel Image Denoising:
Interscale Orthonormal Wavelet Thresholding

Florian Luisier and Thierry Blu, Senior Member, IEEE

Abstract—We propose a vector/matrix extension of our de-
noising algorithm initially developed for grayscale images, in
order to efficiently process multichannel (e.g., color) images. This
work follows our recently published SURE-LET approach where
the denoising algorithm is parameterized as a linear expansion
of thresholds (LET) and optimized using Stein’s unbiased risk
estimate (SURE). The proposed wavelet thresholding function is
pointwise and depends on the coefficients of same location in the
other channels, as well as on their parents in the coarser wavelet
subband. A nonredundant, orthonormal, wavelet transform is first
applied to the noisy data, followed by the (subband-dependent)
vector-valued thresholding of individual multichannel wavelet
coefficients which are finally brought back to the image domain
by inverse wavelet transform. Extensive comparisons with the
state-of-the-art multiresolution image denoising algorithms indi-
cate that despite being nonredundant, our algorithm matches the
quality of the best redundant approaches, while maintaining a high
computational efficiency and a low CPU/memory consumption.
An online Java demo illustrates these assertions.

Index Terms—Color image denoising, interscale dependen-
cies, multichannel image denoising, nonredundant transforms,
orthonormal wavelet transforms (OWTs), Stein’s unbiased risk
estimate (SURE).

I. INTRODUCTION

ysis. Indeed, due to sensors imperfections, transmission
channels defects, as well as physical constraints, noise deteri-
orates the quality of almost every acquired images. A consid-
erable breakthrough has been achieved thanks to the develop-
ment of new multiresolution tools such as the wavelet trans-
form [1]-[3]. Its energy-compaction property has been shown
to be particularly suitable to bring out the key signal informa-
tions from the noise.

Initially, multiresolution denoising algorithms were based
on pointwise wavelet thresholding: its principle consists of
setting to zero all the wavelet coefficients below a certain
threshold value, while either keeping the remaining ones un-
changed (hard-thresholding) or shrinking them by the threshold

DENOISING has become an essential step in image anal-
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value (soft-thresholding, which was originally theorized by
Donoho et al. [4]). Since then, a lot of work has been carried
out to improve this simple, yet quite successful, pointwise
approach. Intra- and interscale correlations have been suc-
cessively introduced in more sophisticated estimators often
derived in a Bayesian framework (initiated by [5]-[7]), as-
suming non-Gaussian [8] or generalized Laplacian priors [9],
as well as scale mixtures of Gaussians [10], in order to model
the statistics of the underlying noise-free signal. In this paper,
we will indistinctly use the term thresholding to characterize
all these wavelet-based denoisers.

In conjunction with the expansion of new wavelet estima-
tors, some researchers have worked on improving the wavelet
transform itself. Since the early—nonredundant—orthonormal
wavelet transform (OWT), substantial improvements have been
reached by using shift-invariant transformations with better
directional selectivity [8]—[11]. Recently, we have proposed a
general methodology, the “SURE-LET” paradigm, for building
(using a linear expansion of thresholds: “LET” parameteri-
zation) and optimizing (using Stein’s unbiased risk estimate:
SURE principle) denoising algorithms adapted to any kind of
linear transforms [12].

The new properties resulting from the use of often highly re-
dundant transformations have been obtained at the expense of
the loss of orthogonality, a substantially more intensive memory
usage and a higher computational cost than that of the orig-
inal OWT. The latter point becomes a major concern in image
volume denoising and more generally in multichannel image de-
noising, in particular when the number of channels is large. For
instance, even though the usual color image representations re-
quire no more than 3—4 channels (RGB, HSV, YUV, or CMYK
descriptions), the computational cost is already quite large when
shift-invariant (i.e., undecimated) transforms are involved. This
is why, in this paper, we will only consider orthonormal (i.e.,
nonredundant) wavelet transforms for multichannel image de-
noising.

The easiest approach to denoising multichannel images is
simply to apply an existing denoiser separately in each channel.
However, this solution is far from being optimal, due to the pres-
ence of potentially strong common information between the var-
ious channels. There are then two main conceivable strategies:
the first one consists of “decorrelating” the data based on some
a priori model for the relation between the noiseless channels,
and then separately apply a standard denoiser; the second one
is to devise specific nonseparable multichannel denoising algo-
rithms.

The first strategy has been exploited in color image denoising,
where the data are denoised in more appropriate color repre-
sentations than the standard red-green-blue (RGB) color space.
Some satisfactory results have been obtained directly in the
image domain using partial differential equations (PDE)/varia-
tional-based algorithms [13]-[15] in a chromaticity-brightness
(CB) decomposition, or by promoting good continuation of hue
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transitions in the hue-saturation-value (HSV) representation
of colors [16]. For wavelet thresholding algorithms, the color
image denoising in the luminance-chrominance (YUV) color
space has been shown to bring an often significant improvement
over the standard RGB denoising [17], [18]. Quite recently,
Lian er al. have even proposed a data-adaptive procedure for an
optimal luminance/color-difference projection [17]. Combined
with an efficient wavelet thresholding algorithm [19], their
solution stands among the best state-of-the-art color image
denoisers.

The second strategy has been quite early chosen by
Sapiro et al., who have adapted the anisotropic diffusion
for multivalued images [20]. Later on, Blomgren et al. have
extended the total variation (TV) method to vector-valued
functions, and applied it to the restoration of color images [21].
In the wavelet community, specific multichannel algorithms
have only quite recently been designed [22]-[24]. In partic-
ular, Scheunders has exploited the interchannel dependencies
by summing products of wavelet coefficients from different
channels to better isolate the noise and thus to derive an an-
alytical noise probability density function (pdf), from which
a thresholding value can be determined [25]. More recently,
he proposed a multicomponent adaptation of Portilla ef al.’s
BLS-GSM by applying the Gaussian scale mixture model
to each vector of multicomponent coefficients [26]; yet, his
adaptation does not take into account neighboring wavelet
coefficients, nor their interscale relations. Pizurica et al. have
also adapted their original ProbShrink by including the inter-
channel dependencies in the definition of their local spatial
activity indicator [9]. Finally, in the context of multiband satel-
lite image denoising, Benazza-Benyahia et al. have proposed
robust wavelet estimators based on the assumption that the
noise-free wavelet coefficients follow a Bernoulli-Gaussian
distribution [27]; the resulting estimator is then derived in
a Bayesian framework as the a posteriori conditional mean.
The parameters involved in their estimator are then optimized
using Stein’s unbiased risk estimate [28] (SURE). A recently
submitted manuscript from Chaux with the same authors [11]
goes a step further by generalizing the parameterization of the
denoiser.

Here, we extend our original monochannel denoiser [29]
to multichannel image denoising in an orthonormal wavelet
representation. This requires a novel vector/matrix formulation
of our theory which is shown to bring substantial denoising
improvements by efficiently exploiting interchannel correla-
tions. Indeed, we observe that, besides outperforming other
nonredundant techniques, our algorithm even reaches the
quality obtained by current multiresolution-based redundant
methods. Moreover, the gain in CPU/memory consumption
made it possible to work out a java version of the proposed
algorithm (see our online demo [30]).

The paper is organized as follows. In the next section, we
give the explicit expression of a multichannel MSE estimate
for a vector-valued function of two statistically independent
random vectors. In Section III, we present the generalization
of the linear parametrization introduced in [29], as well as the
corresponding SURE minimization for vector-valued func-
tions, thus abiding by the SURE-LET methodology. We then
recall the key steps which lead to our interscale predictor, and
finally conclude the section by giving the expression of our
interscale-interchannel wavelet thresholding. In Section IV,
we demonstrate the competitiveness of our solution for color
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image denoising and more generally for multiband (LandSat)
image denoising, through comprehensive experimentations on
various test images for a wide range of input noise levels. In
addition, we show that our algorithm is insensitive to the color
representation (RGB or YUV), which is not the case of most
other algorithms.

II. MULTICHANNEL SURE

In this paper, we consider N-pixel images with C' chan-
nels—typically, C' = 3 color channels for RGB images, but for
biological images (fluorescence) or multiband satellite images,
C might be much larger. We denote these multichannel images
by a C' x N matrix whose columns are the channel values of
each pixel:

Tn,1
Tn,2

where

X:[X17X27"'7XN] Xn =

Ln,C

These images are corrupted by an additive channel-wise
Gaussian white noise! b = [by, bo, ..., by] of known C x C

’ ’

interchannel covariance matrix R, i.e.,
E{bubp} =R
) yN]

We denote the resulting noisy image by y = [y1,¥2,- -
and we have

y=x+b. 1)

We want to stress that, in this paper, the original image, x, will
never be considered as a realization of some random process.
The only source of randomness in our setting is the noise b. As
a consequence, the noisy image y is also random; yet, all the sta-
tistical considerations (typically, on the independence between
wavelet subbands) will only be a consequence of the statistical
properties of the noise itself.

Denoising the image y boils down to finding an estimate X of
x as a function of y alone. We will evaluate the quality of the
denoising by a classic mean-squared error (MSE) which can be
expressed using Frobenius matrix norm

Lo
MSE = WHX—X“%
_ 1 . . T
= C—NTT{(X—X)(X—X) }

1 &
=CON Z 1% — xn]|*.
n=1

Retaining the strategy that was used in [29], we choose an
estimate that involves a critically sampled orthonormal wavelet
transform (OWT) applied to each channel (see Fig. 1 for the dis-
crete wavelet decomposition of a RGB color image). Denoting
the resulting wavelet images at scale j € [1, .J] by a superscript,
we thus have

¥/ =x 4 bi. 6)

I“Channel-wise” means here that the noise is Gaussian and white inside each
channel.
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Fig. 1. Two iterations of a 2-D orthonormal wavelet transform applied to a RGB image.

Thanks to its linearity and orthonormality, the OWT enjoys

two important conservation properties.

e Noise statistics—Given that the noise is white and
Gaussian in the image domain, its wavelet coefficients are
Gaussian as well, and are independent within and between
the subbands. Moreover, the interchannel covariance ma-
trix remains unchanged

. -/ T
£ {b;b;, } = Rbpn 6.

* Mean-Squared Error—The image domain MSE and the
subband MSEs are related through

J
1% =7 =Y 1% = x/|I% 3)
—_—— — ———
CNXMSE 71 onixMSES

where N7 is the number of samples in subband j.
These two key properties make it particularly attractive to
perform independent processing #’ in each individual noisy
wavelet subbands y”’. To take advantage of both the interchan-
nels similarities and the interscale consistencies that may be
intrinsic to x, the thresholding function 6’ will also involve
an interscale predictor p’ built using subbands j’ > j + 1 as
detailed in Section III.A. We will, however, remain “pointwise”
in the sense that the estimate %/, of the nth pixel of subband
j will depend only on x/, and p/,, without taking their neigh-
bours into account. It is essential to notice that, because of the

statistical independence between subbands of different iteration
depth, y7 and p’ will also be statistically independent.

From now on, we will drop the subband exponent 5 when no
ambiguity is likely to arise. More abstractly, we are thus going
to consider the denoising of a multichannel (subband) image
y = x+ b, given an independent prediction (parent) p, by using
aRY x R® — R function @ relating the coefficients of y and
p to the coefficients of the estimate X through

%, = 8(yn,pn), forn=1,2_.N. @)
Ideally, our aim would be to choose @ so that it minimizes the
MSE defined in (3). A difficulty is that we do not have access
to the original noise-free image x. Fortunately, we can rely on
an adapted version of Stein’s unbiased risk estimate (SURE)
[28] to accurately estimate this actual MSE, as shown in the
following theorem.

Theorem 1: Assume that 6(-,-) is (weakly) differentiable
w.r.t. its first variable and that it does not explode at infinity;
typically, such that ||@(u, v)|| < const(v) x exp(||ul|?/(2s?))
where s > o. Then, if the estimate X is built according to (4),
the following random variable:

1 N
= o 2 16n.pn) = yal”
n=1

N
2 1
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is an unbiased estimator of the expected MSE, i.e.,
1 .
£fe) = gt 1% -3}

Here, we have denoted by V16 the matrix containing the partial

derivatives of the components of & = [fy,60s,...,0c]" with
respect to its first variable
001 (u v) 062 (u v) 96c(u,v)
Bul
06, (u v) 892(u v) 98¢ (u,v)
vlo(u V) _ Ouo Ouo Ouo
?
96, (.u,v) 802(.u,v) dbc (.u,v)
8’!1(,' 8’!1(,' 8’!1(,'

Proof: Note that, because p, and y, are independent,
we may simply prove the result without considering p,, to
be random. We can then develop the squared error between
Xp = Yn — b, and its estimate X, = 6(yn,Pn) as

E{1I8(yn. Pn) — xull*}
= E{10(yn, u)lI*}
= 26{0(yn,Pn) " (¥n = bu)} + [1%a®

= E{110(yn, Pn) — ¥l*}
+28{0(yn, Pn) i} + [[xa1?

= E{llyall?}. ©

Now we use the fact that a zero-mean multivariate Gaussian
probability density function ¢(b,) with covariance ma-
trix R satisfies bpq(b,) = —RVg(b,) to evaluate
E{O(yn,Pn)"bn}

E{0(yn,pn) by}

= a(xn + bn; Pn)Tan(b
JRC

- / 0(Xn + bn7 pn)TRVq(bn) dcbn
RC

) d“b,,

_ / dive, {R™0(x, + b, pn)} g(bn) b, (by parts)
RC

_ / Te{RTV10(x, + bn, pn)}a(by) dD,,
RC,‘
= S{TT{RTvlo(ynvpn)}}'

Using the above relation, as well as the standard result
€{||yn|| } = [|xa||* + Tr{R} into (6), we get the desired
result. ]

The variance of the above MSE estimate ¢ depends on the
number of C-channel pixels . Since in multichannel image de-
noising the data are usually quite huge (typically, 256 x 256 x C'),
€ can be reliably used as the actual MSE. In particular, its min-
imization will closely tend to the minimization of the actual
mean squared error between the processed image and the—un-
known—noise-free image.

III. ALGORITHM

In this section, we show how to adapt the monochannel
SURE-based denoiser presented in [29] to multichannel image
denoising. The two fundamental ingredients of our original
approach remain the same.

1) The denoising function @ will be built as a linear expansion

of simple—possibly nonlinear—thresholding functions 6y,
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K
0(yn,Pn) = at0k(Yn,Pn)
k=1
= alT,aQT,. 7a}F{]
e
ol(yrupn)
02(yn7pn)
X . . @)

[

O(¥n,pPn)

Here, ©(y,,pn) is a KC x 1 vector, the a; are C' x C
matrices and A is a K C' x C matrix. In this formalism, the
gradient of 0(y.,, p,) with respect to the first variable can
be expressed as

Vla(Yn; pn) = V1®(yn7 pn) A.

2) The MSE estimate € is quadratic in A, as follows:
L X
= S~ AT@ n n)— Yn 2
€ CN”;II (¥n.Pn) = ¥all

N
2 T
4 C—Nngzl Tr{R"V1O(y,.,p.) A}
- %Tr{R}
1 N

_ T _
= CN”Z::ITT{(A O(yn:Pn) = ¥n)
_yn)T}

N
o > T {R"ViO(yn, pn) A}
n=1

X (ATO(yn,pPn)

— lTr{R}

Tr{ATMA 2BTA}

~CN

. Z T {yay1} - STH{R) ®)
n=1

where we have defined

N
M= Z Q(Yn7 pn)®(}’n7 pn>T

n=1

Z( (Yn:Pn)y

~ (V10(y.,pu)) R).

Finally, the minimization of (8) with respect to A boils down
to the following linear system of equations:
A, =M'B. 9)

Notice that if M is not a full rank matrix, we can simply

take its pseudo-inverse to choose among the admissible solu-
tions. In fact, rank deficiency indicates that ® is over-parame-
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terized, and, consequently, that fewer parameters yield the same
minimal MSE estimate. Obviously, it is advisable to have the
smallest possible number of parameters, in order for M to be
nonsingular and in order to make the standard deviation of € as
small as possible, in such a way that any of its realizations is
close to the actual MSE.

It may also be interesting to restrict the number of degrees
of freedom of the coefficient matrices a;, and, in exchange, in-
crease the actual number K of these coefficients: typically, one
may choose ay, to be of the form uy, vg where vy, is some known
C x 1 vector, while uy, is an unknown C x 1 vector. This means
that the KC' x C matrix A lives in some linear subspace of
dimension D < K C? spanned by, say, a basis of KC x C ma-
trices {Eq}q4=1,2,....p. Once again, minimizing (8) with respect
to all the degrees of freedom of A leads to a linear system of
equations

Tr{E;(MA, —B)} =0 ford=1,2,...D

from which the D (linear) degrees of freedom of A,y can be
computed.

A. Interscale Predictor

In [29], we proposed to build an interscale predictor out of
the low-pass subband at the same scale, contrary to the custom
in the literature which consists of expanding the parent sub-
band—i.e., the subband at the next coarser scale—by a factor
of two. We showed that our new construction ensures a perfect
feature alignment between the current subband and its interscale
predictor. For this reason, we are going to use this approach to
build the parent estimate p,, to compute the estimate X,, ac-
cording to (4).

In the monochannel case of [29], the interscale predictor of
the wavelet subband at scale j is obtained by applying a suitable
group delay compensation filter (GDC) to the low-pass subband
at the same scale. We showed that group delay compensation en-
sures the alignment between the wavelet subband and the com-
puted parent subband. In one dimension, the GDC filter takes
the following general form:

W(2%) = G(z"HG(—2"H(1 + Az7HR(Z%)  (10)
where A = +1; R(z) = R(z~!)is an arbitrary zero-phase filter;
G(z) = —z71H(—271) is the wavelet filter given that H(z)
is the—orthonormal—scaling filter. The absolute value of each
resulting subband is then smoothed by a normalized Gaussian
kernel (see Fig. 2).

In the case of symmetric or nearly symmetric (around n)
scaling filters, the shortest normalized GDC filter is the discrete
gradient operator

— 1 —np

For multichannels images, we simply apply the same proce-
dure separately in every channel, which yields the multichannel
interscale predictor p,,.

an

B. New Interscale-Interchannel Thresholding Function

We propose now a natural vectorization of the thresholding
function presented in [29] by taking into account the strong
similarities that may occur between the various channels. More
specifically, we build this thresholding function according to the
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Fig.2. Interscale predictor for a2-D OWT. At each level of decomposition, the
low-pass subband L L is used to build predictors HL, LH, and HH of each
of the three high-pass subbands HL, LH, and HH.

Fig. 3. Test images used in the experiments, referred to as Image I to Image 8
(numbered from left to right and top to bottom).

08
07 /\
06

0.5

[ el
03

Relative output gain in dB
Relative output gain in dB

— Monochannel SURE-LET (RGB)| ™~~~ 1 ——Monochannel SURE-LET (RGB)
02| |-~ -Monochannel SURE-LET (YUV) - - -Monochannel SURE-LET (YUV)
04 — Interchannel SURE-LET (RGB) 05 — Interchannel SURE-LET (RGB)

: Interchannel SURE-LET (YUV) Interchannel SURE-LET (YUV)
0 0
10 15 20 25 30 10 15 20 25 30

Input PSNR in dB Input PSNR in dB

Fig. 4. PSNR improvements brought by our interchannel strategy, compared to
the worst case (Monochannel SURE-LET in RGB). (A) Image 1. (B) Image 7.

expression (7) with K = 4 in which each #;, denoises a par-
ticular zone of the wavelet subband, characterized by large or
small values of the parents/wavelet coefficients. This zone se-
lection makes use of a “trigger” function y(z) which is essen-
tially unity for small values of x, and vanishes for large values.
We have chosen the following expression:

12)
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TABLE 1
COMPARISON OF COLOR DENOISING ALGORITHMS (SAME NOISE LEVEL IN EACH RGB CHANNEL)
OR =0Gg =0OB 5 10 15 20 25 30 100 5 10 15 20 25 30 50 100
Input PSNR [dB] 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13
Method Image 1 256 X 256 Image 2 256 X 256
OWT ProbShrink-MB (9] 36.65 33.18 31.32 29.98 28.94 28.07 25.61 22.69 34.37 30.01 28.17 26.93 26.00 25.25 23.24 20.72
OWT SURE-LET 37.91 34.46 32.60 31.29 30.25 29.39 26.95 23.73 35.40 31.22 29.24 27.98 27.07 26.34 24.38 21.76
UWT ProbShrink-MB (9] 37.69 34.22 32.30 30.94 29.96 29.06 26.55 23.72 35.31 31.21 29.22 27.92 26.99 26.21 24.17 21.65
BLS-GSM [10]) 37.57 34.20 32.52 31.31 30.34 29.52 27.21 24.12 35.35 31.01 29.09 2791 27.04 26.34 24.37 21.74
Method Image 3 512 x 512 Image 4 512 x 512
OWT ProbShrink-MB [9] 36.37 33.45 31.78 30.59 29.67 28.92 26.88 24.28 35.48 32.49 31.02 29.98 29.14 2841 26.20 23.55
OWT SURE-LET 37.80 34.64 33.02 31.90 31.04 30.33 28.35 25.66 36.62 33.35 31.79 30.72 29.89 29.19 27.16 24.48
UWT ProbShrink-MB [9] || 3746 | 3442 | 3269 | 3147 | 3061 | 2983 | 2776 | 2503 || 3633 | 3335 | 31.81 | 3074 | 2096 | 2920 | 2685 | 24.28
BLS-GSM [10] 3729 34.45 32.90 31.78 30.89 30.15 28.09 25.40 36.34 33.26 31.89 30.92 30.13 29.46 27.47 24.73
Method Image 5 512 X 512 Image 6 512 X 512
OWT ProbShrink-MB [9] 33.86 28.90 26.44 24.87 23.73 22.89 20.94 19.31 37.58 34.03 32.01 30.64 29.29 28.24 25.90 23.30
OWT SURE-LET 35.12 30.49 28.15 26.64 25.55 24.71 22.59 20.37 39.11 35.70 33.71 32.29 3119 30.29 27.77 24.77
UWT ProbShrink-MB [9] || 34.83 | 3015 | 27.72 | 2617 | 2504 | 24.16 | 2198 | 1981 || 3878 | 3523 | 3320 | 31.80 | 3077 | 2981 | 2687 | 23.97
BLS-GSM [10] 35.01 30.13 27.66 26.08 24.95 24.07 21.92 19.89 38.40 35.01 33.09 31.74 30.69 29.84 27.47 24.45
Method Image 7 512 x 512 Image 8 512 X 512
OWT ProbShrink-MB [9] 35.47 31.25 29.15 21.76 26.70 25.87 23.77 21.44 39.47 35.97 33.87 32.05 30.85 29.98 27.76 25.00
OWT SURE-LET 3869 | 3424 | 3187 | 3029 | 29.10 | 28.15 | 25.63 | 2272 || 4105 | 37.56 | 3549 | 34.00 | 3284 | 3188 | 2926 | 26.11
UWT ProbShrink-MB [9) || 37.05 | 3264 | 3036 | 2888 | 27.80 | 26.87 | 24.58 | 2191 || 4049 | 3692 | 3482 | 3336 | 3225 | 3124 | 2861 | 2555
BLS-GSM [10]) 36.36 32.17 30.14 28.86 27.92 27.18 25.13 22.50 40.16 37.03 35.11 33.71 32.62 31.72 29.24 26.18
Notes: 1. UWT ProbShrink-MB and BLS-GSM are applied in a highly redundant representation, whereas OWT ProbShrink-MB and OWT SURE-LET
only use a non-redundant (orthonormal) transform.
2. Output PSNRs have been averaged over ten noise realizations.
The interscale predictor p will then be used in order to IV. EXPERIMENTS
smoothly discriminate between high-SNR and low-SNR .
wavelet coefficients, which finally leads to the following inter- A- Color Image Denoising
scale-interchannel thresholding function: Color spaces usually consist of C = 3 channels and we

0(yn,pn)
= (PAR7'Pu) 7 (Yo R 'yn) alya

v

~~

small parents and small coefficients
+(1=7(PaR'Ps)) 7 (YAR 'ya) a3 yn

N
large parents and small coefficients

+7 (PR 7'pn) (17 (yaR7'yn)) a5yn

~
small parents and large coefficients

+ (1= (PrR7'p,)) (1 = v (yiR7'y,)) aiyn

[ /

large parents and large coefficients

13)

where a;, as, as, and a4 are C' x C matrices, leading to an
overall number of 4C? parameters.

In the following tests, we have retained this expression be-
cause of its simplicity. However, we have observed that by in-
creasing K from 4 to 4C (by increasing the number of zones,
e.g., by distinguishing between parents in the same channel from
parents in other channels) and decreasing the number of degrees
of freedom of the coefficients a;, from C' x C full-rank matrices
to C' x C matrices having nonzero elements in a single column
(the overall number of parameters thus remains 4C2) yields
often better denoising results that may in some cases reach up
to +0.3 dB.

mostly consider red-green-blue (RGB) representations here. In
order to demonstrate the performance of our approach, we as-
sume that the interchannel noise covariance matrix is given by

0}2% 0 0
R=|0 0’% 0
0 0 0123

This assumption implies that, in other color spaces, there will
usually be noise correlations between the color channels. As an
illustration, suppose that we want to perform the denoising in
the luminance-chrominance space YUV. An image y in YUV
is obtained form an original RGB image y through the following
linear transformation:

0.299 0.587 0.114
y=|-0.147 —-0.289 0.436 | y. (14)
0.615 —-0.515 —-0.1
s

Then, the noise covariance matrix in the YUV color space
becomes R, = SRST, and the MSE estimate in the YUV color
space is finally obtained by replacing x, y and R by, respec-
tively, x = Sx, y = Sy, and R in the expression of the SURE
(5).

All the experiments of this section have been carried out on
N = 256 x 256 and N = 512 x 512 RGB test images from
the set presented in Fig. 3. We have applied our interscale-in-
terchannel thresholding algorithm after four or five decomposi-
tion levels (depending on the size of the image: 2562 or 5122)
of an orthonormal wavelet transform (OWT) using the stan-
dard Daubechies symlets with eight vanishing moments (sym8
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Fig. 5. (A) Part of the noise-free Image 8. (B) Part of the noisy Image 8: PSNR = 20.17 dB. (C) Result of the ProbShrink-MB (OWT sym8): PSNR = 30.88
dB. (D) Result of our SURE-LET (OWT sym8): PSNR = 32.83 dB. (E) Result of the ProbShrink-MB (UWT sym8): PSNR = 32.22 dB. (F) Result of the

BLS-GSM (full steerable pyramid): PSNR = 32.60 dB.

in Matlab). The denoising performances are measured in terms
of peak signal-to-noise ratio (PSNR) defined as

2552
PSNR = 101log;, ( ) dB. (15)

MSE

1) Interchannel Versus Independent Monochannel Thresh-
olding: Before comparing our results with some of the
state-of-the-art denoising procedures, we first want to evaluate
the improvements brought by the integration of interchannel
dependencies. In Fig. 4, we compare our interscale-interchannel
thresholding function (13) with the interscale thresholding de-
fined in [29] applied separately in each channels, both in the

standard RGB color space and in the luminance-chrominance
space YUV.

As can be observed, the integration of interchannel depen-
dencies improves the denoising performance considerably,
both in the RGB color space (more than 4+1 dB) and in the
more “decorrelated” YUV space (around +0.5 dB). Note that
these improvements become even more pronounced (around
+1.5-2 dB) when the power of the noise is different in each
channels.

Remarkably and contrary to the other algorithms that have
been published previously, our results are quite insensitive to
the color representation (variations of £0.1 dB). Indeed, the pa-
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COMPARISON OF COLOR DENOISING ALGORITHMS (DIFFERENT NOISE LEVEL IN EACH RGB CHANNEL)

TABLE II

R = 38.25,06 = 25.50,0p = 12.75

I

ut PSNR: 19.33 [dB]

Method Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8
OWT uHMT-OCP [17] N/A N/A N/A N/A N/A N/A 29.16 31.46
OWT SURE-LET 30.63 27.19 31.41 29.93 26.12 31.34 30.09 33.17
UWT ProbShrink-YUV [18] 29.53 26.55 30.47 29.37 24.93 29.95 28.25 32.03
BLS-GSM [10] 30.47 27.18 3091 30.13 25.10 30.45 27.83 3245

Notes: 1. UWT ProbShrink-YUV and BLS-GSM are applied in a highly redundant representation, whereas the uHMT-OCP and our SURE-
LET only use a non-redundant (orthonormal) transform.
2. Output PSNRs have been averaged over ten noise realizations.
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Fig. 6. (A) Part of the noise-free Image 7. (B) Part of the noisy Image 7: PSNR = 19.33 dB (6 r = 38.25, 0 = 25.50 and 05 = 12.75). (C) Result of our
SURE-LET (OWT sym8): PSNR = 30.05 dB. (D) Result of the ProbShrink-YUV (UWT sym8): PSNR = 28.27 dB. (E) Result of the BLS-GSM (full steerable

pyramid): PSNR = 27.83 dB.
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rameters ay, of (13) can be understood as statistically optimized?
linear color space transformations in each wavelet zone. From
now on, we will thus apply our algorithm in the RGB color space
only.

2) Comparisons: We have chosen to compare our method
with two state-of-the-art multiresolution-based denoising algo-
rithms.

e Pizurica et al.’s ProbShrink-MB [9], which is a multiband
extension of the original grayscale denoiser of the same au-
thors. For color image denoising, it has to be applied in the
standard RGB representation, and for equal noise variance
in each channels. We have applied this algorithm with a
nonredundant orthonormal wavelet transform, as well as
with the—highly redundant—undecimated wavelet tran-
form (UWT) using the code of the authors3 with their sug-
gested parameters; we have considered the same number
of decomposition levels and the same wavelet (symS8) as
with our method. Since this algorithm has been shown in
[9], [18] to favorably compare with the multiband wavelet
thresholding described in [25], as well as with the vector-
based linear minimum mean squared error estimator pro-
posed in [31], it constitutes a good reference for evaluating
our solution.

 Portilla et al.’s BLS-GSM [10]: although this algorithm has
not been designed for multichannel denoising, this is cur-
rently the most efficient multiresolution-based grayscale
denoiser we know of. It consists of a multivariate thresh-
olding—integrating both inter- and intrascale dependen-
cies—performed in a highly redundant (eight orientations
per scale) full steerable pyramid. We have used the code
and the settings provided by the authors,* except that pe-
riodic boundary conditions have been considered as in the
other methods. For color image denoising, we have simply
applied the BLS-GSM independently in each RGB chan-
nels.

Note that, in all likelihood, a more complete (i.e., including
the modeling of local neighborhoods and parents) multi-
channel extension of the BLS-GSM than the one recently
initiated by Scheunders et al. in [26], would certainly give
substantially better results than the independent applica-
tion of the original BLS-GSM that we propose to use here.

In the first experiment, we have corrupted the test images
with additive (synthetic) Gaussian white noise having the same
variance in each RGB channel. The PSNR results are displayed
in Table I. Using the same orthonormal wavelet transform,
our SURE-LET algorithm clearly outperforms (often by more
than +1 dB) the ProbShrink-MB. Despite being performed
in a nonredundant wavelet representation, our solution gives
even better (average gain of nearly +0.5 dB) output PSNRs
than the ProbShrink-MB applied in the undecimated wavelet
representation, and similar results to BLS-GSM for all the tested
images, as well as for the whole range of input noise levels.
From a visual point of view, our algorithm holds its own against
the best redundant approaches based on multiresolution (see
Fig. 5).

In a second experiment, the test images have been corrupted
with additive (synthetic) Gaussian white noise having a dif-
ferent power in each RGB channel. As a comparison, we have

2In the minimum SURE sense.
3Available at: http:/telin.rug.ac.be/~sanja/

4Available at:
ware/index.htm

http://www.io.csic.es/PagsPers/JPortilla/denoise/soft-
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Fig. 7. (A) First band of a Landsat image of Wagga Wagga. (B) First band of
a Landsat image showing a part of Southern California.

used another version of PiZurica et al.’s ProbShrink [18] which
is an application of their original grayscale denoiser in the lu-
minance-chrominance color space in the undecimated wavelet
transform, consequently referred to as the UWT ProbShrink-
YUV. The PSNR results are displayed in Table II. We have also
reported in this table the results published in [17]. Their algo-
rithm is developed in an orthonormal wavelet transform frame-
work and combines the universal hidden Markov tree (uHMT),
a statistical approach devised in [19], with an optimal lumi-
nance/color-difference space projection (OCP); it will, there-
fore, be referred to as the OWT uHMT-OCP. As can be observed,
our SURE-LET approach outperforms these two algorithms in
terms of PSNR (almost +1 dB); it even gives better results than
the BLS-GSM for most images. In Fig. 6, we show the visual
quality of the various algorithms: ours exhibits very few color
artifacts, and preserves most of the image details.

Finally, we must emphasize that the execution of the un-
optimized Matlab implementation of our algorithm only lasts
around 6 s for 512 x 512 color images on a Power Mac G5
workstation with 1.8-Hz CPU. To compare with, the best Prob-
Shrink requires approximately 19 s under the same conditions,
whereas the BLS-GSM requires about 260 s. Besides achieving
very competitive denoising results, the proposed solution is
also faster than most state-of-the-art algorithms: the interested
reader may wish to check these claims with our online demo
[30]. Not only is it faster, but it is also much more memory
effective because it makes use of a nonredundant transforma-
tion, an approach that could prove even more valuable for the
processing of higher dimensional data—in particular, tridimen-
sional and moving pictures.

B. Multiband Image Denoising

Our SURE-LET algorithm is particularly well-suited to the
denoising of multiband images, such as satellite images, and
more generally, any stack of images with significant common
content (e.g., consecutive moving images or consecutive volume
slices). Indeed, thanks to the SURE-based optimization of the
linear parameters, the potentially strong similarities between the
various channels are efficiently—and automatically—taken into
account. There is thus no need to decorrelate the bands before-
hand.

For the experiments, we have used two different seven-band
Landsat images.>

SData by courtesy of the following website: http://ceos.cnes.fr:8100/cdrom-
00b2/ceos1/datasets.htm
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TABLE IIT
COMPARISON OF MULTIBAND DENOISING ALGORITHMS (SAME NOISE LEVEL IN EACH CHANNEL)
[ 6ni€[L,6] [ 5 [ 10 [ 15 | 20 [ 25 [ 30 [ 50 [ 100 [ 5 [ 10 [ 15 [ 20 | 25 [ 30 ] 30 [ 100

I
| Tnput PSNR [dB] || 34.15 | 28.13 | 2461 | 22.11 | 20.17 | 1859 | 14.15 | 813 || 3415 | 2813 | 2461 | 22.11 | 20.17 | 1859 | 1415 | 8.13 ||

Method Wagga Wagga 512 x 512

Southern California 512 x 512

BLS-GSM [10]

3506 | 3021 | 2770 | 26.09 | 2492 [ 24.02 | 21.76 | 1926

3552 | 3083 | 2833 | 26.67 | 2547 | 24.54 | 2222 | 1971

OWT SURE-LET

3537 | 30.88 | 2859 | 27.09 | 26.00 | 25.14 | 22.95 | 2039

3657 | 32.19 | 29.78 | 28.15 | 26.96 | 26.03 | 23.64 | 2092

Notes:
2. Output PSNRs have been averaged over ten noise realizations.

1. BLS-GSM is applied in a highly redundant representation (a full steerable pyramid), whereas our SURE-LET only uses a non-redundant (orthonormal) transform.

Fig. 8. (A) Part of the first band of the noise-free Southern California image. (B) Noisy version of it: PSNR = 18.59 [dB]. (C) Result of the BLS-GSM (full
steerable pyramid): PSNR = 24.54 [dB]. (D) Result of our /S-IC SURE-LET (OWT sym8): PSNR = 26.03 [dB].

* The first one covers the inland city of Wagga Wagga in
Australia. The coverage area shown in Fig. 7(A) is approx-
imately 15 x 15 km with a resolution of 30 m (image size
of N = 512 x 512 x 7).

* The second one shows a part of a scene taken over Southern
California, encompassing the region from Long Beach to
San Diego. The coverage area shown in Fig. 7(B) is also ap-
proximately 15 x 15 km with a resolution of 30 m (image
size of N = 512 x 512 x 7).

For the denoising experiments, we have disregarded band 6 of
both Landsat images, since it is very different from the others (a
thermal infrared channel at lower resolution); our test data are,
therefore, of size N = 512 x 512 x 6. Unfortunately, we were
unable to compare our results with the ones obtained by other
algorithms specifically devised to handle more than three bands
because we could neither get the test data used in their experi-
ments nor find the corresponding implementations. However, to
have a point of comparison we show the results obtained by the
BLS-GSM applied separately in each bands.

As it can be observed in Table III, our SURE-LET clearly out-
performs (often by more than 41 dB) the BLS-GSM, although
it is applied in an orthonormal wavelet representation. A visual
comparison is also shown in Fig. 8 for one particular band. From
a computational time point of view, there is an obvious interest
in considering nonredundant transformation: the denoising of
the six bands of a 512 x 512 Landsat image lasts 22 s with
our algorithm, whereas it takes 520 s—more than 8 min—with
BLS-GSM.

V. CONCLUSION

We have proposed an extension of our previous monochannel
denoiser to properly handle multichannel images. The resulting
interscale-interchannel wavelet estimator consists of a linear
expansion of thresholding functions, whose parameters are
solved for by minimizing an unbiased estimate of the expected
mean squared error between the noise-free signal and the de-
noised one. This linear parametrization has two main benefits:
first, thanks to the quadratic form of the MSE estimate, the
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parameters optimization amounts to resolve a linear system of
equations, which makes our approach computationally light
and fast; second, the optimized linear parameters act as an
optimal—in the minimum SURE sense—transformation of the
data. For color image denoising, the consequence is that the
denoising performances are nearly insensitive to the color rep-
resentation, contrary to most existing approaches. Compared to
even the best multiresolution algorithms (which involve highly
redundant transforms), the results confirm the efficiency of our
approach, both from a computational and from a quality point
of view. The gains may even become quite significant when the
number of channels increases.

Preliminary investigations using an interchannel adaptation
of the SURE-LET approach [12] within an undecimated wavelet
transform indicate that substantial additional denoising gains
can be achieved (+1 dB and often more). Of course, these are
obtained at the expense of a higher computational cost and a
worse memory management.
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