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ABSTRACT

We devise a new undecimated wavelet thresholding for de-

noising images corrupted by additive Gaussian white noise.

The first key point of our approach is the use of a linearly pa-

rameterized pointwise thresholding function. The second key

point consists in optimizing the parameters globally by mini-

mizing Stein’s unbiased MSE estimate (SURE) directly in the

image-domain, and not separately in the wavelet subbands.

Amazingly, our method gives similar results to the best

state-of-the-art algorithms, despite using only a simple point-

wise thresholding function; we demonstrate it in simulations

over a wide range of noise levels for a representative set of

standard grayscale images.

Index Terms— Image denoising, undecimated wavelet

thresholding, SURE minimization

1. INTRODUCTION

The multi-resolution analysis performed by the wavelet trans-

form has been proved to be particularly efficient in image

denoising. Since the early use of the classical orthonormal

wavelet transform for removing additive Gaussian white noise

through thresholding [1], a lot of work has been done [2, 3, 4,

5], leading to two main observations:

• better performances can be achieved with shift-invariant

transformations such as the undecimated wavelet trans-

form [6];

• further improvements can be obtained with more so-

phisticated thresholding functions which incorporates

inter- and intra-scale dependencies.

In this paper, we will only concentrate on the first of these

two observations, without forgetting the pioneer work of Do-

noho, to work out a new undecimated wavelet thresholding al-

gorithm based on the minimization of Stein’s unbiased MSE

estimate (SURE) [7]. Up to our knowledge, the SURE has

only been properly used in the framework of orthonormal
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wavelet transform. Indeed, its MSE preservation property

allows a wavelet-domain subband-independent SURE mini-

mization. Unfortunately, this classical approach is sub-optimal

with the undecimated wavelet representation, because the MSE

is not preserved anymore in the reconstruction, despite the

fact that the undecimated wavelet transform (UWT) is a tight

frame. In this paper, we show how to overcome this diffi-

culty and efficiently apply the SURE to undecimated wavelet

thresholding. The results show that, despite not using any

form of inter- or intra-scale dependencies, our simple thresh-

olding strategy rivals the best state-of-the-art algorithms in

the undecimated wavelet transform setting1.

The paper is organized as follows: first, we recall the ma-

trix formulation of the undecimated wavelet transform and

describe the main details of our denoising strategy; then, we

expose our new SURE-based undecimated wavelet threshold-

ing; finally, we demonstrate its efficiency.

2. CONTEXT

2.1. The undecimated wavelet transform

In this paper, we propose to use the classical undecimated

wavelet transform whose dyadic analysis/synthesis filterbank

for 1D signal is presented in Figure 1. The redundancy fac-

tor of this overcomplete wavelet expansion is J + 1 where J
stands for the number of decomposition levels. For 2D signals

like images, we simply extend this representation in a sepa-

rable way, leading to an overall redundancy factor of 3J + 1.

Thanks to this redundancy, the UWT is a completely shift-

invariant transformation.

The linearity of the UWT allows the following matrix for-

mulation:

w = Dx (1)

where: D = [D1 . . .Dj . . .DJ+1]T is a matrix of size (J +
1)N×N , where each Dj is a square matrix of size N×N and

x ∈ R
N is an input vector. The columns of the sub-matrices

Dj are circularly shifted versions of the impulse response of

the corresponding wavelet filter (or scaling filter for DJ+1).

Since the wavelet filters G and the scaling filter H are nor-

malized, diag(DT
j Dj) = 1 ∈ R

N , ∀j ∈ [1;J + 1].

1The best UWT for these methods turn out to be the Haar UWT for the

vast majority of test images.
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Perfect reconstruction RD = I is then achieved as fol-

lows:

x = Rw (2)

where: R = [ 12D1 . . . 1
2j Dj . . . 1

2J DJ
1
2J DJ+1] = DTΛ.

Λ =

⎡
⎢⎢⎢⎢⎣

1
2I 0 . . . 0

0
. . .

. . .
...

...
. . . 1

2J I 0
0 . . . 0 1

2J I

⎤
⎥⎥⎥⎥⎦ is a diagonal matrix of size

(J+1)N × (J+1)N which compensates for the redundancy

of the transformation.
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Fig. 1. The classical undecimated wavelet filterbank for 1D

signal. (A) Analysis. (B) Synthesis.

2.2. Our denoising strategy

The aim of the denoising algorithm is to find the best estimate

x̂ ∈ R
N of an unknown signal x ∈ R

N from a noisy obser-

vation of it y = x + b ∈ R
N . Every element of the noise b

is assumed to follow an independent normal law specified by

a zero-mean and a known variance σ2.

In this context, our denoising strategy consists of the fol-

lowing steps:

1. Apply the UWT to the noisy signal y to get the trans-

formed noisy coefficients w = Dy = (wj)j∈[1;J+1],

where wj ∈ R
N ;

2. Apply a pointwise thresholding function Γ to the trans-

formed noisy coefficients to get:

ŵ = Γ(w),

a vector of (J + 1)×N components ŵj,n = γj(wj,n),
where γj , j = 1 · · · (J + 1), are nonlinear functions;

3. Come back to the original domain by applying the in-

verse UWT to the thresholded coefficients.

The whole denoising process can thus be fully described by a

function of the noisy input coefficients:

x̂ = F(y) = RΓ(Dy) (3)

The first key point of our approach is to build F as a linear
combination of simple —possibly nonlinear— functions Fj,k,

that is:

F(y) =
J+1∑
j=1

K∑
k=1

aj,k RΓj,k(Dy)︸ ︷︷ ︸
Fj,k(y)

, (4)

where: Γj,k(w) = [0T · · ·0T Γk(wj)T 0T · · · ]T, i.e., the

simple denoising function Fj,k modifies only subband j.

Thanks to this linear parametrization, the search for the

optimal —in the minimum mean square error (MMSE) sense—

parameters ak boils down to the resolution of a linear system
of equations (see section 3.3), because the MSE, defined as

MSE =
1
N
‖x̂− x‖2 = 1

N
‖F(y)− x‖2, (5)

is a quadratic function in F(y) and thus, in the aj,k’s.

Of course, since we do not have access to the noise-free

signal x, we can not compute the actual MSE. To overcome

this difficulty, we will use Stein’s unbiased MSE estimate

(SURE) [7] (see section 3.1).

The second key point of our approach is that the parame-

ters optimization is performed in the image domain, contrary

to what is usually done in other UWT-based denoising algo-

rithms. This image domain optimization is unavoidable when

using the UWT, because the MSE is not preserved in the trans-

formed domain due to the non-orthonormality of the transfor-

mation.

3. SURE-BASED ALGORITHM FOR
UNDECIMATED WAVELET THRESHOLDING

3.1. MSE estimation

It is possible to have an unbiased estimate of the MSE us-

ing only the noisy observation y, not the original noise-free

signal x. There is even no need to put any statistical assump-

tion on this unknown underlying signal. This unbiased MSE

estimate, known as SURE, takes the following expression:

ε =
1
N

(
‖F(y)‖2 − 2F(y)Ty + 2σ2div{F(y)}

)

+
1
N
‖y‖2 − σ2 (6)

In general, it is quite painful to express the divergence

term which appears in equation (6). Fortunately, in the frame-

work of the undecimated wavelet transform presented in sec-

tion 2, this computation becomes simple, leading to the fol-

lowing form of the MSE estimate:
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Theorem 1 After a pointwise undecimated wavelet process-
ing, the MSE can be unbiasedly estimated by the following
random variable:

ε =
1
N

(
‖F(y)‖2 − 2F(y)Ty + 2σ2diag(Λ)TΓ′(Dy)

)

+
1
N
‖y‖2 − σ2 (7)

i.e.:
E {ε} = 1

N
E {‖F(y)− x‖2}

where E {·} stands for the expectation operator and
Γ′(w) = [Γ′1(w1)T · · ·Γ′J+1(wj+1)T]T.

Since the variance of the MSE estimate given by Theo-

rem 1 mainly depends on the number of samples N , ε is really

close to the actual MSE in image denoising applications.

3.2. Parametric pointwise denoising function

To apply Theorem 1, we need a differentiable pointwise thresh-

olding function; for an easier optimization, it is really ap-

propriate to use a linear parametrization. Both of these con-

straints are satisfied by the following function

γ(w) =
K∑

k=1

ak we−(k−1) w2

3K2σ2︸ ︷︷ ︸
θk(w)

(8)

which is simply a weighted sum of first derivatives of Gaus-

sians. For example, for K = 2 terms, we obtain:

γ(w) = a1w + a2we−
w2

12σ2 , (9)

which has been already shown in [8] to be more efficient than

the classical soft-thresholding.

Furthermore, we propose to link the number of parameters

K to the level of decomposition j as follows:

Kj = min(J − j + 2, 4) (10)

to speed up the algorithm by assigning less parameters to the

coarsest scales.

3.3. Parameters optimization

Our aim is to find the remaining linear parameters aj,k which

will minimize the MSE estimate ε. Starting from equation (7),

these are solved for in the following way:

∀(k, j) ∈ [1;K]× [1;J + 1], we have:

∂ε

∂aj,k
= 0⇐⇒ a = M−1c (11)

where: a, c and M are vector/matrix straightforwardly built

using, respectively, the coefficients aj,k, the SURE expres-

sions
(
Fj,k(y)Ty − σ2diag(Λ)TΓ′j,k(Dy)

)
and the scalar

products Fj,k(y)TFj′,k′(y).
Because of this linear feature, our algorithm is fast and

simple to implement.

4. EXPERIMENTS

4.1. Optimization method assessment

Before comparing our algorithm with the best state-of-the-

art denoising schemes, we have performed several experi-

ments on simulated additive Gaussian white noise to validate

our image-domain optimization method. We have noticed an

overall gain of up to 1 dB compared to an independent undec-

imated wavelet in-band MSEs minimization. This large gap is

caused by the high correlation of the UWT wavelet subbands.

4.2. Comparison with state-of-the-art denoising schemes

We propose to compare our pointwise undecimated wavelet

thresholding with two other wavelet denoising procedures:

the BiShrink [5] and the BLS-GSM [3] which gives, up to our

knowledge, the best results known in the literature. Contrary

to our approach, both of these methods integrate the parent

—coefficient at the next coarser scale— and a local neighbor-

hood to better estimate the current noisy coefficient. We have

run these algorithms under the same conditions as ours using

the respective Matlab codes of the authors, kindly provided on

their respective webpages. Their parameters have been cho-

sen according to what was suggested in their papers [5, 3].

We have applied five decomposition stages of an undec-

imated wavelet transform for each of the various denoising

procedures. Surprisingly, the best results were obtained for

all methods with the Haar filters for over a vast majority of

test images. To perform a reliable PSNR2 comparison, we

have then averaged the results over eight noise realizations in

an input PSNR range of 8.13− 34.15 dB.

In Table 1, we have reported the output PSNRs of the

various algorithms and, in Figure 2, we show a visual result.

As it can be observed, our method is really competitive: we

achieve the same average quality as the BLS-GSM and an av-

erage gain of 0.4 dB against the BiShrink. These observations

have been confirmed over most standard test images, to the

notable exception of Barbara, where we obtain similar re-

sults as the BiShrink, but experience an average loss of 0.5
dB compared to the BLS-GSM. This may suggest that with

textured images, the integration of local neighborhood infor-

mation may become important.

From a practical point of view, the computation time of

our method is approximately 5s for 256 × 256 images and

about 35s for 512 × 512 images, whereas the BLS-GSM re-

quired respectively 12s and 60s under the same conditions.

5. CONCLUSION

We have presented a new pointwise SURE-based undecimated

wavelet thresholding algorithm. The parameters involved in

2defined as PSNR = 10 log 10 2552

MSE
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Table 1. Comparison of some of the most efficient denoising

methods (UWT Haar).
σσσ 5 10 20 30 50 100

Input PSNR 34.15 28.13 22.11 18.59 14.15 8.13

Method House 256 × 256

BiShrink 38.40 34.94 31.90 30.04 27.62 24.14

BLS-GSM 38.35 35.29 32.39 30.53 28.01 24.59

Our method 38.78 35.49 32.44 30.59 28.15 24.79
Method Lena 512 × 512

BiShrink 37.98 34.73 31.71 29.93 27.66 24.56

BLS-GSM 38.26 35.19 32.10 30.25 27.93 25.05

Our method 38.29 35.08 32.00 30.21 28.03 25.28
Method Boat 512 × 512

BiShrink 36.65 33.12 29.97 28.17 25.96 23.17

BLS-GSM 36.82 33.51 30.31 28.44 26.17 23.44

Our method 37.18 33.57 30.26 28.42 26.21 23.59
Method Al 512 × 512

BiShrink 38.20 34.79 31.85 30.20 28.00 24.72

BLS-GSM 38.89 35.51 32.42 30.60 28.30 25.26

Our method 39.05 35.60 32.46 30.72 28.55 25.59

Note: output PSNRs have been averaged over eight noise realizations.

the thresholding function are linear and therefore, can be solved

for elegantly by minimizing Stein’s unbiased MSE estimate

(SURE). Due to the non-orthonormality of the undecimated

wavelet transform, we have proposed a rigorous image-domain

optimization which finally makes our pointwise algorithm com-

petitive with the best state-of-the-art denoising procedures.
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