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Abstract—The variational reconstruction theory from a
companion paper finds a solution consistent with some linear
constraints and minimizing a quadratic plausibility criterion. It
is suitable for treating vector and multidimensional signals. Here,
we apply the theory to a generalized sampling system consisting
of a multichannel filterbank followed by a nonuniform sampling.
We provide ready-made formulas, which should permit appliction
of the technique directly to problems at hand.

We comment on the practical aspects of the method, such as nu-
merical stability and speed. We show the reconstruction formula
and apply it to several practical examples, including new varia-
tional formulation of derivative sampling, landmark warping, and
tomographic reconstruction.

Index Terms—Reconstruction, sampling, thin-plate splines, vari-
ational criterion.

I. INTRODUCTION

I N THE first paper of this series [1], we have developed a
general theory for reconstructing a signal given a finite set

of linear measurements. Since this is in essence an ill-posed
problem, we proposed to search for the solution that minimizes
some quadratic variational criterion (regularization term) that
forces the solution to be smooth. We found the general func-
tional form of the solution to be a linear combination of basis
functions derived from the Green’s functions of the respective
regularization differential operator. By imposing some funda-
mental invariance properties on the solution (translation, ro-
tation and scale-invariance), we restricted the class of allow-
able regularization functionals to a one-parameter family that
involves iterated Laplacian operator.

In this paper, we will use those theoretical results to explic-
itly compute the solution of the generalized sampling problem
that is schematically represented in Fig. 1. This system is an ex-
tended version of the one treated by Papoulis [2]; it allows for
nonuniform sampling at arbitrary locations. The general theory
[1] does not take explicit advantage of one of its important char-
acteristics: the convolutional form of the measurement process
( -channel filterbank). We will see here that this property trans-
lates into a multiwavelet-like form of the solution with one gen-
erating function per filter channel (shift-invariant form of the
solution).
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Fig. 1. Generalized sampling. Sampling is modeled as a multiplication with
a multidimensional train of Dirac’s masses. It yields a set of scalar valuess .
In Papoulis’s framework, the sampling is uniform:x = x = jT , and the
samples can be grouped to vectorss . Here, the sampling locationsx can be
arbitrary.

Our goal in this paper is twofold. First, we want to bridge
the gap between the theoretical formulation in Part I [1] and the
effective application of the results to specific sampling cases.
We will also simplify the translation from theory to practice
by doing a good part of the analytical work—determination
of the basis functions and providing computational recipes and
implementation formulas that are directly applicable. Second,
we consider examples of applications of variational sampling
and present some experimental results. We will also emphasize
the connection between variational sampling, splines, and radial
basis functions.

A. Example of a Variational Interpolation

To motivate the variational approach, let us consider the task
of interpolating a unidimensional function. As illustrated in
Fig. 2, there is an infinite number of functions passing through
the given points. Nevertheless, most people would probably
agree that the smooth approximation curve in Fig. 2 looks
“more correct” than the rugged noisy approximation. We can
often quantify the degree of plausibility of a function for a given
application. Then, we search for the most plausible function
satisfying our interpolation (consistency) conditions. The plau-
sibility criterion is the key concept of our approach. From
now on, we will concentrate on the typical case where we want
the solution to be “smooth.” As smoothness can be measured
by the amplitude of the derivatives, maximizing smoothness
translates into minimizing the norm of various differential
operators. In Fig. 2, the smooth curve minimizes the-norm
of the second derivative , which is known to
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Fig. 2. When interpolating a function from its values (circles), many solutions
are possible. However, smooth interpolation (bold line) is usually preferable to
a rugged one (thin line).

yield a cubic spline interpolation [3], [4]. A corresponding task
of interpolating scalar values in a two-dimensional (2-D) space
leads to so-called thin-plate splines [5]–[7].

B. Extensions of the Example

The theory presented in [1] permits several extensions of the
simple example above. First, the plausibility (smoothness) crite-
rion can be tailored based on the nature of the underlying data.
If, for example, the measures correspond to the position of a
body moving with supposedly constant acceleration, then the
appropriate criterion should take into account the third deriva-
tive instead of . Second, instead of the function values
(positions), we can conceivably base our reconstruction on other
linear measures of the underlying function, such as the deriva-
tives (the speed) or their means across a certain region (average
speed). Third, we can also use several of these measures (called
generalized samples) at the same time, leading tomultichannel
sampling. Finally, thevectorextension enables us to deal with
vector function interpolation, which is frequently encountered
in physical systems, permitting treatment of all three spatial co-
ordinates at the same time. All these extensions have been in-
cluded in the generalized sampling system shown in Fig. 1.

II. PROBLEM FORMULATION AND SOLUTION

This section is designed as a guide to the practitioner for
translating the general variational theory [1] into a reconstruc-
tion algorithm that is tailored to specific instances of the gen-
eralized sampling problem in Fig. 1. At the end of the process,
the solution is expressed as a linear combination of continuously
defined basis functions with coefficients obtained from the solu-
tion of a linear system of equations. Here, we will step through
the formulation in some detail and present the key formulas and
computations that will be required in practice.

A. Sampling Structure

The generalized sampling in Fig. 1 can be described using a
filterbank consisting of filters1 of size

. At the output of the filterbank, we obtain a set of fil-
tered signals . We measure (sample) each of the filtered

1These filters may be distributions. For instance, the identity (no filter) cor-
responds to Dirac’s distribution�, satisfying� � f = f .

signals at arbitrary points , which gives a set of real
samples

(1)

for and . This is a special case of
the inner-product formulation in [1, Sect. II-C] if we define the
following:

and (2)

We require the reconstruction to be consistent, which
means that the signal must provide exactly the same mea-
surements as the original signal when run through our mea-
surement system:

(3)

B. Criterion

Since there is an infinity of signals satisfying (3), we will look
for the one that minimizes the plausibility criterion. To se-
lect this criterion, we refer to [1, Th. 1]. We will demand the
scale, translation, and rotation invariance of the solution to guar-
antee that the reconstruction remains the same, regardless of the
coordinate system. Together with the requirement of linearity
this essentially restricts the choice of the plausibility criterion
to Duchon’s semi-norms [5], [6] (see [1, Sect.IV-G])

(4)

The most often used Duchon’s semi-norms are summarized in
Table I. Table II gives theirkernels[the functions for which

]: in our case, polynomials of degree . See [1]
for general formulas.

The choice of the order of the semi-norm influences the re-
constructed function, as shown in Fig. 3. The higher the order,
the smoother the solution, but there will be higher overshoot and
more pronounced ringing as well.

C. Fundamental Solutions

In our previous paper [1, Th. 2], we show that the solution of
the generalized interpolation problem lies in a vector space that
is determined by the criterion and the sampling filterbank.
Its generating (basis) functions: are calledfunda-
mental solutions, and they can be obtained by convolution with
the sampling operators:

(5)

where the functions are Green’s functions[8], [9] corre-
sponding to the criterion . Table III gives the scalar Green’s
functions for the most often used Duchon’s semi-norms as
well as in the general case. Note that it is enough to consider
the scalar case ( ); in the vector case ( ), we get

.
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TABLE I
MOST OFTEN USED DUCHON’S SEMI-NORMS IN DIMENSIONSm = 1, 2, 3.M IS THE ORDER OF THESEMI-NORM. FOR OTHER COMBINATIONS OF

m AND M , SEE [1, SECT. IV-G]

TABLE II
KERNELS OFMOST OFTEN USED DUCHON’S SEMI-NORMS IN DIMENSIONS

m = 1, 2, 3.M IS THE ORDER OF THESEMI-NORM

Fig. 3. Dependence of the reconstruction result on the order of the semi-norm
M used. High-order semi-norms tend to produce slowly varying curves with
large overshoots and vice versa.

D. Explicit Solution

The solution to our generalized interpolation problem, a func-
tion minimizing the criterion (4) under the constraints (3) is
given by the following result, which is a restatement of [1, Th. 2]
for our particular multichannel system. The main difference is
that here, we get one generating functionper channel, which
is then shifted to all sampling locations, whereas in [1], we had
one function per measurement.

TABLE III
GREEN’S FUNCTIONS IN DIMENSION m CORRESPONDING TODUCHON’S

SEMI-NORM kfk . THE MULTIPLICATIVE CONSTANTSc, ĉ CAN BE

DETERMINED BUT ARE IRRELEVANT FOROUR PURPOSES. THE FUNCTIONSARE

ALL EXPRESSEDUSING EUCLIDEAN DISTANCE � = kxk. THE LAST FORMULA

IS VALID FOR NONINTEGER� AS WELL

Theorem 1 (Interpolation Problem Solution):The general-
ized interpolation problem is solved by a function

(6)

where are the fundamental solutions, and is the
basis of the kernel of the semi-norm(e.g., polynomials), if
and only if the following three conditions are satisfied.

i) The solution is consistent with the constraints

for all (7)

ii) The coefficients satisfy the “orthogonality” condition

for all (8)

iii) The solution is admissible, i.e., .
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The condition iii) is usually ensured by the coefficients obtained
in i) and ii).

Equivalently, i) and ii) can be written in a matrix form as

B

(9)

where the parameters have been arranged in vectors as
and .

The components of the matrix of size are given
by and represent
the contribution of the fundamental solutions to each mea-
surement. The components of the matrixare given by

and represent the kernel part of the
solution as well as the orthogonality conditions.

We see that (6) consists of two parts. The first (the kernel part)
does not contribute to the criterion ; therefore,
we can intuitively tell that it is useful to accommodate in it as
much as possible of . In fact, the orthogonality conditions ii)
ensure that the fundamental part of the solution (6) is orthogonal
to any element of the kernel.

The second, fundamental part of the solution consists of a
linear combination of shifted basis functions positioned
at the sampling points. Interestingly, the fundamental part
is reminiscent of a wavelet (or multiwavelet) like expansion
because it also involves shifts of some generating functions.
One difference is that here, the basis functions in
(6) are not necessarily uniformly spaced. Another difference is
that wavelets are usually well localized, whereas the functions

[related by convolution (5) to the Green’s functionsfrom
Table III] are typically not since they increase as one moves
away from the origin. However, the orthogonality conditions (8)
localize the functions (where ; see [1,
Sect. III-E]), which has the effect of taming the growth of the
solution at infinity. Dropping the scale-invariance requirement
leads to basis functions that grow more slowly [10].

E. Numerical Aspects

The presented method requires the solution of a large, non-
sparse system of equations. Additional research is required to
develop fast numerical solvers [11], such as specialized itera-
tive methods [12], [13]. A related aspect is the ill conditioning
of the system matrix due to the nonlocal nature of the basis func-
tions. We believe this can be improved using adequate precon-
ditioners, e.g., by localizing the basis functions, similar to the
construction of B-spline basis [14]. Other techniques include
domain decomposition [15] or algebraic manipulation suitable
for special form of the matrices [16, Ch. 4].

F. Generalized Approximation Problem

In some applications, for example, if the measurements are
noisy, we do not want the reconstructed function to pass
exactly through the measured points. Instead, we want it to be a
compromise between its smoothness (or plausibility), as mea-
sured by the criterion , and the closeness of the fit to the
sampled points, as measured for example by the sum of the
squared differences. In ageneralized approximation problem[1,

Sect.VI], we minimize a combined criterion. For the standard
regularized least-squares approximation,has the form

(10)

where is the regularization criterion defined by (4), and
are the measured points close to which we want to pass. The
problem is equivalent to finding a that minimizes under
the constraint , where is ana priori given error bound.
The should be chosen such that the errorcorrespond to the
expected noise (error) in the measurements. If the measurement
noise is not known, a suitablecan be found, for example, using
the leave-one-out technique [17].

The solution of the approximation problem (see [1, Th. 3 and
its sequels]) has the same form defined by (6), and the pa-
rameters and satisfy the matrix equation

B

(11)

where the symbols are the same as in (9).
The simplicity of (11) is a consequence of the continuous

regularization and of using the fundamental solutions as the
basis of our space. Our variational formulation of the approx-
imation problem is similar in spirit to using discrete regular-
ization [18]–[20] to deal with the ill-poseness of some inverse
problems. Our regularization, however, is completely specified
in the continuous domain. In addition, those discrete regulariza-
tions, which are often used in combination with nontrivial basis
functions, such as the finite element method (FEM), modify the
equation set in a much more complicated and less predictable
way. The identity matrix is replaced by some general matrix
that needs to be determined on a case-by-case basis.

III. EXAMPLES

We now give various examples of how the theory can be used
and present some experimental results.

A. Reconstruction from Irregular Samples

Let us consider the problem of finding a function:
passing through a finite number of points and mini-
mizing a criterion (see Table I). From
Table III, we see that the fundamental solution corresponding
to the semi-norm is proportional to . The kernel corre-
sponding to this semi-norm is the class of all linear polynomials

, i.e., the class of functions for which every-
where. The reconstruction is thus

(12)

which has unknown parameters. The consistency condi-
tions give us linear equations, whereas the or-
thogonality requirements and yield the
remaining two. A nice consequence of the orthogonality condi-
tions is to make the second derivative
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Fig. 4. Interpolation from function values.

vanish after the last sampling point, which ensures that
, and thus, . Note that is a piecewise cubic polyno-

mial with continuous second derivatives, i.e., it is acubic spline.
This result is known, see [3] and [21]. An example of a spline
reconstruction (interpolation) is shown in Fig. 4.

For uniform sampling, the basis functions can be
localized using digital filtering (with iterated finite difference
filter) to obtain compactly supported uniform cubic-splines,
which makes an interesting link with existing theory [22], [23].
For nonuniform sampling, the localization is also possible using
divided differences [24], leading to nonuniform B-splines. In
both cases, if we increase the order of the semi-norm, the
order of the splines will increase as well, and the corresponding
interpolation will converge to the sinc interpolation [25], [26].
This shows the relation with the classical sampling theorem
[27].

B. Smoothing Splines

If the measured points from the preceding example are not
exact, it is more appropriate to replace interpolation by approx-
imation (see Section II-F). The reconstruction formula (12) re-
mains, whereas the equation set (9) used to determine the pa-
rameters and is now replaced by the equation set (11). An
example of a result for the same sampled points as before is
shown in Fig. 5. The smoothing spline method that we have just
described is a nonparametric regression technique widely used
in statistics [28].

C. Derivative Sampling

Let us add derivative constraints to the example
from Section III-A. The sampling filters will become .
The first fundamental solution corresponding to remains

. The second one, corresponding to , is
obtained by convolving with , which gives .
The reconstruction formula is thus

The unknown parameters can be determined from
consistency equations and and two

Fig. 5. Approximation between given points for
 = 10 .

Fig. 6. Interpolation from function values and derivatives.

orthogonality conditions and .
These orthogonality conditions come from the requirement (8)
that , where ,
is the basis of the kernel. An example of reconstruction from
derivative sampling is shown in Fig. 6. A trivial extension is to
sample the derivative values at different points than the function
values.

D. Landmark-Based Warping

The problem of image registration is encountered in many
areas of image processing. The task is to find correspondences
between pixel coordinates in two distinct but similar images. In
other words, we search for a function that gives us, for each point
in the first image, the coordinates of the corresponding point in
the second image. In some cases, it is necessary to use manual
methods [29]. These mostly require the expert to specify a set of
pairwise corresponding landmarks [7] (reference points) in both
images. Then, an interpolation method is needed to also find the
deformation function between the landmarks, which is exactly
the problem studied in this paper. Supposing we want to find
the 2-D deformation function minimizing Duchon’s semi-norm
of order two, we see from Table III that we need to interpo-
late using the functions, which are also called thin-plate
splines.

Fig. 7 shows an example where landmark warping is used
to compensate distortion in functional magnetic resonance
imaging (fMRI) images by registration with anatomically
correct (proton density) MR images [30]. More examples of
landmark interpolation using different interpolating functions
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Fig. 7. Corresponding slices of (a) functional MR and (b) anatomical (proton density) MR images with landmarks put manually at important points. The
deformation field between landmarks is determined by interpolation using variational reconstruction method (equivalent to thin-plate splines inthis case).

can be found in [31]. Some demonstrations are available on our
web page http://bigwww.epfl.ch/demo.

E. Reconstruction Consistent With Laplace Equation

The problem treated in [32] by numerical integration—which
we will solve explicitly here—consists of reconstructing a func-
tion , minimizing the norm of the 3D Laplacian operator

. The problem is ill-posed without ad-
ditional constraints because the kernel is too big, including
all functions that satisfy Laplace’s equation , such as

. It therefore permits an infinity of solutions with zero
cost. To avoid this ambiguity, we will instead minimize a cri-
terion , the explicit expression of which can be
found in Table I. This makes sense because whenis well be-
haved, the two criteria and are equal. The corresponding
fundamental solution is (where ). Since the
kernel consists of linear polynomials, the solution takes the form

(13)

with the auxiliary conditions , and
for , where

are the coordinates of theth measure-
ment point. As before, the coefficients and must be
determined in such a way that passes by the desired points.

F. Derivative Sampling in Two Dimensions

Adding another level of complexity, we are going to extend
the derivative sampling from Section III-C to two dimensions.
The task is to find a function: given its values
as well as the values of its first partial derivatives at
sampling points . Our analysis filters are therefore

For reasons given later, we choosethat minimizes
. The kernel of this criterion consists of bivariate polyno-

mials of degree less than or equal to 2, and its Green’s function
(see Table III) is . Consequently, the funda-
mental solutions corresponding to the three sampling filters
are, respectively, , and its partial derivatives with respect to
both and .

This means that the solution , besides the term from the
kernel, consists of a linear combination of shifted fundamental
solutions [see (6)]

(14)

where . There are six orthogonality con-
straints [from (8)] corresponding to the six basis functions of
the kernel

Note that some care is needed in selecting the regularization cri-
terion . Had we chosen the classical criterion , we would
have obtained as the fundamental solution, the
second derivative of which is not bounded around zero, thus pre-
venting the evaluation of the measures of (14) at
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Fig. 8. Reconstructing a 2-D Gaussian (a) from information at sampling points (b). The difference between the true function and the approximation gets
progressively smaller as we use (c) thin-plate spliner log r approximation, (d) approximation usingr log r, and (e) approximation usingr log r with
measurements of derivatives. The respective SNRs are (c) 13.4 dB, (d) 18.7 dB, and (e) 34.2 dB. The approximation using derivatives gives the best results. Bear
in mind, however, that the derivative method uses an extra information (the derivatives) that the other methods cannot use.

grid points. No such (nontrivial) would belong to ; the
problem would not admit a solution in.

As an example, we have approximated a 2-D Gaussian using
thin-platesplinesand functionsbothwithandwithout the
derivative information.TheresultsareshowninFig.8.Thehigher
order approximation with functions leads to a smoother
function than the thin-plate spline solution ( ) and, there-
fore, performs better for approximating a Gaussian that is a very
smooth function. Not surprisingly, the method using the deriva-
tives we have just described gives the best results.

This approach can be easily extended for finding vector func-
tions : by taking , where

are the components of. As the components are
treated separately, the solution can be calculated independently
for each of them. One possible application is semi-automatic
landmark image warping with derivative constraints.

G. Tomographic Reconstruction

A nice example of a classic inverse problem that also falls
into our framework is tomographic reconstruction [33], [34]. It
consists of reconstructing a cross section of an object from its
transaxial projections. We now show that tomographic recon-
struction lends itself well to the variational formulation. Alter-
native algorithms involve wavelets [35] and polynomial convo-
lutional kernels [36].

Let be the unknown cross section of the object to be
reconstructed. We measure the projections ofat angles .
For each angle, we measure an integral along a ray at

positions , that is

(15)

This integral corresponds to our sampling operator. The varia-
tional formulation of the reconstruction problem is thus: Find
a function consistent with measurements [yielded by
(15)] and minimizing a plausibility criterion. We choose to
be Duchon’s semi-norm .

The projection/sampling operator (15) can be written as a
convolution

(16)

The fundamental solution for the sampling operator (16)
needs to satisfy the defining equations from [1, Sect. V-D],
which in this case lead to

(17)

To find , we rotate our coordinate system by , which yields
a 1-D problem equivalent to the one in Section III-A with solu-
tions . In our 2-D case, after rotating the coordinate system
back, we get

(18)
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Fig. 9. We are reconstructing the inner part of the Shepp and Logan phantom [33] (top left), using projections at eight uniformly distributed angles, 32
measurements by angle. The result of the filtered backprojection (top right) has more artifacts and is less geometrically precise than the variational reconstruction
(bottom right). In addition, note that unlike filtered backprojection, the variational reconstruction recovers the absolute amplitudes in the image well.

Putting the pieces together, we find that our reconstruction
takes the form

(19)

The interesting thing is the structure of the generating
functions that are back-projections (extensions) of the
corresponding 1-D fundamental solutions along the projection
rays. They have the same form as in the standard backprojection
algorithm [33].

For a more realistic application, we consider that the measure-
ments are noisy, and we therefore use the approximation for-
mulation from Section II-F. Second, instead of integrating over
the whole space in (15) and (16), we only integrate over the part
corresponding to the measurement device. If we also evaluate
the regularization criterion in the same domain, the fundamental
solutions remain the same.

Fig. 9 shows a comparison of the reconstruction using the
variational algorithm and classical filtered backprojection [33],
as implemented in Matlab. We can observe that for a small
number of measurements, the variational reconstruction algo-
rithm gives a better result than the filtered backprojection. For
a large number of measurements, the results of the variational
reconstruction are comparable with that of the filtered backpro-
jection. Thus, our method is especially useful in the case of few
angles. More details can be found in [37].

IV. CONCLUSIONS

We have presented an interpolation and approximation
scheme capable of treating nonuniformly sampled multi-
channel output of a filterbank. The reconstruction is optimal
in the sense of a user-chosen criterion. The method is easily
modifiable to adapt to various sampling (measuring) systems
and can take advantage of ana priori knowledge about the
reconstructed object.

We present mathematical recipes that should facilitate the
derivation of the relevant formulas for specific problems and the
subsequent use of the variational reconstruction.



KYBIC et al.: GENERALIZED SAMPLING: VARIATIONAL APPROACH—PART II: APPLICATIONS 1985

We believe that our reconstruction algorithm is especially
useful for applications where there are few measurements as it
permits to use them in the best possible way. We have presented
several examples to illustrate its possible uses.
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