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Generalized Sampling: A Variational Approach—
Part Il: Applications

Jan Kybi¢c Member, IEEEThierry Blu, Member, IEEEand Michael Unser~ellow, IEEE

Abstract—The variational reconstruction theory from a Zj 5(X - le)
companion paper finds a solution consistent with some linear
constraints and minimizing a quadratic plausibility criterion. It fl\ 815
is suitable for treating vector and multidimensional signals. Here, hf \X/ —
we apply the theory to a generalized sampling system consisting
of a multichannel filterbank followed by a nonuniform sampling. . .
We provide ready-made formulas, which should permit appliction . R
of the technique directly to problems at hand. fin (x)

We comment on the practical aspects of the method, such as nu- * 5 6(x — xg5) *
merical stability and speed. We show the reconstruction formula ¢ 4 ¢
and apply it to several practical examples, including new varia-
tional formulation of derivative sampling, landmark warping, and T X Sqj
tomographic reconstruction. h, \N— ol

Index Terms—Reconstruction, sampling, thin-plate splines, vari- .
ational criterion. filtering sampling

Fig. 1. Generalized sampling. Sampling is modeled as a multiplication with
|. INTRODUCTION a multidimensional train of Dirac’s masses. It yields a set of scalar valyes
In Papoulis’s framework, the sampling is uniform;; = x; = 37", and the
N THE first paper of this series [1], we have developed smples can be grouped to vectsfsHere, the sampling locations;; can be
general theory for reconstructing a signal given a finite s@fitran-
of linear measurements. Since this is in essence an ill-posed
problem, we proposed to search for the solution that minimizesOur goal in this paper is twofold. First, we want to bridge
some quadratic variational criterion (regularization term) théte gap between the theoretical formulation in Part | [1] and the
forces the solution to be smooth. We found the general fureffective application of the results to specific sampling cases.
tional form of the solution to be a linear combination of basig/e will also simplify the translation from theory to practice
functions derived from the Green’s functions of the respectil®y doing a good part of the analytical work—determination
regularization differential operator. By imposing some fundaf the basis functions and providing computational recipes and
mental invariance properties on the solution (translation, rmaplementation formulas that are directly applicable. Second,
tation and scale-invariance), we restricted the class of allowe consider examples of applications of variational sampling
able regularization functionals to a one-parameter family thand present some experimental results. We will also emphasize
involves iterated Laplacian operator. the connection between variational sampling, splines, and radial
In this paper, we will use those theoretical results to explibasis functions.
ity compute the solution of the generalized sampling problem
that is schematically represented in Fig. 1. This system is an éx- Example of a Variational Interpolation

tended version of the one treated by Papoulis [2]; it allows for 1o motivate the variational approach, let us consider the task
nonuniform sampling at arbitrary locations. The general theogy interpolating a unidimensional function. As illustrated in
[1] does not take explicit advantage of one of its important chatig. 2, there is an infinite number of functions passing through
acteristics: the convolutional form of the measurement procegg given points. Nevertheless, most people would probably
solution). application. Then, we search for the most plausible function
satisfying our interpolation (consistency) conditions. The plau-
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signals atV arbitrary pointsx;;, which gives a set ofV real
samples

Sij = h’ « fin(xi;) = / h;(x)fin(xij —-x)dx (1)
fori € {1---q} andj € {1---N}. This is a special case of
the inner-product formulation in [1, Sect. 1I-C] if we define the
following:

ritg-1)(X) =hi(x;; —x) and N¢g=Q.  (2)

We require the reconstructiafy,; to be consistentwhich
means that the signél,; must provide exactly the same mea-

Fig. 2. When interpolating a function from its values (circles), many solutions,,rements as the original sigrfa] when run through our mea-
are possible. However, smooth interpolation (bold line) is usually preferable to

a rugged one (thin line). surement system:

. N N L
o 5 10 15 20 s

T — .. — (WT .
yield a cubic spline interpolation [3], [4]. A corresponding task (B fin) (xij) =15 = (B * fout) (xi5)
of interpolating scalar values in a two-dimensional (2-D) space Vie{l---q}, je{l---N}. (3)
leads to so-called thin-plate splines [5]-[7].

D @

B. Extensions of the Example B. Criterion
The theory presented in [1] permits several extensions of theSince there is an infinity of signals satisfying (3), we will look
simple example above. First, the plausibility (smoothness) crif@' the one that minimizes the plausibility criterioh To se-
rion can be tailored based on the nature of the underlying ddgt this criterion, we refer to [1, Th. 1]. We will demand the
If, for example, the measures correspond to the position of&ale, translation, and rotation invariance of the solution to guar-
body moving with supposedly constant acceleration, then tB8tee that the reconstruction remains the same, regardless of the
appropriate criterion should take into account the third deriveoordinate system. Together with the requirement of linearity
tive f" instead off”. Second, instead of the function valuehis essentially restricts the choice of the plausibility criterion
(positions), we can conceivably base our reconstruction on otfi@uchon’s semi-norms [5], [6] (see [1, Sect.IV-G])
linear measures of the underlying function, such as the deriva- N
tives (the speed) or their means across a certain region (average J(E) = |f]%. = Z KA
speed). Third, we can also use several of these measures (called M =
generalized samplgsat the same time, leading toultichannel
sampling. Finally, therectorextension enables us to deal withThe most often used Duchon’s semi-norms are summarized in
vector function interpolation, which is frequently encounterefgble 1. Table Il gives theikernels[the functionsf for which
in physical systems, permitting treatment of all three spatial cd{./) = 0]: in our case, polynomials of degréd — 1. See [1]
ordinates at the same time. All these extensions have beenf@ii-general formulas.
cluded in the generalized sampling system shown in Fig. 1.~ The choice of the order of the semi-norm influences the re-
constructed function, as shown in Fig. 3. The higher the order,
Il. PROBLEM FORMULATION AND SOLUTION the smoother the solution, but there will be higher overshoot and
This section is designed as a guide to the practitioner f?rOre pronounced ringing as well.
t_ranslating the gen_eral yariational the_o_ry_ [1] into a reconstrug- Eundamental Solutions
tion algorithm that is tailored to specific instances of the gen- ) ,
eralized sampling problem in Fig. 1. At the end of the process, !N 0ur prévious paper [1, Th. 2], we show that the solution of
the solution is expressed as a linear combination of continuousl gener_ahzed Interpol_anc_)n problem lies in a vec_:tor space that
defined basis functions with coefficients obtained from the solift détermined by the criteriost and the sampling filterbanik.
tion of a linear system of equations. Here, we will step throudft 9enerating (basis) functiogs R™ — R" are calledunda-
the formulation in some detail and present the key formulas affg"tal solutionsand they can be obtained by convolution with
computations that will be required in practice. the sampling operators:

A. Sampling Structure [01 - @] = Prxg = Trxn # Haxg 5)

The generalized sampling in Fig. 1 can be described usingfere the functionsp are Green’s functiong8], [9] corre-
filterbankH,, ., = [hy ---hy] consisting of filters! h; of size  gponding to the criteriow. Table 11l gives the scalar Green’s
n x 1. At the output of the filterbank, we obtain a set of fil-f,nctions for the most often used Duchon’s semi-norms as
tered signalh + fi,. We measure (sample) each of the filteregie| as in the general case. Note that it is enough to consider

1These filters may be distributions. For instance, the identity (no filter) cothe scalar casen( = 1); in the vector casen( > 1), we get
responds to Dirac’s distributiofy satisfyingé = f = f. W = Yl xn.
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TABLE |
MOST OFTEN USED DUCHON'S SEMI-NORMS IN DIMENSIONS m = 1, 2, 3. M |S THE ORDER OF THESEMI-NORM. FOR OTHER COMBINATIONS OF
m AND M, SEE[1, SECT. IV-G]

R™ | Dy ||f||%M for f: R™ — R
25 2
Rl D2 (d—2) dz
3 2
Rl D3 (E%‘ dz
2 2
R | D, /(%{-) (Bxa ) +( ) dxdy
#fF\° »f
® | 2 [ (5) +5(55ty) + (i) = (55) wr
82 2 32 2 a2f 2 2 2f
| o | () +(5F) + () +2 (g7) +2( zaz) 2 (5 az) drdydz

TABLE 1 TABLE Il
KERNELS OFMOST OFTEN USED DUCHON'S SEMI-NORMS IN DIMENSIONS GREEN S FUNCTIONS ¢ IN DIMENSION m CORRESPONDING TODUCHON'S
m =1, 2,3.M |s THE ORDER OF THESEMI-NORM SEMI-NORM || f|| b, - THE MULTIPLICATIVE CONSTANTS¢, é CAN BE
DETERMINED BUT ARE IRRELEVANT FOROUR PURPOSES THE FUNCTIONS ARE
m 2 . mm ALL EXPRESSEDUSING EUCLIDEAN DISTANCE p = ||x||. THE LAST FORMULA
R Du kernel of "f”DM for f:R" ~R IS VALID FOR NONINTEGERa AS WELL
R! D,y ap + a1z —
RrR™ | Dy ” cyP(x | cY(w | remark
R! Ds ap+a1r + az.’l,‘2 ( ) d)( )
1 3 —4
R? | Do ap + a1 + asy R Dy (4 |l
1 5 -6
R? | D3 || ao + a1 + azy + a3z? + a4y® + aszy R | Ds p |w]
2 2 -4
R | D, ap + a1 + a2y + azz R D, p*logr [l
R* | Dy || p'logr | |lwlI™8
R | D, P fleo]) =
R™ | D, || pP*™logp | |w] 2> | if 20 — m is even
R™ | D, plo—m [lw]|=2* | otherwise

Theorem 1 (Interpolation Problem SolutionY.he general-
ized interpolation problem is solved by a function

out Z APk +Z Z )\U(Pz X — XZJ) (6)

lel
H/—/

1 5 2 25 8 35 4 a5 5 5 s ss kernel part fundamental part

Fig. 3. Dependence of the reconstruction result on the order of the semi- nq)\mere(p are the fundamental solutions, alﬁﬂk}P_l is the

M used. High-order semi-norms tend to produce slowly varying curves Wlb fzth k | of th h | k=0 | "

large overshoots and vice versa. asis of the kernel of the semi-norsh(e.g., polynomials), i
and only if the following three conditions are satisfied.

D. Explicit Solution i) The solutionf,,; is consistent with the constraints

The solution to our generalized interpolation problem, a func- Si5 = h’ « fout(x45) for all 4, j. @)
tion f,; Minimizing the criterion (4) under the constraints (3) is
given by the following result, which is a restatement of [1, Th. 2]
for our particular multichannel system. The main difference is
that here, we get one generating functigrper channel, which
is then shifted to all sampling locations, whereas in [1], we had
one function per measurement. iii) The solutionf,,; is admissible, i.e.J(fous) < 0. O

i) The coefficients\;; satisfy the “orthogonality” condition

Z Aij (b s pr) (x5) =0 for all k. (8)

ij
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The condition iii) is usually ensured by the coefficients obtaineslect.VI], we minimize a combined criteriofy . For the standard
in i) and ii). regularized least-squares approximatignhas the form

Equivalently, i) and ii) can be written in a matrix form as . 5
Ja(£) = J(£) + 7> (bf «f(xij) — 5i)) (10)

A A r
& ol [al- 18] © —
data term Jg

B

where J is the regularization criterion defined by (4), ang

where the parameters have been arranged in vectorsaesthe measured points close to which we want to pass. The

A=A ALn A1 A, )T anda = [ag---ap]?. problemis equivalent to finding &, that minimizes/ under

The components of the matrix of size Nq¢ x Nq are given the constraint/y < ¢, wheree is ana priori given error bound.

by (A)inix,jv+i = hi = @;(xi — x;) and represent The should be chosen such that the er@orrespond to the

the contribution of the fundamental solutions to each meexpected noise (error) in the measurements. If the measurement

surement. The components of the matfixare given by noise isnotknown, a suitablecan be found, for example, using

(Qin+j & = h¥ * pi(x;;) and represent the kernel part of théhe leave-one-out technique [17].

solution as well as the orthogonality conditions. The solution of the approximation problem (see [1, Th. 3 and
We see that (6) consists of two parts. The first (the kernel pait§ sequels]) has the same fofy,. defined by (6), and the pa-

does not contribute to the criteriof{f +p;) = J(f); therefore, rameters:; and)\;; satisfy the matrix equation

we can intuitively tell that it is useful to accommodate in it as

-1
much as possible df,; . In fact, the orthogonality conditions ii) [A + ',_VF I (ﬂ {)‘} = {8} (11)
ensure that the fundamental part of the solution (6) is orthogonal Q a
to any element of the kernel. B

The second, fundamental part of the solution consists Omere the symbols are the same as in (9)

linear combination of shifted basis functiogs positioned — tne gimplicity of (11) is a consequence of the continuous
at the sampling points. Interestingly, the fundamental Py, arization and of using the fundamental solutions as the
is reminiscent of a wavelet (or multiwavelet) like expansiof,gis of our space. Our variational formulation of the approx-
because it also involves shifts of some generating functiofs,,iion problem is similar in spirit to using discrete regular-

One difference is that here, the basis functignic —xi;) i j,ation [18]-[20] to deal with the ill-poseness of some inverse
(6) are not necessarily uniformly sp_aced. Another d'ﬁerenc,eyﬁ?oblems. Our regularization, however, is completely specified
that wavelets are usually well localized, whereas the f““"“"ﬁ'ﬁhe continuous domain. In addition, those discrete regulariza-

H i T _ T 2.
localize the functions™ x ¢, (whereJ(f) = [IL” «£[|*; see [1, \ 4y The identity matrixt is replaced by some general matrix
Sect. lll-E]), which has the effect of taming the growth of thg -+ \aads to be determined on a case-by-case basis.
solution at infinity. Dropping the scale-invariance requirement

leads to basis functions that grow more slowly [10]. Hl. EXAMPLES

E. Numerical Aspects We now give various examples of how the theory can be used

The presented method requires the solution of a large, n&p—d present some experimental results.
sparse system of equations. Additional research is requiredyto
develop fast numerical solvers [11], such as specialized itera- ] o )
tive methods [12], [13]. A related aspect is the ill conditioning L€t US consider the problem of finding a functigni — R
of the system matrix due to the nonlocal nature of the basis furk@Ssing through a finite nur2nber of po;r(tsi, y:) and mini-
tions. We believe this can be improved using adequate precGizind a criterion/ () = || f||p, = (||| (see Table I). From
ditioners, e.g., by localizing the basis functions, similar to thEPl€ Ill, we see that the fuqdamentalgsoluhon corresponding
construction of B-spline basis [14]. Other techniques includ® the semi-norm/ is proportional tolz|”. The kernel corre-

domain decomposition [15] or algebraic manipulation suitabfPONding to this semi-norm is the class of all Iin/ear polynomials
for special form of the matrices [16, Ch. 4]. ag + a1z, i.e., the class of functions for which’ = 0 every-
where. The reconstruction is thus

Reconstruction from Irregular Samples

F. Generalized Approximation Problem N

In some applications, for example, if the measurements are f(x) = ao+ ma + Z Ailw — @il? (12)
noisy, we do not want the reconstructed functfgp to pass =1
exactly through the measured points. Instead, we want it to be/hich hasV + 2 unknown parameters. The consistency condi-
compromise between its smoothness (or plausibility), as me@ns f(z,) = y; give usN linear equations, whereas the or-
sured by the criterion/, and the closeness of the fit to thethogonality requirements_ A; = 0 and>_ \; z; = 0 yield the
sampled points, as measured for example by the sum of teenaining two. A nice consequence of the orthogonality condi-
squared differences. Irgeeneralized approximation probleih,  tions is to make the second derivatifé&(z) = 6, iz — ;]
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Fig. 4. Interpolation from function values.

vanish after the last sampling point, which ensures ftigb <
oo, and thus,f € F'. Note thatf is a piecewise cubic polyno-

mial with continuous second derivatives, i.e., it isubic spline A4
This result is known, see [3] and [21]. An example of a spline
reconstruction (interpolation) is shown in Fig. 4. aF

For uniform sampling, the basis functiops — z;|> can be
localized using digital filtering (with iterated finite difference
filter) to obtain compactly supported uniform culiitzsplines, |
which makes an interesting link with existing theory [22], [23].
For nonuniform sampling, the localization is also possible using % s M {s = =
divided differences [24], leading to nonuniform B-splines. In
both cases, if we increase the orddr of the semi-norm, the
order of the splines will increase as well, and the corresponding
interpolation will converge to the sinc interpolation [25], [26]orthogonality conditiony” X; 1 = 0andy_ A; 2+ 12 = 0.
This shows the relation with the classical sampling theoremhese orthogonality conditions come from the requirement (8)
[27]. thatzi i 1pk($i) + A 2p/k($i) =0,wherep; = 1,p> =z

is the basis of the kernel. An example of reconstruction from
B. Smoothing Splines derivative sampling is shown in Fig. 6. A trivial extension is to

If the measured points from the preceding example are mple the derivative values at different points than the function
values.

exact, it is more appropriate to replace interpolation by approX-
imation (see Section II-F). The reconstruction formula (12) re-

mains, whereas the equation set (9) used to determine the Balandmark-Based Warping

rameters:; and); is now replaced by the equation set (11). An The problem of image registration is encountered in many
example of a result for the same sampled points as before,jgas of image processing. The task is to find correspondences
shown in Fig. 5. The smoothing spline method that we have jysttween pixel coordinates in two distinct but similar images. In
described is a nonparametric regression technique widely uggfler words, we search for a function that gives us, for each point

Fig. 6. Interpolation from function values and derivatives.

in statistics [28]. in the first image, the coordinates of the corresponding point in
the second image. In some cases, it is necessary to use manual

C. Derivative Sampling methods [29]. These mostly require the expert to specify a set of
pairwise corresponding landmarks [7] (reference points) in both

Let us add derivative constraings = f’(x;) to the example ! ' : i _
from Section lI-A. The sampling filters will beconte= [6 &'. images. Then, an interpolation method is needed to also find the

The first fundamental solution correspondingiio= & remains deformation function between the landmarks, which is exactly
¢1 = clz|>. The second one, correspondingite = &, is the problem studpd in th.IS paper. Sgpposmg we wanF to find
obtained by convolving; with f,, which givesyps = 3¢|z|x. the 2-D deformation function minimizing Duchon’s semi-norm
The reconstruction formula is thus of order two, we see from Table Il that we need to interpo-
late using the? log p functions, which are also called thin-plate
splines.

Fig. 7 shows an example where landmark warping is used
to compensate distortion in functional magnetic resonance
imaging (fMRI) images by registration with anatomically
The2N + 2 unknown parameters can be determined fta¥h correct (proton density) MR images [30]. More examples of
consistency equationf(z;) = y; andy, = f'(x;) and two landmark interpolation using different interpolating functions

N
Jout(x) = ao—i-ala?—i-z N1 le =z 43N oz — x| (2 — ).

i=1
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[a) (b}

Fig. 7. Corresponding slices of (a) functional MR and (b) anatomical (proton density) MR images with landmarks put manually at important points. The
deformation field between landmarks is determined by interpolation using variational reconstruction method (equivalent to thin-platetbjdinaseh

can be found in [31]. Some demonstrations are available on dtor reasons given later, we choggghat minimizesJ(f) =

web page http://bigwww.epfl.ch/demo. Il /1lp, - The kernel of this criterion consists of bivariate polyno-
mials of degree less than or equal to 2, and its Green’s function
E. Reconstruction Consistent With Laplace Equation (see Table Ill) isp(x) = ¢ p*log p. Consequently, the funda-

The problem treated in [32] by numerical integration— Whlcﬂwental solutiong; corresponding to the three sampling filters
we will solve explicitly here—consists of reconstructing a func: are, respectively), and its partial derivatives with respect to

tionR3® — R, minimizing the norm of the 3D Laplacian o eratorb othaz andy. . .
JA(F? = [as AF) d?c. The problemis iII—pozed withoput ad- This means that the solutiofa.;, besides the term from the
ditional conﬂgiraints because the keri! is too big, including kernel, consists of a linear combination of shifted fundamental

aII functions that satisfy Laplace’s equatidnf = 0, such as solutions [see (6)]
22 — 42, It therefore permits an infinity of solutions with zero

cost. To avoid this ambiguity, we will instead minimize a crlfo‘“(glj y) = a0 + a7 + azy + asr” + asy” +asy

terion J(f) = || fllp., the explicit expression of which can be Plx —xi)

found in Table I. This makes sense because whenwell be- N 9 (x — x;)

haved, the two criterid and.JA are equal. The corresponding + Z Ai | oz ‘ (14)
fundamental solution ig(x) = p (Wherep = ||x|). Since the =1 ay (x— %)

kernel consists of linear polynomials, the solution takes the form dy !

whereX; = [\ 1 A; 2 A; 3]*. There are six orthogonality con-
fou(X)=[ag a1 as az] [ } + Z Ai|lx —x;|| (13) straints [from (8)] correspondlng to the six basis functions of

= the kernel
with the auxiliary conditions)’. A; = 0, and }°. Az 1. Z Ai1=0
= > Ay = >, MNzm = 0forj = 1,23, where P
x; = [z; v #]* are the coordinates of th&h measure-
ment point. As before, the coefficients and A\; must be < Z ZiAi 1+ X 2=0 y: Z Yiri1+ A 3=0

determined in such a way that,; passes by the desired points.  *

r*: Zw?)\m +2x:0 =0 y*: Z Yi A1+ 2yhi, 3 =0
F. Derivative Sampling in Two Dimensions P P
Adding another level of complexity, we are going to extengg Z Tiyidi + yihi 2 + 2idi 3 = 0,
the derivative sampling from Section IlI-C to two dlmenS|ons -
The task is to find a functiorf: R? — R given its valuesf(x;)
as well as the values of its first partial derivativég f(x;) at Note that some care is needed in selecting the regularization cri-
sampling points; = [z; y;]*. Our analysis filters are thereforeterion.J. Had we chosen the classical criteripfi| r», , we would
have obtaineg(x) = p? log p as the fundamental solution, the
- [ 96 96 } second derivative of which is not bounded around zero, thus pre-

dr Oy venting the evaluation of the measur@s f...(x;) of (14) at
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Fig. 8. Reconstructing a 2-D Gaussian (a) from information at sampling points (b). The difference between the true function and the approxémation get
progressively smaller as we use (c) thin-plate splifdog r approximation, (d) approximation using log r, and (e) approximation using’ log r with
measurements of derivatives. The respective SNRs are (c) 13.4 dB, (d) 18.7 dB, and (e) 34.2 dB. The approximation using derivatives gives|theBemst resu

in mind, however, that the derivative method uses an extra information (the derivatives) that the other methods cannot use.

']
2
1
|
L ]
i
L ]
Bl
il

grid points. No such (nontrivialf..,,. would belong tof’; the positionsu;, that is
problem would not admit a solution iA. _ _
As an example, we have approximated a 2-D Gaussian using; = /R f(tcost; — u;sing;, tsinf; +u; cos §;)dt. (15)

thin-plate splines and* log » functions both with and without the

derivative information. Theresultsare showninFig.8. The highgpis integral cprresponds to our sampling operator. The varia-
tional formulation of the reconstruction problem is thus: Find

order approximation with* log » functions leads to a smoother ; ) , th ol
function than the thin-plate spline solutior? (og ) and, there- a function f?“,t gop5|ster1lt W'JF _IrneasurgmerEg [yr:e ded by
fore, performs better for approximating a Gaussian that is avé?;ﬁ)] and minimizing a plausibility criteriod. We choose/ to

smooth function. Not surprisingly, the method using the deriv@ Duchon’s semi-nori (f) = | fl|p. _
The projection/sampling operator (15) can be written as a

tives we have just described gives the best results. )
This approach can be easily extended for finding vector fung2nvolution
tionsf: R* — R? by takingJ(f) = J(f.) + J(f,), where s;; = (§(zsin; — ycosb; +u;), f)
(fz, fy) = f are the components &f As the components are
treated separately, the solution can be calculated independently
for each of them. One possible application is semi-automatic = | é(—xsinf; +-ycosb;)«f [ | —sinbu;, cosbiu;

-
N g

landmark image warping with derivative constraints. I g

(16)

A nice example of a classic inverse problem that also falls The fundamental solutiop; for the sampling operator (16)

into our framework is tomographic reconstruction [33], [34]. |pe(.ads.to §at|sfy the defining equations from [1, Sect. V-D],
consists of reconstructing a cross section of an object from W@Ch in this case lead to

transaxial projections. We now show that tomographic recon- A?pi(z, y) = §(—zsinb; + ycos ;). (17)
struction lends itself well to the variational formulation. Alter-___. . N
native algorithms involve wavelets [35] and polynomial convo2 find @i, we rotate our coordinate system by, which yields
lutional kernels [36]. a 1-D problem equivalent to the one in Section IlI-A with solu-

3 i . .
Let f(x, v) be the unknown cross section of the object to h%gr;i|a\7,v|e'§;2tour 2-D case, after rotating the coordinate system

reconstructed. We measure the projectiong at ¢ angless;.
For each angle, we measure an integral along a ray at @i = |—sin @;z + cos O;y|>. (18)

G. Tomographic Reconstruction
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Fig. 9. We are reconstructing the inner part of the Shepp and Logan phantom [33] (top left), using projections at eight uniformly distribute® angles, 3
measurements by angle. The result of the filtered backprojection (top right) has more artifacts and is less geometrically precise than tieecoiztonction
(bottom right). In addition, note that unlike filtered backprojection, the variational reconstruction recovers the absolute amplitudesde thelima

Putting the pieces together, we find that our reconstructionFig. 9 shows a comparison of the reconstruction using the
takes the form variational algorithm and classical filtered backprojection [33],
as implemented in Matlab. We can observe that for a small

1 number of measurements, the variational reconstruction algo-
Joulz, y) =[a0 o a] | rithm gives a better result than the filtered backprojection. For
Y a large number of measurements, the results of the variational
1 XN ) 5 reconstruction are comparable with that of the filtered backpro-
+ Z Z Aij| =@ sinb; +ycos6; —w;[”. (19) jection. Thus, our method is especially useful in the case of few
g=1 =1 angles. More details can be found in [37].

The interesting thing is the structure of the generating
functions ¢; that are back-projections (extensions) of the
corresponding 1-D fundamental solutions along the projectionWe have presented an interpolation and approximation
rays. They have the same form as in the standard backprojecégheme capable of treating nonuniformly sampled multi-
algorithm [33]. channel output of a filterbank. The reconstruction is optimal

Foramore realistic application, we consider that the measune-the sense of a user-chosen criterion. The method is easily
mentss are noisy, and we therefore use the approximation famodifiable to adapt to various sampling (measuring) systems
mulation from Section II-F. Second, instead of integrating ovand can take advantage of anpriori knowledge about the
the whole space in (15) and (16), we only integrate over the pagtonstructed object.
corresponding to the measurement device. If we also evaluat&Ve present mathematical recipes that should facilitate the
the regularization criterion in the same domain, the fundamentirivation of the relevant formulas for specific problems and the
solutionsy; remain the same. subsequent use of the variational reconstruction.

IV. CONCLUSIONS
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We believe that our reconstruction algorithm is especially2g]
useful for applications where there are few measurements as jt
permits to use them in the best possible way. We have presentggl
several examples to illustrate its possible uses.
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