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Abstract

We consider the problem of reconstructing a multi-
dimensional and multivariate function f : R™ — R”
from the discretely and irregularly sampled responses
of ¢ linear shift-invariant filters. Unlike traditional
approaches which reconstruct the function in some
signal space V', our reconstruction is optimal in the
sense of a plausibility criterion J. The reconstruction
is either consistent with the measures, or minimizes
the consistence error. There is no band-limiting re-
striction for the input signals. We show that impor-
tant characteristics of the reconstruction process are
induced by the properties of the criterion J. We give
the reconstruction formula and apply it to several
practical cases.

1 Introduction

We will deal with the problem of finding a reconstruc-
tion f € I of a multidimensional function f R™ —
R™, using a set of samples y;; = >, (hjk * fk)(wl) =
(hj * f) (x;) from a filter bank H = [hy ... h,] sam-
pled at N locations x;.

The Shannon theory states that a band-limited sig-
nal f, can be reconstructed exactly from its regularly
spaced ideal samples (h = §). Papoulis [1] has shown
that f, may also be recovered from the output of ¢
linear shift-invariant systems sampled at (1/¢)-th the

Nyquist rate. This theory has been further extended
to multivariate [2] (m > 1) and multidimensional [3]
(n > 1) functions. Unser and Zerubia [4] generalized
this framework by dropping the band-limiting con-
straint. They sought an approximation f in the more
general space V(p), generated by integer translates
of a function . Their approximation f is consistent
in the sense of producing the same measurements y;;
as f . For ¢ = sinc, their reconstruction formulas are
equivalent to those of Papoulis.

We will take a slightly different approach in the
present paper. We keep the consistency constraint;
we require that f and f be indistinguishable through
our measurement system, i.e., (hj * f) () = yij =
(hj * f) (x;). However, instead of prescribing a re-
construction space V, we seek a solution optimal in
the sense of a plausibility criterion (penalty function)
J(f). In other words, we replace the sub-space con-
straint f € V by a variational formulation. The crite-
rion J(f) provides the regularization needed to over-
come the ambiguity of the reconstruction problem.
It may also represent the a priori knowledge in the
Bayesian framework, quantifying our confidence that
a particular function f is close to the input f .

2 Variational criterion

We define the solution to the reconstruction prob-
lem to be a function f minimizing J(f) under the
consistency constraints. Thus, the behavior of the re-
construction algorithm is completely described by the
criterion J. We will work in a space F of functions for
which J is defined. We will assume that J is a semi-
norm and can be written as J(f) = B(f, f)Y?,
where B is a bilinear form on F. This not only sim-



plifies the subsequent analysis, but also insures the
convexity and continuity of the criterion, which im-
plies that all local minima are also global minima.
As J is a semi-norm, not a norm, there is a kernel
K C F for which J(f) = 0. It can be shown that if
two functions f,, fy solve the reconstruction prob-
lem, then f;, — f, € K. The bilinearity of B also
makes the superposition principle applicable on the
reconstruction process: a solution corresponding to
a linear combination of sampling values corresponds
to the same linear combination of solutions. In the
multidimensional case (n > 1), it is usually desirable
that all components be treated equally. Then the su-
perposition principle implies invariance with respect
to the rotation of the sampled values, and any other
linear operation on them.

It can be shown that the invariance properties of
the semi-norm J and the filter bank H translate di-
rectly to the invariance properties of the reconstruc-
tion problem solution. For example, if the value of
J(f) and remains unchanged when f is subject to
translation and rotation, then translating or rotat-
ing the sampling points results in a solution which
is a translation or rotation of the original solution,
provided that the sampling is also translation and
rotation invariant. In fact, instead of demanding
complete invariance, it is enough to have a pseudo-
invariance, where J(f) is allowed to be transformed
by an arbitrary increasing function independent of
f, such as multiplied by a constant. This greatly
simplifies the task of having a scale change invari-
ant reconstruction problem, because creating a scale
pseudo-invariant J is straightforward, while truly
scale-invariant J does not exist, except in the trivial
cases. Finally, in many applications, we do not want
to penalize linear polynomials, as they correspond to
the purest form of the solution.

2.1 Proposed criterion

Is there a criterion corresponding to all the above
mentioned requirements? The simplest one in the
univariate/unidimensional case (m = n = 1) is
the criterion proposed by Duchon [5]: J(f) =
(f (0*f /8x2)2dm)1/ 2 with a corresponding bilinear

form
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For arbitrary higher m and n this generalizes as

dx
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For m = 2 this criterion leads to the often used thin-
plate splines. It is not difficult to verify that J is
invariant by rotation and translation, and pseudo-
invariant by scaling. The kernel K corresponding to
this semi-norm consists of linear polynomials ag +
> ax;.

If g is a test function (indefinitely differentiable
and compactly supported), the bilinear form from (1)
can be, by integration per partes, rewritten using the
m-~dimensional Laplacian as:

B(f.g) = /Z Z 8x ngldm

112]
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A large class of translation invariant bilinear forms
can be (under suitable restrictions on f) expressed
as B = (U x f,g), where U is an n x n-matrix of
m-variate distributions, a convolutional kernel of the
bilinear form [6]. In our case U = A x A f a2,
with Fourier transform ¢ = ||w||*I. For example for
n=m=1andn=1,m =2, we have Y = §1V) and

U = 50V (21)8(2) + 20" (21)8" (a2) + 60V (22)5 (1),

respectively, where § is Dirac’s mass distribution cen-
tered at 0 and 6”7, §V) are its second and fourth
derivatives.

3 Explicit solution

A solution to the reconstruction problem is given by
a remarkably simple formula:

N g
x) + ZZAijcpj(:c —x;)
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It consists of two parts. The first part (p) belongs to
the kernel K. If it has a countable basis, we can write
it as p(x) = >, arpy(x). It does not contribute to
the criterion (J(p) = 0), so we intuitively see that
it is useful to accommodate as much as possible of
f in this part. The second part consists of a lin-
ear combination of generating functions ¢; shifted
to all the sampling points. There are ¢ generating
functions, where ¢ is the number of sampling filters
h. In the case of regularly spaced x; and g = 1, we
recover the solution of Unser and Zerubia [4], pro-
vided that we use a criterion corresponding to the
adequate generating function ¢. For ¢ > 1, we have
a multi-wavelet-like representation with several basis
functions.

As a consequence of the minimization process, the
solution f must satisfy

B(f.,g9) = Z)\zj (hjxg)(xi) forany geF (4)

where g is an arbitrary variation around the opti-
mal f and A;; a Lagrange multiplier corresponding
to a sample y;;. It is enough to consider g only from
among test functions, assuming that the test func-
tions are dense in F', which is normally the case. This
justifies our earlier restriction.

Provided that ¢; are fundamental solutions as de-
tailed in the next section, the condition (4) translates
into two sets of constraints. The first set makes f sat-
isfy the interpolation conditions y;; = (h; * f)(x;).
This leads to ¢N equations. The second set must en-
sure that the criterion J(f) is defined, that is, f must
belong to F'. This implies an orthogonality condition
B(f,k) =0, for all k from the kernel K. If we know
its basis, then also B(f,p;) = 0 for all p,. There-
fore, the second set contains dim K equations, which
makes ¢N + dim K equations for as many unknown
coefficients \;; and ay.

For the criterion J from (1), the second set of con-
straints implies that the second derivatives of f are
square integrable. Therefore, they tend to zero (on
the average, not necessarily pointwise) towards infin-
ity and thus f tends to a linear polynomial.

3.1 Generating functions

The generating functions ¢; are fundamental solu-
tions satisfying Vg € F; B(y;,g9) = (hj * g) (0). In
the distributional setting, this condition translates to
U x @; = hj. This corresponds to Z]cﬁj = i:'/j, pro-
vided that the Fourier transforms 2/, $; and ﬁj exist.
More concisely, in the matrix form, we get U« P = H
and U® = H, where & = [y, . P

It can be inferred that rotationally invariant semi-
norms correspond to radial kernels &/ which in turn
lead to radial generating functions ¢, provided that
the filters h; are also radial. We can then write
e(@) = pll|) = p(r).

Fundamental solutions for the iterated Laplacian
kernel A% and h = 6 are well-known and can be found
taking the inverse Fourier transform of |Jw||* (we are
omitting some technical details here). For n = 1 and
m=1,2,3 weget p=1r3p=rilogr, and p = 7,
respectively, neglecting the multiplicative constant.
In the multidimensional case, as the components are
treated equally, we simply use the same function for
all components, i.e. ® = p(r)I.

We have found the fundamental solution ¢y for
ideal (zero-order) sampling h = §. For other sam-
plers, we have simply ¢ = @5 * h.

3.2 Approximation problem

When the measures are not exact (for example cor-
rupted by noise), it might be more appropriate to
drop the consistency constraints and minimize in-
stead a weighted sum of a plausibility criterion .J,
and some measure of the consistency error, that is,
the difference between the desired and actual sampled
values. The approximation problem then consists of
minimizing

Jo(£) = Tp(F) + > dij(yij, 2i5); 25 =

ij

(= f) (@:)

where d is a suitable distance measure. As the con-
sistency error depends only on z;;, the minimization
min; J(f) can be decomposed as ming, .y ming J(f).
The inner minimization is equivalent to the recon-
struction problem we have solved already. Therefore



the solution to the approximation problem has also
the form (3).

Let us now consider an approximation problem cre-
ated by adding a least-squares consistency error mea-
sure to a criterion J2(f) from (1):

Jo(f) = T2 (f) + VZ(%‘ —yi5)?

By standard variational technique we find that the
solution f must verify

B(f,g9) = ’YZ(ZU —yij)(hjxg)(x;)) VgeF

Comparing this equation with (4), we find a linear
set of equations

Nij = V(25 — i) = WZ% (hj * py) () +
%

+ Z Akt (b * @p) (w5 — 1) — Yy
Kl

which permits us, together with the orthogonality
constraints B(f,p,) = 0, to determine \;; and a;.

4 Examples

4.1 Reconstruction from

samples

irregular

Let us consider the problem of finding a function f :
R — R, passing through a finite number of points
(z;,y;) and minimizing a criterion J(f) = [(f")*dz.
We have seen that the corresponding bilinear form
is B(f,9) = [ f"g"dx with kernel U = §@V). The
fundamental solution is proportional to |z|®, which
can be localized (convolved with a discrete filter) to
obtain a cubic B-spline. The reconstruction is thus

N
f(x) =ao +a1x+2)\¢|m —z?

i=1

which has N + 2 unknown parameters. The second
derivative is f”(z) = 6>, A\i(x — ;). This leads to
orthogonality conditions Y A; = 0 and > A\jz; = 0,

Figure 1: Interpolation from function values.

because if either of them were not satisfied we would
have lim,_. 1 f” # 0 and consequently f & F. The
remaining N equations come from the consistency
conditions f(z;) = y;. The results by Micchelli [7]
imply that for distinct points, there is always a unique
solution. An example of a reconstruction result is
shown in Figure 1.

4.2 Derivative sampling

Let us add derivative constraints y, = f'(z;) to the
preceding example. The sampling filters will then be
H = [5 5’]. The first fundamental solution corre-
sponding to h; = § remains ¢; = |z[>. The second
one, corresponding to hy = ¢’, is obtain by convolving
1 with hy which gives o = |z|x. The reconstruction
formula is thus

f(x):ao—f—alx—i—
N
+ 3 Nialz = aifP + Nale — @il (- a2)

=1

The 2N + 2 unknown parameters can be determined
from 2N consistency equations f(z;) = y; and y; =
f/(x;) and two orthogonality conditions Y A;1 = 0
and > A2 — 3\ 12; = 0. An example of reconstruc-
tion from derivative sampling is shown in Figure 2.
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Figure 2: and

derivatives.

Interpolation from function values

4.3 Reconstruction consistent with

Laplace equation

The problem treated in [8] by numerical integration—
which we shall be able to solve explicitly here—
consists of reconstructing a function from R3 — R
while minimizing the norm of the 3D Laplacian oper-
ator J'(f)? = [ ||Af||?dz. The problem is ill-posed
without additional constraints, because the kernel K’
is too big, permitting an infinity of solutions with zero
cost. To avoid the ambiguity, we impose f € F. We
then minimize the criterion (1), because for f € F,
the two criteria are equivalent. As expected, the so-
lution will have the form

3 N
f(x) :ao-i-Zaixi-i—Z)\in—wiH (5)
j=1 i=1

where * = (x1,22,23), with auxiliary conditions

Z /\1 = O, Z )\ixm = 0, and Z )\ixw =0.

5 Conclusions

We can reconstruct arbitrary multidimensional and
multivariate functions from sampled outputs of an
arbitrary filter bank. Unlike previous methods ([1-
3]), our approach handles irregular sampling, does
not impose band-limiting constraints, the solution is

optimal in the sense of a variational criterion, can
be made invariant to translations, rotations and scale
changes, implicitly specifies the reconstruction space,
and is usable also for noisy measurements. This
comes at the cost of slightly more involved compu-
tation and less numerical stability.
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