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ABSTRACT
High-quality video frame interpolation often necessitates ac-
curate motion estimation, which can be obtained using mod-
ern optical flow methods. In this paper, we use the recently
proposed Local All-Pass (LAP) algorithm to compute the op-
tical flow between two consecutive frames. The resulting flow
field is used to perform interpolation using cubic splines. We
compare the interpolation results against a well-known opti-
cal flow estimation algorithm as well as against a recent con-
volutional neural network scheme for video frame interpola-
tion. Qualitative and quantitative results show that the LAP
algorithm performs fast, high-quality video frame interpola-
tion, and perceptually outperforms the neural network and the
Lucas-Kanade method on a variety of test sequences.

Index Terms— Optical flow, Convolutional neural net-
work, Lucas-Kanade algorithm, Video interpolation, Splines

1. INTRODUCTION

High-end video display systems ranging from TVs and
laptops to smartphones, aim at faithfully rendering high-
resolution image sequences. In particular, it is often desired
to display the video at a higher temporal rate than the input
video provides for. Then some mechanism for video inter-
polation is needed, providing high visual quality and often
requiring real-time operation. 1 Clearly there is a tradeoff
between these two requirements.

Advanced video interpolation methods often require esti-
mation of the displacement field between frames. For com-
pressed video this has been done by exploiting the motion
vectors [1]. However higher-quality displacement fields can
be potentially obtained using optical flow methods [2, 3].
While a variety of optical flow estimation algorithms can be
used, e.g, the pyramidal version of the Lucas-Kanade algo-
rithm [4], we focus in this paper on the Local All-Pass (LAP)
algorithm proposed by Gilliam and Blu [5]. A strong moti-
vation for this choice is the high approximation order of the
LAP algorithm [6], which is typically quadratic while tra-
ditional optical flow methods are only first order. Moreover

1 In applications such as slow motion rendition, real-time operation may
not be needed.

the LAP method is fast, which also provides another strong
motivation for applying it to video interpolation, especially
at high spatio-temporal resolutions, when real-time operation
is needed and the computational requirements of the optical
flow estimation algorithm are critical.

It has also been recognized that displacement fields need
not be estimated explicitly for video interpolation. In partic-
ular, excellent results have recently been achieved using con-
volutional neural networks (CNNs) [7][8][9] for computing
the interpolated frames. Unfortunately, these deep networks
require extensive training and have very high computational
and storage requirements on test sequences as well. We com-
pare our method with a CNN method proposed by Niklaus et
al., which runs on a GPU and learns 1-D kernels that can be
convolved with the input frames [10]. We choose to use this
method because the code is publicly available online.

2. VIDEO FRAME INTERPOLATION METHODS

We formulate the problem as interpolating a frame I1/2 tem-
porally between two video frames I0 and I1. Optical flow
methods generate this intermediate frame using the optical
flow estimates between I0 and I1. The adaptive separable
convolution approach performs interpolation using a forward-
backward filtering approach. The neural network learns the
forward and backward filters that reduces the perceptual loss.

2.1. LAP Algorithm

The LAP algorithm [5] is based on the observation that spa-
tial shifting is an instance of all-pass filtering. Consider two
images I1 and I2 that are related locally at x = (x1, x2)

> by

I2(x+ u) = I1(x), (1)

where u = (u1, u2)
> is the displacement field at x. In the

frequency domain this relation is equivalent to

Î2(ω) = Î1(ω)e−jω
>u, (2)

where Î represents the 2-D Fourier Transform of I and ω =
(ω1, ω2). The right hand side of (2) can be thought of as filter-
ing Î1 with the all-pass filter h(ω) = e−jω

>u. Since any real



digital all-pass filter can be written as h(ω) = p(ω)/p(−ω),
we can now write Î2(ω)p(−ω) = Î1(ω)p(ω). In the discrete
domain with pixel coordinates k = [x, y] ∈ Z2, this results in
the following forward-backward filter relation:

I2[k] ∗ p[−k]− I1[k] ∗ p[k] = 0 (3)

where ∗ denotes 2-D convolution. Gilliam and Blu [5] repre-
sent the filter p using a basis of known real filters pn:

papp[k] =

N−1∑
n=0

cnpn[k]. (4)

Without loss of generality, let c0 = 1. The remaining coef-
ficients cn are estimating by solving the following quadratic
minimization problem at each pixel k:

min
{cn}
〈|I2[k] ∗ papp[−k]− I1[k] ∗ papp[k]|2〉W , (5)

where 〈J〉W =
∑

k J [k] andW is window around each pixel.
The solution is found by solving a system of N − 1 equations
with N − 1 unknowns using Gaussian elimination.

In each iteration of the algorithm, an optical flow estimate
is obtained and I1 is warped towards I2. The estimated flow
vectors undergo a round of kernel based image inpainting to
remove erroneous values followed by a round of mean and
median filtering to smoothen the flow. Instead of using an im-
age pyramid, a 3-level filter pyramid is used. In each iteration
the filter width is reduced by a factor of two to refine the flow
estimates and account for varying amplitudes. We use N = 4
to obtain second-order approximation order. Implementation
details can be found in [11].

2.2. Adaptive Separable Convolution

This CNN method [10] performs video interpolation by solv-
ing a forward-backward problem similar to (3). Given two
frames I1 and I2, the CNN finds two separable kernels K1

and K2 at each pixel such that:

Î[k] = P1[k] ∗K1[k] + P2[k] ∗K2[k], (6)

where Î is the ground truth interpolated frame, and P1 and
P2 are patches centered around the pixel of interest in im-
ages I1 and I2 respectively. Each sample of the training set
is comprised of three consecutive images. The middle one
represents the ground truth for interpolation.

Rather than using 2D filters, Niklaus et al. designed the
neural network to learn four 1D filters per pixel. This reduces
the space complexity fromO(n2) toO(n) per pixel. The neu-
ral network uses convolutional, averaging pooling and ReLU
layers. Skip connections are used to improve the stability of
the otherwise unstable contracting network. The network is
trained using AdaMax and a perceptual loss function based
on the relu4 4 layer of the VGG-19 network. The authors

Table 1: Number of operations (multiply-adds) and execution
time (CPU) required to interpolate a frame of size 960x540x3.
Execution time is in seconds, measured on a machine with In-
tel Core i7-8750H processor and 32 GB RAM. The execution
time for the CNN was extrapolated based on the time required
to interpolate 200 pixels.

CNN LAP LK

Operation Count 4.9× 1011 1.5× 109 6.1× 107

Execution Time 76204 4.3 0.2

mention that it took 20 hours to train on an NVIDIA Titan
X (Pascal). As shown in Table 1, computation of the interpo-
lated frames is extremely heavy due to the size of the network.
For this reason the authors ran their interpolation algorithm on
a GPU. The operations count is more than 300 times higher
than it is for LAP.

2.3. Lucas-Kanade Method

The basic Lucas-Kanade (LK) method [4] solves for the mo-
tion vector v using local weighted least-squares matching in
a neighbourhood around the pixel under consideration. In our
experiments, we use a modern version of the Lucas-Kanade
method available in Piotr’s Computer Vision Toolbox [12].
This version uses the weighted version of the Lucas-Kanade
method and image pyramids. The algorithm uses a 7-layer
image pyramid with the highest level computing the flow on
the image subsampled by 64 and refining the estimate in each
level by warping the first image closer to the second. Best
results were obtained by using a neighborhood of radius 10
pixels.

2.4. Performance Evaluation Criteria

In addition to computational speed, it is desirable to employ
an objective performance metric to evaluate the match be-
tween the interpolated frame and the ground truth. The stan-
dard criterion is the ubiquitous Mean-Squared Error (MSE)
[13]. Unfortunately MSE is a particularly bad criterion for
measuring the quality of interpolated images, as slight mis-
alignments can be quite acceptable perceptually yet cause
large squared errors [14]. We have experimented with other
metrics such as SSIM [15] and CW-SSIM [16] but they suffer
from similar artifacts. Therefore we rely extensively on visual
evaluation to assess performance of competing algorithms.
The discrepancy between MSE and perceptual quality is often
striking.

3. RESULTS

We now evaluate the methods discussed in Section 2 on three
standard datasets: Middlebury [2], EPIC Kitchens [17] and
Derf’s Media Collection [18]. All results were obtained on
a machine with an Intel Core i7-8750H processor with 32



Table 2: MSE Evaluation on the Middlebury dataset (high-speed camera samples). Bold values indicate best results.

Beanbags DogDance MiniCooper Walking Backyard Basketball Dumptruck Evergreen

LAP 339.0 240.1 176.7 67.9 163.5 198.9 209.3 268.6

CNN 196.9 159.4 80.5 57.2 102.6 105.8 88.3 102.8
LK 454.7 223.9 233.2 97.3 273.5 157.2 281.7 276.8

GB RAM. The CNN was executed on an NVIDIA GTX
1050Ti GPU with 4GB RAM. The interpolation results can
be viewed at https://bit.ly/2WqXbKR. Sequences
should be downloaded else the media player will drop the
intermediate frames!

First frame Second frame Third frame

(a) Original (b) LAP (c) CNN (d) LK

Fig. 1: Beanbags sequence: The original sequence is shown
at the top. The original second frame is shown in (a),
the LAP-interpolated second frame is shown in (b), the
CNN-interpolated second frame is shown in (c), the LK-
interpolated second frame is shown in (d). LAP was used
to compute the optical flow in (a), (b) and (c).

3.1. Middlebury Dataset

MSE results for the Middlebury dataset are given in Table 2.
Although the CNN seems to perform the best interpolation in

terms of MSE, we observe that actually the LAP consistently
interpolates frames with the highest perceptual quality. This
is evident from Figure 1: Notice how the palms are smudged
and how the balls are distorted in the CNN interpolated frame.
Yet, since the imprints of the middle two balls are slightly
closer to the actual position of the balls, the CNN interpo-
lated frame has a lower MSE. There is also a greater intensity
match between the pixels in the original image and the CNN-
interpolated image in comparison to the LAP-interpolated im-
ages.

The Lucas-Kanade method performed poorly on all se-
quences. The flow field across the juggler’s torso is incor-
rect. The fingers are deformed in Figure 1, and the blinds are
skewed due to inexact optical flow estimates. This is evident
from the patch of blue on the door in the zoomed in image of
the balls. Also notice how the left side of the juggler’s torso
has been warped inwards.

The displacement field for the LAP algorithm is the clos-
est to the flow between the original frames. The optical flow
between the original frame and CNN-interpolated frame is not
as smooth in the blue-yellow region boundary in comparison
to the flow between the original frame and LAP-interpolated
frame. This results in the juggler’s palms being blurred in the
CNN-interpolated frame.

3.2. Derf’s Media Collection

This dataset consists of video sequences which are generally
used to evaluate compression algorithms. Table 3 shows the
interpolation results on seven 60 fps videos with 704x576 spa-
tial resolution. We dropped every other frame in the video
sequence and interpolated between the remaining pairs using
the three methods discussed in Section 2.

Table 3 shows MSE results, and Fig. 2 shows frames for
the soccer sequence. While the LAP method yields good vi-
sual quality, a visible artifact is the position of the running
player in the LAP-interpolated frame, which is slightly to the
left of his position in the original frame. The player’s leg is
also slightly lower and farther away from his body in compar-
ison to the original frame. Still, when viewed as a sequence,
the LAP-interpolated video looked natural and smooth.

The Lucas-Kanade method did not compute a very precise
flow field. Notice how the displacement vectors are pointing
south across the running player. This results in the fence being
highly deformed in the interpolated frames. When the inter-

https://bit.ly/2WqXbKR


Table 3: Average interpolation MSE on Derf’s Media Collec-
tion. Bold values indicate best results.

LAP CNN LK

city 62.1 79.8 111.7

crew 522.1 406.1 806.5

harbour 112.2 94.8 117.1

ice 129.6 57.4 109.9

soccer 848.3 141.6 399.5

stockholm 54.6 60.4 77.6

riverbed 361.7 409.6 445.8

Frame 313 Frame 314 Frame 315

(a) Original (b) LAP (c) CNN (d) LK

Fig. 2: Soccer sequence: The original sequence is shown at
the top. Original frame 314 is shown in (a), LAP-interpolated
frame 314 is shown in (b), CNN-interpolated frame 314 is
shown in (c) and the LK interpolated 314 is shown in (d).
The optical flow between frame 314 and frame 314 is shown
for the original sequence in (a) and for the three methods in
the other columns. LAP was used to compute the optical flow
in (a), (b) and (c).

polated frames are played at 60 frames per second, this causes
flickering and strenuous visual artifacts. The neural network
almost aligns the interpolated frame with the original frame.
However, it blurs the limbs and leaves an imprint of the pre-
vious position of the limbs. This appears as a shadow around
the limbs when viewed as a sequence.

Table 4: Average interpolation MSE on EPIC Kitchens
dataset. Bold values indicate best results.

LAP CNN LK

P01 11 163.8 130.2 149.5

P01 12 151.2 199.0 204.1

P01 14 152.6 234.6 251.0

P01 15 163.2 273.4 301.9

P02 13 518.4 458.9 541.6

P03 21 193.2 433.1 491.9

P03 22 307.1 494.6 565.8

P03 23 266.9 462.1 537.9

3.3. EPIC Kitchens Dataset

Finally, we perform interpolation on eight full-HD sequences
from the EPIC Kitchens dataset. Since our GPU has insuffi-
cient memory to interpolate a 1920x1080 image, the spatial
resolution of the video sequences was reduced to 960x540.
The video sequences consist of body cam footage of peo-
ple navigating around kitchens. The sequences consist of
crisp fast motion such as bending down to open cabinets, cut-
ting vegetables and sudden changes in direction. The LAP
algorithm performs very well in preserving these motions.
The CNN produces artifacts and jerkiness in the frames when
there is a sudden change in direction or fast motion. The
Lucas-Kanade method also produces similar artifacts which
are more pronounced than the CNN interpolated frames.

The average interpolation MSE is reported in Table 4.
Here the lower MSE for LAP correlates with the perceptual
quality on this dataset. Since the videos have high spatial res-
olution, there is much more smoothness between consecutive
frames. The LAP algorithm computes high accuracy optical
flow estimates on smooth flowing sequences and as a results
performs better both the CNN and Lucas-Kanade in interpo-
lating between fast motion frames.

4. CONCLUSION

In this paper we have shown that the LAP optical flow method
is an excellent candidate for video interpolation. The method
has quadratic approximation order, making it exceptionally
accurate when the true displacement field is smooth. The
method is also very fast, compares very favorably with a re-
cent CNN method, and generally outperforms a pyramid ver-
sion of Lucas-Kanade. In all cases, MSE is a poor predictor
of visual quality of the video.

We have also compared LAP against two additional op-
tical flow methods: Deepflow2 [19] and MDP-Flow2 [20]
which score highly on the Middlebury flow/interpolation
rankings. Due to lack of space the results are not reported
here. However LAP consistently produced interpolated
frames of higher quality.
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