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ABSTRACT

We introduce a 3-D parametric active contour algorithm for the
shape estimation of DNA molecules from stereo cryo-electron mi-
crographs. We consider a 3-D filament (consisting of a B-spline
skeleton and a specified radial profile) and match its projections
with the micrographs using an optimization algorithm. To accel-
erate the evaluation of the projections, we approximate the global
model locally by an elongated blob-like template that is designed
to be projection-steerable. This means that the 2-D projections of
the template at any 3-D orientation can be expressed as a linear
combination of a few basis functions. Thus, the matching of the
template projections is reduced to evaluating a weighted sum of the
inner-products between the basis functions and the micrographs.

We choose an internal energy term that penalizes the total cur-
vature magnitude of the curve. We also use a constraint energy
term that forces the curve to have a specified length. The sum of
these terms along with the image energy obtained from the match-
ing process is minimized using a conjugate-gradient algorithm. We
validate the algorithm using real as well as simulated data.

1. INTRODUCTION

Cryo-electron microscopy is a technique used to image bio-molecules
such as DNA. It uses a transmission electron microscope (TEM) to
image specimens preserved in vitrous ice [1]. In this paper, we ad-
dress the problem of the reconstruction of the 3-D shape of a DNA
molecule from its stereo cryo-electron micrographs (a typical pair
of such images is shown in Fig. 1). Since the exposure to elec-
tron beams causes the degradation of the specimen, one usually
restricts the number of views to two. Due to physical constraints,
the angular separation between the views is limited to a maximum
of 30 degrees. The micrographs also suffer from poor image con-
trast and low SNR due to the low electron dose. All these aspects
make the reconstruction problem difficult.

The early approaches to this problem included manual recon-
struction [2] and a semi-automatic search algorithm called the fly-
ing cylinder [3]. The manual scheme is time-consuming and not
necessarily reproducible. The flying cylinder algorithm detects the
filament by matching the projections of a 3-D cylindrical template
with the stereo images. The authors approximated the projections
with oriented rectangles and used a sequential search algorithm to
detect the filament fragments. These fragments were then sorted
and interpolated to obtain a continuous curve. The performance of
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Fig. 1. Stereo views separated by 30◦ of a super-coiled DNA fil-
ament (1800 base pairs). Courtesy E. Larquet, Pasteur Institute,
France.

this algorithm is limited by the approximations, angular discretiza-
tion, and, the multi-step strategy.

We address these shortcomings and propose a new algorithm
that solves the 3-D reconstruction problem in a more exact and
consistent manner using projection-steerable templates and a 3-D
active contour model. An outline of the full procedure is given in
Fig. 2. We consider a global model for the DNA filament consist-
ing of a 3-D parametric B-spline curve skeleton with a specified
radial profile. Ideally, we would project the global model onto the
projection planes and match the projections with the images to ob-
tain a fitness measure. However, deriving the exact projections and
matching them with the images in the optimization loop is compu-
tationally very expensive.

To reduce the computational complexity, we introduce the con-
cept of projection-steerablity, which is inspired by the work on
2-D orientation steerablity by Freeman et. al. [4]. We then ap-
proximate the global 3-D model locally using elongated blob-like
structures that are projection-steerable in the sense that their 2-
D projections can be computed efficiently using a small number
of appropriate basis functions. With this framework, the match-
ing operation can be performed inexpensively as a weighted sum
of the inner-products between the basis functions and the images.
The weights are simple functions of the orientation of the 3-D tem-
plate and the inner-products are evaluated efficiently by separable
filtering. We discuss the projection-steerable ridge detection in de-
tail in next section.

We derive a simple expression for the internal energy that pe-
nalize the total curvature magnitude of the curve, assuming it to
be parametrized with a constant arc-length. Since the length of
the DNA molecules are known a-priori, we use an additional con-
straint term that penalizes the curve for not having the specified
length. We use a conjugate-gradient algorithm for snake optimiza-
tion.
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2. LOCAL FILAMENT DETECTION

In this section we deal with the detection of elongated blob-like
structures from their stereo projections.
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Fig. 2. Outline of the global 3-D shape estimation algorithm.

2.1. Projection-based feature detection

Suppose our task is to check for the presence of an elongated 3-D
blob—denoted by fc (r) ; r ∈ R3—with an unknown orientation,
at a particular position rc in a 3-D volume f . The volume is known
only through its orthogonal 2-D projections fi = Pif . We formu-
late the detection procedure as a matched filtering; we consider a
3-D detector and match its orthogonal projections onto the image
planes with the micrographs.

We denote its rotated versions by hv (r) = h (Rv r), where
Rv is a 3-D rotation matrix. We choose the sum of the inner-
products between the 2-D template projections and the micrographs
as the performance criterion:

Cv (rc) =

N−1∑
i=0

〈
fi, Pi (hv)

〉
(rc,i) (1)

=

N−1∑
i=0

(
fi ∗ Pi (hv)T )

(rc,i) (2)

where Pi; i = 0 . . . N − 1 are the orthogonal projection op-
erators1 and rc,i = Pi rc is the projection2 of rc onto the ith im-
age plane. Here hT (r) denotes h (−r). Note that the criterion is a
function of the orientation vector v. If we perform the filament de-
tection independently at each point, the optimal orientation vector
is the v that yields the maximum of (1); the value of the maximum
is a measure of the likeliness of the feature. However, the compu-
tation of the projections Pi (hv) are expensive for an arbitrary 3-D
template; a direct implementation of the algorithm is not practical,
unless simplifying assumptions are made.

1In our case N = 2, but the scheme is applicable for the general case
as well.

2Pi = PRi, where P =

[
1 0 0
0 0 1

]
and the unitary matrix Ri

specifies the projection geometry; it maps the co-ordinate system (x, y, z)
onto (xi, yi, zi).

2.2. Projection-steerable ridge detection

To reduce the complexity in performing the projection matched
filter detection, we use an approach similar to rotation-steerablity
[4]. We would like to have a good 3-D filament detector whose
projections (for any spatial orientation) are contained in a space
spanned by a few basis functions.

Let us consider the family

V3D = span {∂xx g3 (r; σ) , ∂yy g3 (r; σ) , ∂zz g3 (r; σ) ,

∂xy g3 (r; σ) , ∂xz g3 (r; σ) , ∂yz g3 (r; σ)} ,(3)

where gD (r; σ) = 1

(2πσ)
D
2

exp
(
− |r|2

2σ2

)
is a D-dimensional Gaus-

sian and ∂xy f (r) = ∂2

∂x∂y
(f (r)). We now show that any 3-D

filter in this family is ideally suited for projection matched filter
detection.

Proposition 1 The space V3D is closed with respect to 3-D rota-
tions.

Proof 1 Since the Fourier transforms of the basis functions are
second degree polynomials multiplied by a Gaussian window, the
Fourier transform of a general function in this space is written as

ĥ (ω) = (2π)
3
2

(
ωtAω

)
g3

(
ω; σ−1) (4)

The Fourier transform of a R-rotated version of h is given by

ĥ (Rω) = (2π)
3
2

ωt RtAR︸ ︷︷ ︸
AR

ω

 g3

(
ω; σ−1) , (5)

where R is the 3x3 rotation matrix. This implies that ĥ (Rω) ∈
V3D.

Proposition 2 The orthogonal projectionPi of the space V3D onto
a plane is the function space V2D,i:

V2D,i = span {∂xixi g2 (ri; σ) , ∂zizi g2 (ri; σ) , ∂xizi g2 (ri; σ)} .
(6)

Proof 2 The Fourier transform of the projection of an arbitrary
function h (r) ∈ V3D is given by ĥ

(
Pt

iω
)
:

ĥi (ωi) =
√

2π

ωt
i PiAPt

i︸ ︷︷ ︸
Bi

ωi

 2π g3

(
Pt

iωi; σ
−1)︸ ︷︷ ︸

g2(ωi;σ−1)

, (7)

where g2 is a 2-D Gaussian. Since the 2x2 matrix Bi is sym-
metric, ĥi (ωi) is a second degree polynomial in ωi. This im-
plies that hi is a linear combination of the functions ∂xx g2 (ri, σ),
∂xy g2 (ri, σ) and ∂yy g2 (ri; σ). Thus Pi (V3D) ⊆ V2D,i.

We also have the relationsPi (∂xx g3) = ∂xixi g2,Pi (∂zz g3) =
∂zizi g2 and Pi (∂xz g3) = ∂xizi g2. They imply that V2D,i ⊆
Pi (V3D). Thus we have V2D,i = Pi (V3D)

These results indicate that there is a very efficient way to rotate
any function in V3D and to compute its corresponding 2D projec-
tion using an appropriate weighted sum of basis functions. Hence,
this class is ideally suited for projection-steerable matching.
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(a) front view (b) top view (c) left (d) right

Fig. 3. (a) and (b) Isosurface plots of the front (viewed from the x-z plane) and top (viewed from the x-y plane) views of a 3-D detector
oriented at 30◦ to the x- axis and 30◦ to the x-y plane (θ = 30◦, φ = 30◦). (c) and (d) Projections of the 3-D filter onto the image planes
oriented at −15◦ and −15◦ to the y axis

2.3. 3-D ridge detection

We can show that the most elongated local template in V3D, ori-
ented along the vector v is

hv (r) = (∂xx + ∂yy + ∂zz) g3 (r; σ)︸ ︷︷ ︸
Laplacian of g (r; σ)

−5

3
∂vv g3 (r; σ) , (8)

where ∂vvf (r) = ∂2

∂γ2 f (r + γ v). We substitute (8) in (7) and
perform some algebraic manipulations to obtain

Pi (hv (r)) = vt [
Rt

i Gi (ri; σ)Ri

]
v, (9)

where Gi (ri; σ) is the matrix ∂zizi − 2
3
∂xixi 0 − 5

3
∂xizi

0 ∂xixi + ∂zizi 0
− 5

3
∂xizi 0 ∂zizi − 2

3
∂xixi

 g2 (ri; σ) .

(10)
This expression indicates that we use different 2-D detectors on
the image planes, depending on the spatial orientation of the 3-D
template. We give an example with the 3-D template and their
projections in Fig. 3.

Using (9), we simplify (1) to

Cv (r) = vt

[
N−1∑
i=0

Rt
i Hfi (ri)Ri

]
︸ ︷︷ ︸

H3D(r)

v (11)

where Hfi (ri) = fi ∗Gi (ri; σ). Thus, we can match the image
locally with the projection of a 3-D blob oriented along v by evalu-
ating (11). To compute Hfi (ri) at every point in the micrograph,
we need to filter the image with the templates corresponding to
the 5 non-zero entries of (10). Since these entries are linear com-
binations of the three functions ∂xixi g2 (ri; σ) , ∂zizi g2 (ri; σ)
and ∂xizi g2 (ri; σ), it is in fact sufficient to filter the images with
three separable templates. The entries of Hfi (ri) are linear com-
binations of these filtered signals.

3. ACTIVE CONTOUR ALGORITHM

In this section, we discuss on the various energy terms of the snake
algorithm.

3.1. Image Energy

The image energy term is a measure of the fit of the model to
the image data. The tangent vector of the curve at a point r (t),
given by dr (t), defines the direction of the elongated blob at that
point. The likeliness of a blob at r (t) oriented along dr (t) can be
computed using (11). The likeliness of the entire curve is obtained
by integrating the goodness measures along the curve:

Egoodness (r) = −
∫ M

0

dr (t)t H3D (r) dr (t) dt. (12)

We maximize this measure to obtain the optimal B-spline repre-
sentation of the skeleton; by doing so, we are jointly estimating the
optimal orientations and magnitudes at the voxels through which
the curve passes.

(a) −15◦ (b) 15◦

Fig. 4. Synthetic images used for the validation. They were gen-
erated from the manual reconstruction of Fig. 1 to generate the
ground truth followed by simulating the image formation.

3.2. Internal Energy

The internal energy term is essentially a regularization term that
penalizes non-smooth shapes, thus making the reconstruction prob-
lem better conditioned. The smoothness of the curve can be quan-
tified by its total curvature magnitude. However, using this term
directly as the internal energy leads to complicated expressions for
the partial derivatives. Hence, we simplify this term to∫ M

0

|κ (r)|2 dt =
1

c2

∫ M

0

∣∣r′′ (t)∣∣2 dt (13)

which is valid if |r′ (t)|2 = c, ∀t; that is, when the curve is
parametrized by its curvilinear abscissa. To have this condition
satisfied, we resample the user-initialized curve to have its knots
placed uniformly along the curve.

1885



3-D Error In-plane Error
Manual Tracing 6.543± 1.657 3.092± 0.576
Snake Output 2.850± 0.834 0.869± 0.234
Improvement 129.5% 258%

Table 1. Comparison with the reference curve for simulated mi-
crographs: average value of the absolute error (in pixels).

3.3. External constraint energy.

The external constraint energy is a means for the user to enforce
extra constraints on the reconstruction. We use two constraint
terms in our implementation.

3.3.1. Length constraint

The length of the DNA filaments are known a-priori; we introduce
this information into the snake framework by penalizing the term

Econst =

(∫ M

0

∣∣r′ (t)∣∣ dt− Length

)2

, (14)

where Length is the expected length of the molecule.

3.3.2. Point constraint

We use a point constraint to enable the user to aid the reconstruc-
tion process; he can specify a few 3-D points that should lie on the
final shape. The constraint energy is given by

Econst =

Nc−1∑
i=0

min
t∈[0,M ]

|r (t)− rc,i|2 , (15)

where rc,i; i = 0, . . . , Nc − 1 are the constraint points.

3.4. Optimization Algorithm

The algorithm begins with a user-initialized B-spline curve, which
is then resampled to the constant arc-length parametrization. We
use a conjugate-gradient optimization algorithm to derive the op-
timal parameters. Thanks to the projection-steerable formulation
and the B-spline curve representation, the partial derivatives of the
energy terms are computed exactly and efficiently.

4. EXPERIMENTS

In this section, we validate the snake algorithm using simulated
data; we consider a 3-D curve (input by a user) and emulate the
image formation. Some examples of generated micrographs are
shown in Fig. 4.

To compare two 3-D curves Ca and Cb, we choose the error
metric D (Ca, Cb) as

1

2

(
1

Ma

∫ Ma

0

D (ra (t) , Cb) dt +
1

Mb

∫ Mb

0

D (rb (t) , Ca) dt

)
,

where Ca ≡ ra (t) ; t ∈ [0, Ma] and Cb ≡ rb (t) ; t ∈ [0, Mb].
The distance between a point ra (t) and a curve Cb (denoted in
the above equation as D (ra (t) , Cb)) is defined as the distance
between ra (t) and the closest point on Cb:

D (ra (t) , Cb) = min
t′∈[0,M ]

‖ra (t)− rb

(
t′

)
‖L2 (16)

We evaluate the distance metric by discretizing both curves. We
also look at the fit of the reconstruction with the available data.
This measure (in-plane error) is the sum of the distances between
the projections of the reconstructed curve and those of the refer-
ence curves.

We compared the performance of the snake algorithm with the
manual tracing. We used 5 stereo pairs and 2 independent users.
For each stereo-pair, we performed 5 manual tracings each. These
tracings were used as the initialization for the snake algorithm.
These tracings and the snake output were compared with the cor-
responding reference curves to obtain the absolute errors. The av-
erage errors in the manual tracings and the snake-fitted curves are
given in Table I. Note that our algorithm gives a factor of 2.5 de-
crease in the in-plane errors. An example of the 3-D reconstruction
using our algorithm is shown in Fig. 5.

(a) −15◦ (b) 15◦ (c) 60◦ (d) 90◦

Fig. 5. Reconstructed filaments for the micrograph pair in Fig. 1
at different viewing angles around the vertical axis. (a) and (b)
correspond to the left and the right micrographs in Fig. 1

5. CONCLUSION

We have presented a carefully engineered solution for the 3-D
shape estimation of DNA molecules from stereo cryo-electron mi-
crographs. We modeled the DNA filament as a structure with a
3-D B-spline curve skeleton and a specified radial profile. We op-
timized the B-spline coefficients using a conjugate- gradient algo-
rithm such that the model projections match with the micrograph
data. To make the algorithm computationally efficient, we use
projection-steerable templates which reduces the matching pro-
cess to the evaluation of a weighted sum. Starting from an user-
initialized curve, the algorithm derives the optimal parameters us-
ing a conjugate-gradient algorithm. The results obatined are promis-
ing.
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