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Abstract—\We present an exact expression for thd- error that Inthis paper, we areinterested inthe case where the input signal
occurs when one approximates a periodic signal in a basis of shifted s(¢)is periodic, which is an assumption thatis commonly madein
and scaled versions of a generating function. This formulation is practice. One example, where the periodic representation is espe-

applicable to a wide variety of linear approximation schemes in- . . . !
cluding wavelets, splines , and bandlimited signal expansions. The cially relevant, is the parametric representation of closed curves

formula takes the simple form of a Parseval's-like relation, where intermsofsplines[7],[8], [9] or Fourier basis functions[10]. As-
the Fourier coefficients of the signal are weighted against a fre- sumingthe period to be aninteger multiple of the sampling step
quency kernel that characterizes the approximation operator. We (I' = Nh),2 itis straightforward to adapt most of ttig tech-
use this expression to analyze the behavior of the error as the sam- i esto the periodic case by simply considering periodized basis
pling step approaches zero. We also experimentally verify the ex- functions and by redefining the inner product accordingly [11]
pression of the error in the context of the interpolation of closed ) . ’ Il
curves. (see Sectionll). However, the erroranalysis for signalsiR) is
notdirectly applicable because the square modulus of the Fourier
transform is not defined for periodic signals.
The quantitative error analysis of periodic signals is the main
focus of this paper. In particular, we will derive a general pre-
. INTRODUCTION dictive error formula that depends on the Fourier coefficients of
LASSICAL sampling theory deals with the problem ofs()- Interestingly, the formula bears a strong resemblance to the
reconstructing or approximating a signét) from a set ©rror expression of s_,|gnals_I|:h([R€). However, the recipe is dif-
of uniform samples or measurements. In its generalized versifgfe€nt although the ingredients are more or less the same as in

Index Terms—Asymptotic performance, curves, error bounds,
periodic representations, sampling.

the reconstructed approximation [1] is [3]; the average least squares error is obtained as a discrete sum
of the Fourier series coefficients, as opposed to a continuous in-
y = t i 1 tegral in [3]. We also study the behavior of the approximation
su(t) = kz “P\n @ asthe sampling step goes to zero.
where the underlying basis functions are rescaled translates of Il. PRELIMINARIES

the generatingfunctiony; h is the sampling step. The generatol,
can be selected to yield bandlimited (e.= sinc), spline, or = . ) .
wavelet representations of signals. The expansion coefficientdVe denote the Fourier transform of a continuous sigftalas

¢y are either determined from the uniform samples of the input 3(w) = /Oo s(t)e=It dt. )
signals(kh) (interpolation or quasi-interpolation) or from a se- oo

quence of inner products with a suitable sequence of analysis

functions [1]. This theory is well developed for the case in whicB. Sampling of Periodic Signals

the input signal is ir»(R), which also implies that itis defined  The general formula for determining the expansion coeffi-
over the whole real line. The approximation quality depends @fents in (1) is

the sampling step, the type of algorithm used (e.g., interpo- 00 ¢ ¢
lation versus projection), and, most importantly, on the choice e = / s(&)p <ﬁ - k) dy (3)
of the generating functiop. This can be quantified rather pre-

cisely, thanks to the availability of sharp mean square error %{ghermp is an appropriate analysis function. The usual setting

timates in thel»(R) setting [3], [4]. Bounds are also available’©" this formula iss € Ly(R) (finite eﬁngrgy signals). In partic-
for the L., approximation error (worst-case scenario) [5]. ular, one can show tha, € £, wheny is bounded and whesn

has at least > 1/2 derivatives in thel, sense [3]. However,
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We assume tha{¢) isT-periodic and thal’ = Nh, whereN [ll. FOURIER SERIES REPRESENTATION
is a positive integer. Under those conditions, the sequende-
fined by (3) is periodic as well, with perial. Furthermore, we
can rewrite the synthesis and analysis (1) and (3) uaingeri-
odized functions as

Bandlimited periodic signals can be represented as (4) by
choosingy = sinc. However, due to the slow decay of sipg,
does not converge wheN is even. However, whefV is odd,
¢, converges to a well-defined function iy ([0, 77). In this

Z L @) case, the signal representation can be reformulated as a Fourier
sn(t kPp series. Hence, we briefly review the Fourier series description
,T of a periodic signal when the period is odd.
oL = / s(&)@p <% - k) d% (5) A T-periodic signals(t) € L»([0,T])) can be expanded as
0 [e9)
where s(t)= > S(k)e’ (12)
'S} k=—o0
op(t) = Z @(t —IN). (6) where the Fourier series coefficierfitk) are obtained as
=—c0 1 T c2m ki
S(k) = = / s(t)e=I (13)
Equation (5) calls for the definition of an inner product in _ T_ o _ _ _
L,([0,T]). We denote thel,([0,7]) inner product between In most practical applications, the functiaii) is not di-
two functionss; (¢), so(t) € Lo([0,T]) as rectly available. Usually, it is only known through its samples

1 T {s(lh)}i=0... ;v —1. In such cases, one often assumes Hi&k
(s1(t),52()) Lo, 1) = T/ s1(t)s2(t) dt. (7) is bandlimited and, hence, approximates the coefficigiits
0 with the N point DFT of {s(lh)} for k = —|N/2| ... |N/2]
The corresponding norm is written §s ||, jo,z7)- We show and0 otherwise.
in the Appendix A that a sufficient condition fas, to be in The corresponding continuous sigra(t) is nothing but the
L,([0,T]) is thaty be absolutely integrablge € Li(R)) and periodized sinc interpolation of the samples [15], [16]. The cor-
that the discrete Fourier transform of the autocorrelation sesponding sinc interpolation with a zooming facidiis imple-

quence mented efficiently by computing the FFT of the input sequence
0o and performing a larger size IFFT with zero padding the trans-
(W) = Z lo(w + 2km)|? (8) formuptosizeVM . This representation turns outto be a special
P case of (9) withy = sinc andp = é—the Dirac’s delta distri-
bution.

is bounded. Under those assumptions(t) € L2([0,77]) pro-
vided, of course, that thg.s are bounded. While these relatively IV. COMPUTATION OF THE SQUARE ERROR
mild conditions are satisfied by most generating functions used
in practice, they are not applicable to the classical gasesinc, ~ 1h€ Space spanned by the generating functions is not shift-
which present some difficulties, i.e., sigcL; (R). This case is invariant in general. Hence, the approximation error at a scale
dealt with in the next section. hvis dependent on a time shift of the functisft). The shifted
Combining (4) and (5), we get function is denoted by..(t) = s(t — 7).
The mean square approximation error for a shifted function

sy(t) = Qns(t) s, IS given by
e ¢ el (¢ 17
= Z / 8(£)¢p <_ o ) dr ¥Pp < - k) (9) ’75(7_7 N) = _/ |3‘r(t) - QNS‘r(t)|2dt
k=0 [/0 h T Jo
whereQ is the approximation operator. This linear operator is = llsr — Qns-OII7,j0,27)- (14)

a projector if and only if the functiong andg are biorthogonal, As the period of the signal is an integer multiple of the sampling
e, (pt — k), ¢t — D)) = 6u—i [14]. In this casesn(t) is a step,y.(r, N) is alsoh periodic inT. In most applications, the
consistent reconstruction of the measuremepts exact phase of the signal is not known. Hence, we are interested
As we frequently use Parseval’s relation, we now recall iin obtaining a measure of the error that is averaged av&his
It relates theL.([0,77]) inner product between two functionsaverage error is given by

s1(t), s2(t) € Lo([0,T)) to their Fourier series coefficients as L
N) = \/E/ ~s (1, N)dr. (15)
0

1
The following theorem, which is the main result of this paper,

(51(8), 52(8)) Lo (0,1 = T/o s51(t)so(t) dt

_ S (VS () 10 gives an explicit expression for the mean emgfN).

Z 1(R)S2(F) (10) Theorem 1: Let s(¢) be al’-periodic signal with the Fourier-
series coefficient§' (k). The mean square approximation error
incurred in approximating(¢) as in (9) is given by

> swee(%E) o

k=—o0

k=—occ

Using this expression, the; ([0, T']) norm ofs(t) € Lo([0,T])
can be written as

1 T
||S||%2([0,T1)=f/0 ) dt = Z |S(R)I7. (11) J

k=—oc0
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where the approximation kerngl(w) depends only op and¢  wheres(™ is the Lth derivative ofs, and the constant is given

and assumes the expression by the expression
B(w) = 1= ¢(w) @) + o) Z |&(w + 2nm)|? o .- 1 Z GO k)2 + [mE —mE2.  (21)
o TN & pa 0
17)
—1_ |‘?(w)|2 i, (w)|3(w) — Ga(w)]? (18) Here, $L) denotes theLth derivative of ¢, and mk =
ap(w) ~ J #lu(z) dr;u is eitherg or ¢q.
B () Eros (@) The proof is given in Appendix C.
Note that this result is almost the same as the bound derived
wheregy(w) = (¢(w)/ap(w). in [19], except that the present norm is definedfg([0, 77]) as
The proof is given in the Appendix B. opposed td.»(R) as in [19]. The minimum value attainable by

Note that this kernel is identical to the one obtained in thgig constanC; = (1/L1),/3..q |¢()(27k)|2 is indepen-

case efsignals it > (R) [3]_' The main difference With_th‘é?(R) dent of the analysis function. This value is achieved when we
case is that the expression of the error (16) is a discrete suny gs,,,, L

h . Iﬁ =mgz.
opposed to a continuous integral [3] wd @

1 o
ns(1) = \/%/ |8(w)|?E(wT) dw. (19)  VI. EXPERIMENTAL VERIFICATION OF THE ERRORFORMULA

R ; : In this section, we validate the expression for the error given
Zr?c;eTﬁ(swt)hs ézi]lgﬁggesrtéﬁnsform of the signatt) € L (R). by Theorem 1 experimentally. We compare the meesured errors

Given a reconstruction space, the error kernel attains its m}R—the ones predicted by the theory for the_ approxrmatron of a
imum possible value,,,;, (w) for all w wheng is the dual of [::]?I;er:ﬁ: it?nr)t?efiﬁt;uengg%‘p?eféthe sampling step equiva-

. It is obvious from (18) a¥r,s(w) > 0, and Eyn(w) de- ’ ! ) . )
gends only onp. This (cas)e corre(sp)onds to the mini(mzrm error OUr reference shape (Switzerland) is polygonal with 807
approximation (orthogonal projection), as in the case of signﬁgges and is represented using two periodic functigfsand
in L(R) [17]. The second pa,., accounts for the additional ¥(?)- For each experiment, the initial modgt(t), y(t)) was
error encountered for not choosing the optimal analysis functié‘?rsv‘\"/‘mpled _LO a Zpt\eNCIfled nurrfrber of p_ornr{;. ) e
5 — », Whenda is bi-orthogonal tas but & _then the e considered two types of approximations: 1) a cubic spline
forrezr()londing gperat@N isgcalled (;pn oblizui |c<)’r(<l)jection. interpelation wit_h<p = 33 (cubic spline) and 2) a banrjlimite_d

one withe = sinc. Note that the second approach is equiva-
lent to a truncated Fourier approximation. In fact, we used an

V. ASYMPTOTIC PERFORMANCE IFFT padded with zeros to generate the bandlimited interpola-
tion functions at the required scale.

_The asymptotic performance of the representatif)f? is deter-—rhe comparisons between the experimental errors and the
mined by the r_)ehavror of t_he kernel close to the origin. Usinges predicted by the theory are given in Figs. 1 and 2, respec-
the Teylor-serres expression of the kernel, we show that fﬁ\?ely. It can be seen for both the graphs (Figs. 1 and 2) that
the minimum approximation error to decay@$1/N*) as the  the experimental error (far = 0.5) is in good agreement with
number of sampling point8/ — oo, we needz(0) # 0 and  the theoretical prediction. The experimentally obtained curve of
¢ (2kr) = 0.Vk € Z\{0} forn = 0,1...L — 1. These . (; N} for+ = 0.5 oscillates around the theoretically pre-

are precisely the Strang—Fix conditions of ordef2]; a » that  gicted curve ofy, (V). This is because the theoretical prediction
satisfies these conditions is called as/zth-order generating s an average of.(r, N) over allrs.

function. _ . _ From Fig. 3, it can be seen that the spline interpolation of
In the following theorem, we give the asymptotic bound fog,es perform slightly better (around 1 dB) than the sinc in-

the projection error. Note that the projection need not be orthgpation. This behavior can be explained with the aid of the

onal [18]. _ y _ error kernel we have just derived. We can see from Fig. 4 that
Theorem 2: Letp andy be two mutually bi-orthogonal gen- e gpjine kernel has lower values, as compared with the sinc

erating functions. Then, the oblique projection error in apProjsterpolation kernel whew > . Hence, at low sampling rates

imating ar;L-times differentiable function(t) as in (9) decays (yyhen the signal has some nonnegligible frequency components
asO(1/N") asN — v iff ¢ is anLth-order generating func- apqyer) spline interpolation will usually outperform the sinc

tion. If ¢ satisfies the_th-order Strang—Fix conditions, the errory o The differences tend to vanish as the sampling step de-
in approximation agvV — oo is asymptotically given as

creases.
I\ E 1 The map of Switzerland interpolated from 45 samples using
ns(N) = C, 2|27 k) S (k)]s <N) +0 <W> the spline and sinc functions are shown in Fig. 5. It can be seen

that at some places, the sinc representation results in looping

s 1\* o 1 20 curves. This effect is less likely with the spline representation
= Cop TNl 210,1) N + NI+L (20) due to the more local behavior of spline interpolation.
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Fig. 3. Comparison of spline and sinc interpolation.

_— Actual Map
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Fig. 5. Actual map of Switzerland represented using 807 edges is resampled
to 45 points (indicated by dots). These points are then interpolated using cubic
spline and sinc functions. The graphs below are the zoomed portions of the
corresponding positions of the main graph, which illustrates the looping nature
of sinc interpolation.

VIl. CONCLUSION

We have derived an exact expression of the mean error in rep-
resenting a periodic signal in a generating function basis. This
expression may be useful for comparing different generating
functions and for choosing the right one for an application. We
have experimentally verified the expression; the experimental
curves are in excellent agreement with the theoretical predic-
tions. Using the expression for the error, we also analyzed the
behavior of the approximation scheme as the sampling step ap-
proaches zero.
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APPENDIX A theorem. Hence
SUFFICIENT CONDITION FOR ¢, € L2([0,T]) | N1 oo ol
2nmk S m _J27kl 2mmk
¢ € Li(R) implies thatp, € L;([0,7]) and that N ;cke = ;0 l; Sr(l)¢<w> e Noe N
2kw wkt cvk
Z oz —IN) =% Z < ) E . (22) oo 2\ 1 YL
lez ez =Y S(Dh¢ <l> 1N
l=—0c0 N N k=0
in the sense of distributions [20]. Now, the right-hand side of ~
(22) is in Ly([0,T7) iff kz oo Uk
= A (2 +EN)\"
) = Z S-(m+kN)p <M> .
. 2kn i N
Z 2 T < o0 (23) -
Kz (28)

o ) i Combining (27) and (28), we get
which is ensured if the the Fourier transform of the autocorre-

lation Ra(m) =& <27jrvm>
() = 3 [p(w + 2k (24) o .
Z:z(p [Z (m+ kN)G <W)]

's bounded for all. Thus.,, € L2([0, 7). We now use Parseval’s theorem to get

APPENDIX B 1 /T , oo .
COMPUTATION OF THE SQUARE ERROR T/o [Qns: (P dt= > |Ry(m). (29)

Expanding (14), we get . . e . )
xpanding (14), we g Making use of the relation between the Fourier coeffi-

cients of the shifted function and the actual §fe(k) =

1 T 2 1 T 2 —j(27rk‘r/T)S L ite (29
V(N = o [ [se@)Pdt+ o [ [Quse(8)] dt e (k)), we rewrite (29) as
0 0 - o ) )
9 (T l e ()2 = ‘ﬂ»zw%n,- ‘ o 2mm
-2 / 5 () Qs (t) dt. 25 T /0 [Qus-()] m;m SO N S
oo 2
_ { 2mm
1) Using Parseval's theorem, the first term of (25) reduces to =D lzm(7)l ‘p< N )‘ :

Here,z,,(7) istheh = (I'/N) periodic function with the

—/ s dt = Z 1SR = > ISR expression

k=—o0 e i *
2 (2 kN .
tm(t) = > S(mA+kN)G <M) RIS

2) To compute the second term of (25), we first compute b —co N
the Fourier coefficients 08y s.(t). From (4), they are X,:(k)
obtained as ) ) ) N T
Averaging this expression over, (1/h) [ (dr/T) [,
N-1 1T y i |Qn s, (t)]? dt becomes
Ry(m) = kz_o Ck T/o ©p <E - k) dt] (26)

{2mm 201 9
SR L more

We make a change of variablestas ¢/h — k and rear- oo <27rm)

range the terms to get =
o0 ot 1 I Here, we again made use of Parseval's theorem. Substi-
Ry(m) = [/ e(t)e™ N dt} Z cke N .

Z | X (K

k=—o0

n=—0o<

tuting for X,,,(k) and making a change of variable, the
above summation can be rewritten as

1 h 1 T )

E/ de/ |Qn s ()" dt
We now consider the expression ef from (5); the 0 0
L»([0,T]) inner product can be expressed in terms of _Z|S i <27rk>
the corresponding Fourier coefficients using Parseval's

—o
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3) Making use of (29) and the Parseval’s relation, we rewrites the expression is a sum of positive quantities, it is equal to

the third integral(1/T) fo s.(t)*Qns,(t)dt as zero only if each of them is zero independently. In particular, we
5 5 LN\ needg(2lw) = 0,1 € Z\{0} andg(0) = ¢4(0). We also need
Z 5.4 < 7rm> Zsf(erkN é(%) _ a,(0) # 0, which is true iff3(0) # 0. These are precisely the
Strang—Fix conditions of order 1.
[s* (m);(zﬂ_m) b zZxme o Now, we look at the conditions fdimy . ..(Nn,(N))? =
RN e T an(r) 0. This will imply that n,(N) decays faster tha®(1/N) as
Rearranging the terms, we get N — oco. To derive the conditions, we rewrite the expression
" for Nn,(N) as
1/t N «~ [ 2Tm
1 50 Qs de=3 |stmy e () | ontr). oy =3 szt Vg (2
" o ne(N ™) 2k 2 \N )
As before, z,,(7) is a sequence of. periodic func- keZ
tions. NOW averaglng overr as before, the term Now, computing the limits by interchanging the sum and limit
(1/n) [y "(dr/T) fo s+ (t)*Qn s, (t)dt becomes as(E(w)/w?) is bounded, we get
w o [ 2rm 1" . 2 2 1 E(w)
> sty (2 ) 1 3 [ omtrsar Jim (8, ()? = ISR, lan, (257
— =722 0
X (0)=S(m)p(252)".

Here, we made use of the fact thafw) is an even function of

Substituting for the expression &f,,,(0) the expression . .
g P ©) P w (its Taylor series has only even powers.9f

above reduces to

ziseore () ¢ (%) (%) no %

i

2
lim —w(w + 2im)
w—0 w

which is equivalent to 5 5 2
+ a,(0) | lim glw) lim $alw)
2mm 2mm w—0 w w—0  w
Z |S(m =) s =) ). (30)
N N A(l) AN
e |70 - Ao
Combining the three integrals, we get = Z 1
10
> 21k (32)
w= | Y swre () e
k=—o00 With the same argument as before, in addition to Strang—Fix
where conditions of order 1, we needV)(2lx) = 0,1 € Z\{0} and
. . é(l)(o) = @&1)(0). Continuing in the same fashion, we can
Ew)=1+ay(w) |p(w )‘ — 2R(p(w)p(w)) see thaty,(N) will decay asO(1/N") iff ¢ is an Lth-order
. . A"l) ~lm
— |1 = $(w)P(W)? + [(w)? ZW (w + 2n7)] generating function, angd " (0) = (p((i )(0) form=0...L—
1.
e The functiong,(w) = (P(w )/Zk |p(w + 2kT)|2 ) behaves
as@q(w) = (1/¢*(w)) + O(w)* asw — 0. Sinceg is bi-or-
APPENDIX C thogonal tog, it behaves ag(w) = (1/¢*(w)) + O(w)E
ASYMPTOTIC PERFORMANCE asw — 0. (This follows from the bi-orthogonality relation

In this proof, we assume that the kernellistimes con- Y.z ¢(w + 2km)@(w + 2k7r) 1.) Hence,¢ being bi-or-
tinuously differentiable. Initially, we derive the conditionshogonal tap ensures thap’ ( ) =@ (0)form=0...L—
for which limy_co(15(V))?> = 0. As E(w) is bounded and 1. Thus, the bi-orthogonality and the Strang—Fix conditions of

s(t) € Ly([0,7]), we use Lebesgue s dominated convergenggderL are sufficient for the erray, (V) to decay ag)(1/NL).
theorem to interchange the limit and the summation in (16) to 7, js the first positive integer for which
obtain

. E(w)
L 2 _
v = s g5 (22) Jim (¥ () = SR, tin (7))
hez =T 5D —"_':@..)2
= 3 ISHPE) =o. 0. @3
kCZ

Here, we used the continuity of the kernel. The above expressfoiPceeding as in (32), the expression(df; is

is true for anys( ) € Ly([0,T]) if E(0) = 0. We have

E(0) = szm + g (0)[$(0) — ¢u(0))” = 0. Coo = |2

a*” l;éO k0

‘mg —mk

@ Pa

L

PO (2km)|*
L!
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In

the above equation, we substituted féFL)(O) and

¢4(0) with (—5)EmE and (—j)~mk , respectively, where

mk

(1]
(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

(20]

(11]

[12]

(23]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

@ ®a’

= [alu(z)dx.

w

REFERENCES

M. Unser, “Sampling-50 years after shannoRybc. IEEE vol. 88, pp.
569-587, 2000.

G. Strang and T. Q. NguyeWavelets and Filter Banks Wellesley,
MA: Wellesley-Cambridge, 1996.

T. Blu and M. Unser, “Quantitative Fourier analysis of approximatior
techniques: Part I—Interpolators and projectot&§EE Trans. Signal
Processingvol. 47, pp. 2783-2795, Oct. 1999.

—, “Quantitative Fourier analysis of approximation techniques: Pal
Il—Wavelets,”|EEE Trans. Signal Processingol. 47, pp. 2796-2806,
Oct. 1999.

A. J. E. M. Janssen, “The Zak transform and sampling theoren

for wavelet subspaces|EEE Trans. Signal Processingol. 41, pp. =
3360-3364, Dec. 1992.

P. Brigger, J. Hoeg, and M. Unser, “B-spline snakes: A flexible tool fo
parametric contour detectionlEEE Trans. Image Processingol. 9,

pp. 1484-1496, Sept. 2000.

1159

Mathews Jacob (S’00) was born in Kerala, India,
in 1975. He received the M.E. degree in signal pro-
cessing from the Indian Institute of Science, Banga-
lore, in 1999.

Currently, he is a Research Assistant with the
Biomedical Imaging Group at the Swiss Fed-
eral Institute of Technology (EPFL), Lausanne,
Switzerland. His research interests include image
processing, active contour models, sampling theory,
etc.

Thierry Blu (M'96) was born in Orléans, France, in
1964. He received the Dipldme d’'ingénieur degree
from Ecole Polytechnique, Paris, France, in 1986 and
from Télécom Paris (ENST) in 1988. He received the
Ph.D degree in electrical engineering in 1996 from
ENST for a study on iterated rational filterbanks ap-
plied to wideband audio coding.

He is currently with the Biomedical Imaging
Group at the Swiss Federal Institute of Technology
(EPFL), Lausanne, on leave from France Télécom
National Centre for Telecommunication Studies

CNET), Issy-les-Moulineaux, France. His interests include (multi)wavelets,

F. S. Cohen and J. Y. Wang, “"Modeling image curves using invariailjiiresolution analysis, multirate filterbanks, approximation and sampling
3-D object curve models, a path to 3-D recognition and shape eStImatlﬂ){éory and psychoacoustics.

from image contours, part 1lEEE Trans. Pattern Anal. Machine Intell.
vol. 16, pp. 1-12, Jan. 1994.

R. H. Bartels, J. C. Beatty, and B. A. Barsin Introduction to Splines
for Use in Computer Graphics and Geometric Modelingan Mateo,
CA: Morgan Kauffmann, 1987.

Z.Huang and F. S. Cohen, “Affine-invariant B-spline moments for curv
matching,”|EEE Trans. Image Processingol. 5, pp. 1473-1480, Oct.
1996.

G. H. Granlund, “Fourier preprocessing for hand print character reco
nition,” IEEE Trans. Computvol. C-21, pp. 195-201, 1972.

G. C. H. Chuang and J. Kuo, “Wavelet descriptor of planar curve:
Theory and applications,JEEE Trans. Image Processingol. 5, pp.
56-70, Jan. 1996.

L. SchwartzTheorie des Distributions Paris, France: Hermann, 1988.

Michael Unser (F'99) was born in Zug, Switzerland,
on April 9, 1958. He received the M.S. (summa cum
laude) and Ph.D. degrees in electrical engineering in
1981 and 1984, respectively, from the Swiss Federal
Institute of Technology (EPFL), Lausanne.

From 1985 to 1997, he was with the Biomedical
Engineering and Instrumentation Program, National
Institutes of Health, Bethesda, MD, where he headed
the Image Processing Group. He is now Professor
and Head of the Biomedical Imaging Group at
EPFL. His main research area is biomedical image

G. Friedlander and M. Joshintroduction to the Theory of Distribu- processing. He has a strong interest in sampling theories, multiresolution
tions. Cambridge, U.K.: Cambridge Univ. Press, 1988. algorithms, wavelets, and the use of splines for image processing. He is the
M. Unser and A. Aldroubi, “A general sampling theorem for non-author of over 90 published journal papers in these areas. He is on the editorial
ideal acquistion devices,|EEE Trans. Signal Processvol. 42, pp. boards ofSignal Processing, the Journal of Visual Communication and Image
2915-2925, Nov. 1994. Representation, Sampling Theory in Signal and Image ProcessnaPattern

F. Candocia and J. C. Prince, “Comments in sinc interpolation &ecognition

discrete periodic signalsJEEE Trans. Signal Processingol. 46, pp. Dr. Unser is an Associate Editor for the IEERANSACTIONS ONMEDICAL
2044-2047, July 1998. IMAGING and is a Guest Editor for its special issue on Wavelets in Medical
S. R. Doodey and A. K. Nandi, “Notes on interpolation of discrete perimaging. He was a member of the Image and Multidimensional Signal
odic signals using sinc function related approachi<EE Trans. Signal Processing Committee of the IEEE Signal Processing Society from 1993 to
Processingvol. 48, pp. 1201-1203, Apr. 2000. 2000 and was former Associate Editor for the IEERANSACTIONS ONIMAGE

A. Aldroubi and M. Unser, “Sampling procedures in function spaceBROCESSINGirom 1992 to 1995 and of the IEEEGNAL PROCESSINGLETTERS

and asymptotic equivalence with Shannon’s sampling thedtyfher.  from 1994 to 1998. He co-organized the 1994 IEEE-EMBS Workshop on
Funct. Anal. Opt.vol. 42, pp. 1-21, 1994. Wavelets in Medicine and Biology and serves as regular conference chair for
M. Unser and A. Aldroubi, “A general sampling theory for nonidealSPIE’s Wavelet Applications in Signal and Image Processing, which has been
acquisition devices,"IEEE Trans. Signal Processingrol. 42, pp. held annually since 1993. He is general co-chair for the IEEE International
2915-2925, Nov. 1994. Symposium on Biomedical Imaging (ISBI’2002), which is a new conference to
M. Unser, “Approximation power of biorthogonal wavelet expansions,be held in Washington, DC, from July 7 to 10, 2002. He received the Dommer
IEEE Trans. Signal Processingol. 44, pp. 519-527, Mar. 1996. prize for excellence from EPFL in 1981, the research prize of the Brown-Boveri
T. Blu and M. Unser, “Approximation error for quasiinterpolators andCorporation (Switzerland) for his thesis in 1984, the IEEE Signal Processing
multi-wavelet expansions Appl. Comput. Harmon. Analvol. 6, pp. Society’s 1995 Best Paper Award, and IEEE Signal Processing Society’s 2000
219-251, 1999. Magazine Award. He is a member of IEEE, EURASIP, SPIE, and SIAM.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


