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Abstract|We analyze the representation of peri-

odic signals in a scaling function basis. This rep-

resentation is suÆciently general to include the

widely used approximation schemes like wavelets,

splines and Fourier series representation. We de-

rive a closed form expression for the approximation

error in the scaling function representation. The

error formula takes the simple form of a Parseval

like sum, weighted by an appropriate error kernel.

This formula may be useful in choosing the right

representation for a class of signals. We also exper-

imentally verify the theory in the particular case of

description of closed curves.

I. Introduction

Classical sampling theory deals with the problem of

reconstructing or approximating a signal s(t) from a

set of uniform samples or measurements. In its gen-

eralized version, the reconstructed approximation [1]

is

sh(t) =
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ck'
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t

h
� k

�
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where the underlying basis functions are rescaled

translates of the generating function '; h is the sam-

pling step. The generator can be selected so as to

yield bandlimited (e.g., ' = sinc), spline, or wavelet

representations of signals. The expansion coeÆcients

ck are either determined from the uniform samples of

the input signal s(kh), or from a sequence of inner

products with a suitable sequence of analysis func-

tions [1]. This theory is well developed for the case in

which the input signal is in L2 (R), which also implies

that it de�ned on the whole real line. The approxima-

tion quality depends on the sampling step h, the type

of algorithm used (e.g., interpolation vs. projection),

and most importantly, on the choice of the generating

function '. This can be quanti�ed rather precisely,

thanks to the availability of sharp error estimates in

the L2 (R) setting [2], [3].

In this paper we are interested in the case where

the input signal s(t) is periodic, which is an assump-

tion that is commonly made in practice. When the

period T is an integer multiple of the sampling step

(T = Nh), it is straightforward to adapt most of the

L2 techniques to the periodic case by simply consid-

ering periodized basis functions and by rede�ning the

inner product accordingly [4] (see section II). How-

ever, the error analysis for signals in L2 (R) is not

directly applicable because the square modulus of the

Fourier transform is not de�ned for periodic signals.

Quantitative error analysis of periodic signals will

be the main focus of this paper. In particular, we will

derive a general predictive error formula that depends

on the Fourier coeÆcients of s(t).

II. Preliminaries

The general formula for determining the expansion

coeÆcients in (1) is
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where ~' is an appropriate analysis function. Here,

we assume that s(t) is periodic and that T = Nh,

where N is a strictly positive integer. Under those

conditions, the sequence ck is periodic as well, with a

period N . Furthermore, we can rewrite the synthesis

and analysis equations (1) and (2) using N -periodized

functions as
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Combining (3) and (4), we get

sh(t) = Qhs(t)

=
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where Qh is the approximation operator.

III. Computation of the Square Error

The space spanned by the scaling functions are not

shift-invariant in general. Hence, the average error

at a scale h = T
N

is dependent on a time shift on

the function s(t). The shifted function is denoted by

s� (t) = s(t � �).

The mean square approximation error for a shifted

function s� is given by


s (�;N) =
1

T

Z T

0

js� (t)�QNs� (t)j
2
dt

As the period of the signal is an integer multiple of

the sampling step, 
s(�;N) is also h-periodic in � .

In most applications, the exact phase of the signal is

not known. Hence, we are interested in obtaining a

measure of the error that is averaged over � . This

average error is given by

�s(N) =

s
1

h

Z h

0


s(�;N)d� (5)

The following theorem, which is the main result of

this paper, gives an explicit expression for the mean

error �s(N).

Theorem 1 Let s(t) be a T -periodic signal with the

Fourier-series coeÆcients S(k). The mean square ap-

proximation error incurred in approximating s(t) as

in (5) is given by

�s (N) =

vuut 1X
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jS(k)j2E
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�
; (6)

where the approximation kernel E(!) depends only

on ' and ~' and assumes the expression

E(!) =
���1� ~̂' (!)� '̂ (!)

���2 +
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where â'(!) =
P
1

k=�1 j'̂(! + 2n�)j2 and '̂d(!) =
'̂(!)

â'(!)
.

Note that this kernel is identical to the one obtained

in the case of signals in L2 (R) [2]. When ~' = 'd, the

kernel reduces to E
min

(!) which depends only on '.

The analysis function that gives this minimum error

approximation is 'd (the dual function of '), as in the

case of signals in L2(R) [5]. This case corresponds to

the orthogonal projection.
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Fig. 1. Error kernels for cubic B-Spline and Sinc represen-

tation.

IV. Experimental verification of the error

formula

In this section, we validate the expression for the er-

ror given by Theorem 1 experimentally. We compare

the experimentally measured errors to the theoretical

predictions for the approximation of a reference shape

as a function of the sampling step h, or equivalently

the number of the samples N .

We consider the reference shape as a polygonal rep-

resentation of the map of Switzerland, with 807 edges.

For each experiment, the component functions of the

initial piecewise linear model (x(t); y(t)) was resam-

pled to a speci�ed number of points.

We considered two types of interpolations of the

resampled points: (1) a cubic spline interpolation with

' = �
3 and (2) a bandlimited one with ' = sinc. Note

that the second approach is equivalent to a truncated

Fourier approximation.

The comparisons between the experimental errors

and the ones predicted by the theory are given in Fig.

2 and Fig. 3, respectively. It can be seen for both the

graphs (Fig. 2 and Fig. 3) that the experimental value

of
p

s(�;N) for � = 0:5 is in good agreement with



the theoretical prediction �s(N) and oscillate around

the theoretical curve.
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Fig. 2. Decay of the error in interpolation of the map of

Switzerland using the cubic spline function

From Fig. 4, it can be seen that the spline inter-

polation of curves perform slightly better (around 1

dB) than the sinc interpolation. This behavior can

be explained with the aid of our error kernel. We can

see from Fig. 1 that the spline kernel has lower val-

ues as compared to the sinc interpolation kernel when

! > �. Hence, at low sampling rates (when the signal

has some non-negligible frequency components above

�), spline interpolation performs better than the sinc

interpolation. The di�erences tend to vanish as the

sampling step decreases.

The map of Switzerland interpolated from 45 sam-

ples using the spline and sinc functions are shown in

Fig. 5. It can be seen that at some places, the sinc

representation results in looping curves. This e�ect

is less likely with the spline representation due to the

more local nature of spline interpolation.

V. Conclusion

We have analyzed the representation of periodic sig-

nals in a scaling function basis. We obtained an sim-

ple and exact expression for the approximation error.

This expression may be useful for comparing di�er-

ent scaling functions and to choosing the right one for

an application. We have validated the expression in

the context of the parametric representation of closed

curves; the experimental curves were found to be in

excellent agreement with the theoretical prediction.
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Fig. 3. Decay of the error in interpolation of the map of

Switzerland using the Sinc function
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edges is resampled to 45 points (indicated by dots).

These points are then interpolated using cubic spline

and sinc functions. The graphs below are zoomed por-

tions of the main graph which illustrates the looping

nature of sinc interpolation.

tion spaces and asymptotic equivalence with Shannon's sam-
pling theory," Numer. Funct. Anal. Opt., vol. 42, pp. 1{21,
March 1994.


