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Abstract
How vowels are organized cortically has previously been stud-
ied using auditory evoked potentials (AEPs), one focus of which
is to determine whether perceptual distance could be inferred
using AEP components. The present study extends this line of
research by adopting a machine-learning framework to classify
evoked responses to four synthetic mid-vowels differing only in
second formant frequency (F2 = 840, 1200, 1680, and 2280 Hz).
6 subjects attended 4 EEG sessions each on separate days. Clas-
sifiers were trained using time-domain data in successive time-
windows of various sizes. Results were the most accurate when
a window of about 80 ms was used. By integrating the scores
from individual classifiers, the maximum mean binary classifi-
cation rates improved to 70% (10 trials) and 77% (20 trials). To
assess how well perceptual distances among the vowels were
reflected in our results, discriminability indices (d′) were com-
puted using both the behavioral results in a screening test and
the classification results. It was found that the two set of indices
were significantly correlated. The pair that was the most (least)
discriminable behaviorally was also the most (least) classifiable
neurally. Our results support the use of classification methodol-
ogy for developing a neural measure of perceptual distance.
Index Terms: vowel perception, electroencephalography, per-
ceptual distance, classification, machine learning

1. Introduction
It is well-established that vowel perception hinges on the extrac-
tion of formant frequencies, especially the first two formants, F1
and F2 [1, 2, 3]. However, it is also recognized that the neural
representation of speech in general and of vowels in particular
is significantly altered by language experience [4, 5], thus it is
unlikely that the perceptual vowel space can be described sim-
ply on acoustical ground using formant parameters. In order to
shed light on the structure of the perceptual vowel space, be-
havioral research has made frequent use of the same-different
judgment task (see [6] for an early review). Using the signal
detection theory [7] to analyze the results of this task, the per-
ceptual distance between a pair of vowels can be quantified us-
ing the discriminability index (d′). Similarity judgment (e.g,
[8, 9]), in which subjects judge the similarity of a pair of vow-
els on a scale (e.g., 1-10), has also been used to obtain a measure
of perceptual distance directly. Perceptual distances can then be
used to construct the perceptual vowel space by means of tech-
niques such as multi-dimensional scaling (MDS) [10]. Such
studies suggest that the perceptual vowel space can be thought
of as being distorted or warped—acoustic differences that do
not form a contrast in a language are shrunk while phonological

distinctions that are made in a particular language are stretched.
Despite such success in mapping the perceptual space, our un-
derstanding remains incomplete with regard to the underlying
cortical networks that give rise to such behaviors.

The aim of the present study is to use scalp electroen-
cephalography (EEG) to examine one global organizational
principle of vowels, namely, that vowels that are more perceptu-
ally distinct (as measured behaviorally) elicit neural responses
that are more distinct. While this hypothesis is intuitive, it has
not been directly tested using EEG. Instead, a similar hypoth-
esis has only been tested using cortical local field potentials
recorded using intracranial, high-density cortical surface arrays
[11]. In that study, the responses to a continuum consisting of
14 synthesized speech syllables (perceived as either /ba/, /da/
or /ga/ according to the value of the onset frequency of the
F2 transition) were recorded by surface electrodes placed over
the superior temporal gyrus. By performing binary classifica-
tion over all stimulus pairs, the authors were able to derive the
perceptual distances for all stimulus pairs, from which a neuro-
metric discrimination function was determined. This neuromet-
ric function reflected phonetic boundaries that were similar to
those of the behavioral discrimination function.

Thus far, to our knowledge, only one study has classified
scalp EEG responses to phonemes [12]. In this study, the focus
was to classify EEG responses to phonemes using a hierarchical
scheme according to distinctive features defined in traditional
phonetics (e.g., [13]). Emphasis was put mainly on consonants,
and it was found that EEG responses to consonants could be
classified with an accuracy of 67% using a recognition model
that fused three consonantal features (continuant, voicing, and
place) hierarchically. This study also classified the EEG re-
sponses to the four English vowels, /i/, /æ/, /u/ and /A/, lo-
cated at the four corners of the vowel quadrilateral. This choice
was made to encourage classifiable EEG signals. The accuracy
was up to 90.0% when hierarchical recognition was performed.
These results suggested that phonemic information contained in
EEG is sufficiently robust for accurate classification.

The present study draws inspiration from the two studies
above in using neural classification performances to derive a
metric of perceptual distance for vowels. In our case, instead of
using classification results to find evidence that distinctive fea-
tures are represented in the brain, our focus is to test whether
neural discriminability of vowels correlates significantly with
behavioral discriminability. In order to avoid ceiling effects
(when all vowel pairs are equally discernable), we chose our
stimuli to encourage confusion such that a varying degree of
behavioral discriminability can be obtained. Specifically, we
recorded EEG responses to four mid-vowels: [O], [G], [œ] and
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[E]. In Cantonese, the native language of the subjects in this
study, only [O], [œ] and [E] are present but not [G], which is
present in Mandarin. Based on the behavioral results, it was
determined that [G] and [œ] exhibited considerable confusions.
We took advantage of this to examine the correlation between
behavioral dissimilarity and neuronal dissimilarity.

2. Materials and methods
2.1. Subjects

Six healthy native Cantonese participants (S1–S6, 3 male and
3 female), aged 19-21 (mean: 20.1, SD: 0.8), who were all un-
dergraduate students, took part in the experiment. All subjects
were right-handed [14]. S1–S4 were paid at a rate of about US
$7 per hour, while S5 and S6 were volunteers. Informed consent
was obtained from each subject.

2.2. Stimuli

Synthetic stimuli with simple spectral characteristics were syn-
thesized by summing two formants, each represented as a three-
tone complex comprising three pure tones added in phase [15].
The middle tone was set to the value of the specified formant
frequency, and with the frequency of the other two tones dif-
fering from the middle tone by ± F0 (F0 = 120 Hz). Stimuli
differ only in F2 (F2 = 840, 1200, 1680, and 2280 Hz). Figure
1 shows the spectral representations of the four synthetic vow-
els. A single pure tone at a frequency of F0 was also added
to improve naturalness. The duration of each vowel is 400 ms,
and a cosine ramp of 20 ms was applied to the onset and offset
portions of the stimuli.
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Figure 1: Spectral representations of the synthetic vowels.

2.3. Screening test

Prior to the main EEG experiment, all 6 subjects were given a
screening test in order to ensure that they perceived the set of
synthetic vowels as being phonologically similar to the intended
vowels. Specifically, a same–different judgment task was
adopted. In each trial, a pair of vowels—one synthetic and one
naturally recorded from a native Cantonese–Mandarin bilingual
male speaker—were played in succession (inter-stimulus inter-
val about 2 s). Subjects were asked to judge whether they heard
the same vowel or different vowels. 16 trials were adminis-
tered for each of the 16 (4 × 4) vowel pairs. The criterion for
inclusion was that the d′ score computed for all four vowels
should be significantly different from 0 (p < 0.01, Bonferroni
corrected for multiple comparisons), which, according to sig-
nal detection theory, would indicate that the “same” (signal) tri-
als were perceptually distinct from the “different” (noise) trials.
Overall, 27 subjects sat the screening test, 22 of whom fulfilled
the criterion above. S1–S4 were among the first few subjects
who passed the screening test, while the two volunteers (S5–
S6) were admitted into the study at a later stage. The remaining
subjects were invited to sit a parallel study to the present one.

2.4. EEG experimental paradigm and data acquisition

In each session, the 4 vowel stimuli were each presented to the
participant 240 times. Subject completed 4 sessions, each com-
prising 24 experimental runs. Each run consisted of the pre-
sentation of 10 instances of each vowel, and 5 instances of a
rare noise target. Subject was instructed to respond only to the
noise targets within 1.5 s from the stimulus onset by pressing
the space bar on a standard keyboard using the index finger of
their preferred hand. The target noise sound was synthesized
such that it had a flat spectrum, to minimize the chance that
our results are influenced by phonetic distance between a given
stimulus and the target (see e.g., [16]). The stimuli were played
in pseudorandom order such that successive stimuli were al-
ways different. The interstimulus interval (ISI) was randomly
jittered between 2.1–2.6 s. Stimuli were presented monaurally
to the right ear. EEG data were acquired at a sampling rate of
2048 Hz using a 32-channel ActiveTwo EEG system (BioSemi
B. V., Amsterdam, The Netherlands). Two flat-type electrodes
were attached over the left and right mastoids for offline re-
referencing. Stimulus presentation was controlled via a custom
MATLAB program developed using the auditory presentation
functionalities in Psychtoolbox [17].

2.5. Data analysis

2.5.1. Pre-processing and EEG data classification

The raw EEG data were first downsampled from 2048 Hz to 64
Hz using EEGLAB [18], and segmented into runs. Each run
was then filtered between 0.5–8 Hz using a sixth order Butter-
worth filter. The function filtfilt in MATLAB was used to
ensure that the FIR filter created zero phase shift. For each run,
epochs of duration 1.6 s were obtained for each stimulus pre-
sented. Each epoch started at 100 ms pre-stimulus, and lasted
until 1500 ms post-stimulus. Within each epoch, the time-series
associated with the two mastoid electrodes were averaged, and
subtracted from that associated with the 32 main electrodes.
Linear detrending was performed on each epoch. Epochs in
which the potential recorded at any electrode exceeded 100 μV
between 0.1 s pre-stimulus and 0.4 s post-stimulus were re-
jected. Four-fold cross-validation was performed, using data
from three sessions as the training data and the data from the
remaining session as the testing data. For each trial, a feature
vector x corresponding to all time-samples in a specified anal-
ysis window in all 32 electrodes was constructed. Two param-
eters were varied—the starting time (0-250 ms) and duration of
the analysis window (0-125 ms). For each pair of vowels (e.g.,
A and B), Fisher’s linear discriminant analysis (see e.g., [19])
was used to train a binary classifier, denoted as w, using single-
trials as the training data. The classifier was used to convert a
feature vector x in the testing data into a classifier score accord-
ing to score = w · x such that the score tends to be larger for
vowel A. The classifier scores were then summed across N suc-
cessive trials of the same type. Trials recorded within the same
run were always analyzed together in that the vowel with the
higher (lower) score was determined to be of vowel A (B).

2.5.2. Analysis of behavioral and neural confusion matrices

To assess how well the perceptual distances among the vow-
els were reflected in our classification results, discriminability
indices (d′) were computed using both the behavioral results
obtained during the screening test and the classification results.
Spearman’s rank-order correlation coefficient was used to quan-
tify the correlation between the two sets of d′ scores.
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3. Results
Figure 2 shows the mean classification rate as a function of the
starting time and size of analysis window across all 6 vowel-
pairs and 6 subjects. For sufficiently large window size (e.g.,
> 40 ms), we found that the classification rate quickly raised
above chance-level as the starting time of the window increased
from zero (i.e. stimulus onset), reaching a peak at about 150 ms
post-stimulus. The optimal window of analysis was determined
to be 78 ms (corresponding to 5 time-samples after the EEG
data were down-sampled to 64 Hz).
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Figure 2: Classification accuracy is plotted as a function of
starting time (ms) and size of the analysis window (ms).

Figure 2 suggests that information about vowel identity was
contained throughout the duration of the vowel. This in turn
suggests that an improvement in accuracy might be obtained
by integrating the classifier scores in successive analysis win-
dows. Figures 3 shows the classification rate as a function of
the starting time and size of integration window, for the average
rate across all 6 vowel-pairs and for every vowel-pair. The best
classification rate (77%) was attained when the starting time
corresponded to the stimulus onset and the integration window
was such that the scores from the first 7 analysis windows were
summed.

Table 1(a) shows the mean classification accuracy for the
six vowel-pairs obtained using the best parameters described
above. Table 1(b) shows the corresponding matrix of d′ scores.
Table 1(c) shows the d′ matrix computed based on behavioral
data. It is clear that the pair that was the most (least) discrim-
inable behaviorally was also the most (least) classifiable neu-
rally. Figure 4 shows that the two sets of discriminability in-
dices were significantly correlated, according to both the Spear-
man’s rank-order correlation coefficient (ρ(34) = 0.54, p <
10−3) and Pearson’s correlation (r(34) = 0.49, p = 0.003).
We further examined the correlation as a function of N (figure
5). It was observed that as the classification accuracy increases,
correlation between the two set of d′ scores also tends to in-
crease.
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Figure 3: (a) Mean classification rate over all subjects and all 6
vowel-pairs. (b) Mean classification rate for each vowel-pair.
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Figure 4: Behavioral performance is significantly correlated
with classification performance.
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(a)

O G œ E

O – 72 77 86

G – – 66 83

œ – – – 76

E – – – –

(b)

O G œ E

O – 1.16 1.54 2.33

G – – 0.87 2.04

œ – – – 1.49

E – – – –

(c)

O G œ E

O – 3.61 3.68 4.16

G – – 1.47 3.59

œ – – – 3.06

E – – – –

Table 1: (a) Binary classification rate for each of the six vowel-pairs arranged in the form of an upper triangular matrix; (b) Matrix
of discriminability indices d′ computed based on classification results; (c) Matrix of discriminability indices d′ computed based on
behavioral results.

2597



4. Discussion
In this study, we used a machine-learning framework to extract
information about vowel identity from EEG data. The best clas-
sification rate was achieved when the size of analysis window
for extracting features was set to about 80 ms. Using the behav-
ioral data in the screening test to estimate the discriminability
indices of different vowel-pairs, we found that discriminability
indices calculated based on behavioral data and classification
results were significantly correlated. In particular, the pair that
was neurally the most discriminable, [O]–[E] (mean accuracy:
86%), and the pair that was the least, [G]–[œ] (mean accuracy:
66%), were also the most and the least discriminable behav-
iorally, respectively.

4.1. Implications to the study of vowel perception

First, our results indicate that at the global level, the cortical rep-
resentation of vowels follows the organizational principle that
vowels that are perceptually more dissimilar are represented
more dissimilarly at the cortical level. While psychoacoustic
theory can be applied to estimate the perceptual similarity be-
tween any pair of sounds by modelling the representation of
each sound as an excitation pattern at the level of basilar mem-
brane, it is also clear that such a model is inadequate to accu-
rately reflect perceptual distance, which is significantly influ-
enced by language experience. The present study offers a di-
rect method for probing the perceptual distances between vow-
els that are indicative of cortical processes.

Second, above-chance-level classification performances
were achieved throughout the stimulus interval (figure 2), when
the window size was sufficiently large (e.g., > 40 ms). This
suggests that vowel-dependent information is distributed across
the whole stimulus-presentation interval. Also, the amount of
information reaches a peak at about 140 ms post-stimulus. In
the local field potential study by Chang et al. [11], the time-
interval between 110-150 ms was found to be the most infor-
mative for discriminating the three stop consonants. Taken to-
gether, these results suggest that the N1–P2 complex in the au-
ditory evoked responses likely contain information that can be
used to classify phonemes.

Third, there have previously been only two widely-
used neurophysiological methods for measuring perceptual
distance—source localization using magnetoencephalography
(MEG), and the use of mismatch negativity (MMN [20]), us-
ing both EEG and MEG. Regarding source localization, the
focus was placed on one event-related magnetic field (ERF)
component—the N1m component. While previous studies
[21, 22, 23, 24, 25] have demonstrated that the acoustic dis-
tances between vowel-pairs and the relative distances in the
N1m source location between the vowel-pairs follow the same
ordering, suggesting that vowels are organized in an orderly
fashion cortically, it is unclear whether the relative distance be-
tween source reflects acoustic differences or phonological dif-
ferences. Similar problems may also exist regarding MMN
studies. Many MMN studies using vowels of a single lan-
guage generally support the notion that MMN magnitude pri-
marily reflects the differences in formant structures in both ac-
tive [26, 16] and passive [26, 27, 16, 28] listening conditions—
the larger the differences in formant structures, the larger the
MMN amplitude. Thus, according to these studies, their re-
sults suggest that MMN could serve as a metric of perceptual
distance that is based on formant parameters. On the other
hand, other studies find that MMN magnitude is influenced by
whether the deviant is a native or non-native vowel (e.g., [29]).

Specifically, a non-native vowel deviant elicits smaller MMN
magnitude. However, since the vowel deviant is not confused
with the the standard in this study, the perceptual distance, as
defined behaviorally, should be similar to other native stimuli
instead of smaller. This inconsistency suggests that MMN mag-
nitude does not always reflect perceptual distance.

Fourth, in the study by Wang et al. [12], EEG responses
to the four English vowels, /i/, /æ/, /u/ and /A/ were classi-
fied using a multi-class, hierarchical model with accuracy up to
90.0% using 25 trials. Several other factors might have con-
tributed to the higher accuracy in this study compared to ours.
(a) Wang et al. recorded 1,792 trials per vowel compared to
960 in our study, thus the amount of training data available was
about doubled in each analysis. (b) Only 1 subject participated
in their vowel classification experiment, thus as far as accuracy
is concerned, there is no basis to determine the generalizability
of their results. (c) The four English vowels varied in both F1
and F2, and were more separated in the vowel space compared
to our set of vowels, which differ only in F2. Also, natural vow-
els produced by a male speaker were used in their case, while
synthetic vowels were used in ours. Thus it is likely that their
stimuli contain greater amount acoustic cues for vowel discrim-
ination. This might also have contributed to their better classifi-
cation performance. Given these differences, the present study
is not directly comparable with Wang et al.’s study. Further
experiments are required to determine the factors influencing
vowel classification performance.

4.2. Future work

Although our results demonstrated a significant brain–behavior
correspondence, in that behavioral d′ scores are correlated with
neural d′ scores computed based on classification accuracy,
there is likely plenty of room to improve the robustness of this
result. First, we observed a trend for the brain–behavior correla-
tion to improve as classification rate increases (figure 5). Thus,
we anticipate that the use of a more sophisticated classification
method might strengthen the brain–behavior correspondence.
Thus, our future work includes testing different classification al-
gorithms, such as support vector machine (SVM), which is also
adopted in [12], to improve upon the current accuracy achieved.

Second, our behavioral results were collected prior to the
main EEG experiment. Because of the nature of the noise-
detection task adopted, it is unknown what the subject actually
perceived, which could vary from trial to trial. One possibility
is to use a delayed oral report task during the EEG experiment,
in which the subject would have to orally repeat the stimulus
in every trial. By recording the behavioral and EEG data to-
gether, it is possible that the correlations found in the present
study could be further strengthened.

In summary, we used classification analysis to recognize
the EEG responses to vowels. By comparing behavioral dis-
criminability indices with those derived from classification, we
found results that support the intuitive idea that vowels that are
behaviorally more distinct evoke brain activities that are more
distinct. The work presented here demonstrate the viability of
using EEG data classifications to derive a neural measure of
perceptual distance.
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[20] Näätänen, R., Paavilainen, P., Rinne, T. and Alho, K., “The mis-
match negativity (MMN) in basic research of central auditory
processing: a review”, Clinical Neurophysiology, 118(12):2544-
2590, 2007.

[21] Diesch, E., Eulitz, C., Hampson, S. and Ross, B., “The neuroto-
pography of vowels as mirrored by evoked magnetic field mea-
surements”, Brain and language, 53(2):143-168, 1996.
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