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Abstract—Finite rate of innovation (FRI) is a recent framework
for sampling and reconstruction of a large class of parametric
signals that are characterized by finite number of innovations (pa-
rameters) per unit interval. In the absence of noise, exact recovery
of FRI signals has been demonstrated. In the noisy scenario, there
exist techniques to deal with non-ideal measurements. Yet, the
accuracy and resiliency to noise and model mismatch are still
challenging problems for real-world applications. We address the
reconstruction of FRI signals, specifically a stream of Diracs, from
few signal samples degraded by noise and we propose a new FRI
reconstruction method that is based on a model—fitting approach
related to the structured—TLS problem. The model—fitting
method is based on minimizing the training error, that is, the
error between the computed and the recovered moments (i.e.,
the FRI-samples of the signal), subject to an annihilation system.
We present our framework for three different constraints of
the annihilation system. Moreover, we propose a model order
selection framework to determine the innovation rate of the
signal; i.e., the number of Diracs by estimating the noise level
through the training error curve. We compare the performance
of the model—fitting approach with known FRI reconstruction
algorithms and Cramér–Rao’s lower bound (CRLB) to validate
these contributions.
Index Terms—Annihilating Filter, Cadzow, Cramér-Rao’s lower

bound (CRLB), finite-rate-of-innovation, iterative quadratic
maximum likelihood (IQML), Kumaresan-Tufts, matrix pencil,
model fitting, noise, reconstruction, sampling, structured total
least squares (STLS), total least squares (TLS).

I. INTRODUCTION

S AMPLING is essential in digital signal processing to
convert a continuous—time signal into a discrete—time

signal. Sampling theorems provide the fundamental bridge
that allows the recovery of a continuous—time signal from a
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set of discrete samples. Over the past 60 years, the sampling
process is predominantly based on the well-known Shannon
sampling theorem that states uniform samples of a bandlim-
ited (BL) signal at the Nyquist rate (i.e., at least twice of the
bandwidth) are sufficient to perfectly reconstruct the signal [1],
[2]. In this case, the reconstruction formula is given as a linear
interpolation of the discrete samples with a sinc function. For
non—BL signals, Shannon—type sampling can be interpreted
as an approximation procedure where the original signal is
projected onto the shift-invariant subspace of BL signals. This
interpretation has been generalized for classes of non—BL
signals that belong to shift invariant subspaces, such as uniform
splines and scaling functions [2]–[4]. Such frameworks have
proved to be useful from an implementation point of view by
providing simpler interpolation models.
The recent theory of finite rate of innovation (FRI) has shown

that it is possible to develop exact sampling and reconstruction
schemes for specific classes of signals that are neither BL nor
belong to a fixed subspace [5], [6]. Signals with FRI are char-
acterized by a set of signal innovations. This representation in-
cludes the classes of signals that can be written as a weighted
sum of (a set of known) functions with arbitrary shifts where
the innovation weights and the innovation instants (i.e., shifts)
are the only degrees of freedom of the signal. Examples of such
FRI signals are streams of Diracs and stream of short pulses
(with known pulse shape) [7], [8], uniform and non—uniform
splines, piecewise polynomials and sinusoidal signals [9]–[11].
Moreover, further examples of multidimensional FRI signals
have been studied in different settings [12]–[15].
In Fig. 1, the FRI framework is depicted with its three es-

sential steps. For the acquisition, various sampling kernels have
been proposed such as the infinite—support sinc and Gaussian
kernels [5] as well as compact support sampling kernels that
satisfy the generalized Strang-Fix condition for reproduction of
polynomials and exponentials, i.e., the family of B-splines [9].
Recently, FRI sampling has been further extended to include ar-
bitrary sampling kernels that allow only approximate reproduc-
tion of exponentials. As a consequence, the limitation on the
choice of the sampling kernel has been successfully alleviated
[16]. In the second step, namely the mapping, the ability of the
sampling kernel to reproduce exponentials plays a central role.
For this purpose, the mapping coefficients are first computed
imposing the Strang-Fix condition to reproduce a set of expo-
nentials. Then, these coefficients are used to combine linearly
the signal samples to obtain the FRI samples which are actually
the exponential moments of the FRI signal. Hence, the recon-
struction is reduced to recovering the signal innovations from
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Fig. 1. FRI framework: The FRI signal is characterized by a finite number of signal innovations, namely innovation instants and innovation weights .
(i) Acquisition: The FRI-signal is filtered with a sampling kernel before being uniformly sampled. (ii) Mapping: The signal samples are mapped to FRI samples
using the coefficients derived from the information of the sampling kernel. (iii) Reconstruction: The signal innovations is recovered from the FRI-samples
using a spectral estimation method such as the annihilating filter method.

these FRI samples which typically reverts to a spectral estima-
tion problem that involves a nonlinear estimation of the inno-
vation instants and a least squares problem for the innovation
weights.
In the absence of noise, perfect reconstruction is achieved

using the annihilating filter (AF) method of [6], which is a vari-
ation of the well-known Prony‘s method [17]. However, this
method becomes unstable and the accuracy of the reconstruc-
tion substantially degrades in the presence of noise. Several ap-
proaches to improve resiliency against measurement noise and
model mismatch have been proposed [10], [18], [19]. In partic-
ular, there are two main approaches to remove the noise on the
FRI samples that are derived from the several classes of high-
resolution and subspace-basedmethods known from spectral es-
timation. The first approach is based on state space parametriza-
tion of the signal subspace that reduces the denoising problem
into the estimation problem of the generalized eigenvalue ofma-
trix pencil [18], [20]. A closely related algorithm, the ESPRIT
algorithm, was developed as an extension of the state space
method [21], [22]. The second approach, known as Cadzow de-
noising, is based on an iterative procedure that imposes the ideal
properties of the FRI samples, namely the rank deficiency of the
corresponding system in the AF method and the Toeplitz struc-
ture of this system at each iteration [6], [23]. Additionally, these
FRI methods can achieve the optimal performance given by the
CRLB only above a certain SNR and breaks down at lower SNR.
Recently, in [24], this condition has been further analyzed and
the condition of guaranteed performance in the FRI setting is
given in terms of SNR, the sampling rate and the distance be-
tween adjacent Diracs.
Note that these methods can be classified as deterministic

reconstruction algorithms except the random initialization for
iterative methods. Alternatively, stochastic recovery algorithms
have been proposed in FRI setting based on Gibbs sampling
[25]. Briefly, the idea is to draw samples from a multivariate
posterior probability distribution to infer the parameters of the
FRI signal by calculating some statistic measures from the
drawn samples. However, these methods are usually slower
than the deterministic ones. An improvement of this approach
is achieved in [26] inspired by a genetic algorithm but does
not improve the computational efficiency. A deterministic ap-
proach has been proposed in [27] based on iterative maximum
likelihood estimation to remedy the runtime of these methods.

Finally, another alternative method has been proposed based
on fitting a signal model to the noisy data [25], [28]. Yet,
robust estimation of the nonlinear signal innovations remains a
challenging problem for practical applications.
Another challenge for the FRI reconstruction is to estimate

the innovation rate of the FRI signal, i.e., the number of signal
innovations per unit of time. In statistical estimation framework,
this is known as the model order selection to estimate the dimen-
sion of the problem. In this case, the optimal model minimizes
an information criterion with the principle of parsimony that
favors simple models over complex ones for equal data fitting
quality, e.g., the Bayesian information criterion (BIC), Akaike’s
information criterion (AIC), and network information criterion
(NIC) [29]. For the FRI framework, this is translated in esti-
mating the innovation rate from a set of FRI samples together
with the signal innovations. Often, the innovation rate is as-
sumed to be known by the conventional FRI recovery methods
and, the standard way to compare the performance of the algo-
rithms is to check the estimation accuracy of the signal inno-
vations against the CRLB [5], [6], [16]. However, this may not
be applicable if the true innovation rate or the true signal inno-
vations are unknown. Hence, there are different approaches to
estimate the innovation rate of the signal based on observation
of the separation of the singular values of the system matrix in
Cadzow denoising [6], [15] and in the subspace-based methods
[10]. But, these methods can only provide a reliable estimation
of the innovation rate if the amount of noise allows to differen-
tiate a clear separation of the signal-related singular values from
the remaining ones. Moreover, it is still necessary to provide ad-
equate reconstruction that best explains the available data even
if the noise level does not allow an accurate estimation of the
true innovation rate. In [8], another practical approach is pro-
posed to perform a consistency analysis of the retrieved inno-
vation instants using a sliding window approach by building a
histogram of retrieved locations among different windows.
In this paper, we propose a novel FRI reconstruction method

based on a model—fitting approach. For this purpose, we for-
mulate the nonlinear estimation of the innovation instants as a
constrained optimization problem where we minimize the error
between the measured FRI samples and the estimated FRI sam-
ples subject to the annihilation system. Our contributions are
twofold: First, we propose a number of new model-fitting re-
construction methods exploring different constraints applicable
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to the annihilation system for the estimation of the innovation
instants. We show that the problem can be reduced to a simpli-
fied version of the structured total least squares (STLS) problem
[30]. We then solve a complex least squares problem for the
estimation of the innovation weights. Our second contribution
is a model order selection framework to determine the innova-
tion rate of the FRI signal that allows reliable estimation of the
signal innovations even at low SNR. The model order selection
is based on analyzing the training error curve that reflects the
error between the FRI samples and the estimated FRI samples
for different model order.
The outline of the paper is as follows. In Section II, we pro-

vide a brief overview of the theory of FRI sampling and re-
construction algorithms. Next in Section III, we formally define
the FRI model-fitting problem and propose a number of FRI re-
covery algorithms together with a model order selection frame-
work. In Section IV, we present simulation results to validate
our contributions by comparing our results with respect to the
common FRI recovery methods and the Cramér-Rao bound for
our estimation problem. We also demonstrate the simulation re-
sults for the model order selection.

II. SAMPLING SIGNALS WITH FINITE RATE OF INNOVATION
In this section, we review the fundamentals of the FRI

theory more formally. Consider a set of signal innovations
that generates a signal characterized by a para-

metric representation of the form

(1)

The only degrees of freedom in the signal are the number of
innovation , the innovation instants, and the innovation
weights . In this case, the signal is defined as an FRI
signal since the number of signal innovations is finite per unit
time [5], [9].

A. Acquisition of FRI Signals

In a typical FRI framework, as shown in Fig. 1, the acquisition
of FRI signals is handled by the standard filtering and sampling.
This process can be written in terms of an inner product of the
input signal with the sampling kernel. In this case, the signal
samples are given by

(2)

where the sampling kernel, , is the scaled and time-reversed
version of the filter’s impulse response and is the sampling
interval. In fact, the impulse response of the filter accounts for
the physical properties of the acquisition device and cannot be
modified. Therefore, it is essential to develop sampling schemes
that do not require the use of particular kernels. Initially, various
sampling kernels have been proposed for exact sampling and
reconstruction of FRI signals such as the infinite—support sinc
and Gaussian functions [5], [6] and compact support polynomial
and exponential reproducing kernels [9]. In order to guarantee
exact reconstruction, the sampling kernels are required to satisfy
the so-called generalized Strang-Fix conditions [31]. However,
these limitations on the choice of the sampling kernels have

been successfully removed by relaxing the exact exponential re-
production requirement [8], [16].
Here, we review the condition for the exponential repro-

ducing kernels that heavily relies on the theory of e-splines
[32]. An exponential reproducing kernel is any function
that, together with a linear combination of its shifted versions,
can reproduce exponentials of the form with

(3)

which holds if and only if the sampling kernel satisfies the gen-
eralized Strang—Fix conditions,

(4)

where represents the bilateral Laplace transform of ;
i.e., at . In this case, the coeffi-
cients are given by

(5)

where forms a biorthonormal set with [9]. Recently,
it has been shown that these conditions can be relaxed to in-
clude arbitrary sampling kernels in which case (3) becomes an
approximation problem [16].

B. Mapping Signal Samples to FRI Samples
Once the signal samples , are available by a sampling

kernel that satisfies (3), we first find the exponential reproducing
mapping for a set of complex exponentials of

by imposing

(6)

to retrieve the coefficients that allow a mapping from
signal samples to FRI samples. Next, we obtain a new sequence
of samples that we name as FRI samples by linearly combining
the signal samples with the coefficients :

(7)

Then, using (2), we have

(8)

(9)

(10)

which states that the FRI samples are indeed the exponential
moments of the FRI signal. Finally, using (1), the FRI samples
will be

(11)

(12)
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where and . Note that the choice
and the form of the FRI signal allow us to

write the FRI samples in a power sum form.

C. Reconstruction of FRI Parameters

The mapping step transforms the reconstruction of FRI signal
into a parameter estimation problem that is similar to spectral
estimation. Now, the pairs of unknowns can be
retrieved from the FRI samples using the Prony’s method
[33]. This is done by defining a filter with z-transform

(13)

where the roots corresponds to the values in (12). Then, it
follows that annihilates the sequence as:

(14)

(15)

In matrix/vector representation, (14) can be written as

(16)

where is a rank-deficient Toeplitz matrix with ,
admits a solution in the nullspace of if for

noiseless samples and we name (16) as the annihilation system.
However, in general, the samples in (2) are not ideal and de-
graded by noise,

(17)

where is assumed to be i.i.d. AWGN, with zero mean and
variance, . Therefore, the system in (16) cannot be satisfied
exactly since the FRI samples (7) will be also corrupted by
noise,

(18)

where is the filtered noise given by .
Hence, the matrix is now perturbed by noise

(19)

where the is the Toeplitz matrix corresponding to the filtered
noise in (18). Hence, the Annihilating Filter (AF) of [6]
looks for total least squares (TLS) solution that minimizes
under the constraint that . In this case, the solution to
is the eigenvector that corresponds to the smallest eigenvalue

of .
One way to control the effects of noise in the measurements

is by studying the rank deficiency property of the matrix , i.e.,
ideally . For this purpose, the classical AFmethod
can be improved by denoising using Cadzow algorithm be-
fore applying TLS [6]. The algorithm is based on the fact that

the matrix becomes full rank in the presence of noise and it
has a Toeplitz matrix structure by construction. Hence, matrix
can be denoised by iteratively imposing these two properties

until convergence. Moreover, this method can be also used to
estimate the model order by observing the separation of sin-
gular values of the matrix [6], [15].

III. FRI MODEL FITTING
FRI signals only carry a finite number of innovations. For

example, a stream of Diracs in (1) is completely determined
from parameters being the innovation instants and the in-
novations weights . Hence, the performance of FRI methods
is measured based on the estimation quality of these parameters.
However, this may not be reliable as it depends on the model
order that is an internal parameter of the estimation. Instead,
we propose a novel FRI reconstruction using a model fitting
approach based on minimizing the error between the measured
FRI samples and the recovered FRI samples. Consequently, this
approach allows to define a criterion to monitor the reconstruc-
tion quality and adopt the model order accordingly.
The goal of FRI reconstruction methods in Section II was to

first denoise the matrix before looking for a solution to the an-
nihilation system in (16). As mentioned before, these methods
are highly sensitive to noise. Moreover, at low SNR, the es-
timation of the model order becomes unreliable. Here, we
propose a novel FRI reconstruction to overcome these prob-
lems using a model fitting approach based on structured—TLS
(STLS) problem for affinely structured matrices as proposed by
De Moor [30]. For this purpose, we first revisit the fundamental
concepts of the STLS problem by developing an equivalent for-
mulation for the FRI framework, and then we propose several
FRI reconstructions based on STLS.
Considering the FRI model fitting problem, assume that we

have FRI samples to fit an FRI model with non-linear
parameters. This problem can be reformulated as

(20)

where are the measured and recovered FRI sample
vectors, is the filter coefficients vector in (13) and

with being fixed in-
dicator matrices to represent the Toeplitz structure of . Note
that we write the matrix intentionally as to emphasize
the linearity of with regards to . Hence, it is particularly
interesting to define the left and the right dual matrices and

of for further development.
Lemma 1: Given the linearity of with respect to , the

left and the right dual matrices and are defined respec-
tively by

which yields the following identities

(21)
(22)
(23)
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Proof: The first two identities are straightforward. The last
one can be obtained from

which is satisfied for all and where specifies the real part
of its argument.
Theorem 1: The equations satisfied by the optimal solutions

of the problem (20) are

(24)

where the unknowns are the vector , the
vector and the vector .

Proof: We start by replacing the original problem (20) with
the following unconstrained minimization problem

(25)

where is the Lagrangian to be minimized, is a vector La-
grange multiplier for the constraints and is a scalar
Lagrange multiplier for the constraint .
The solution is then obtained by setting all the partial deriva-

tives of with respect to to 0

Here, the application of the constraints, i.e., the last two lines,
shows that . Finally, the use of the duality relations leads
to the system of four (24).
The next step of the STLS framework is the elimination of

the unknown to further reduce the problem to two unknowns.
For that, the unknown can be readily obtained from the first
equation of (24), and subsequently replaced in the other three
equations. Using the identities from Lemma 1, the optimality
equations restricted to the two unknowns and are

(26)

while the third unknown is given by . Note that
it is possible to check

given that

Hence, by replacing with a non-unit vector according to
, the system (26) is essentially the same as the one in

[30] except that, since is not normalized anymore, one degree
of freedom is left undetermined.
The nonlinear system of equations (26) cannot be solved di-

rectly for and , and it is necessary to resort to an iterative
procedure where both and are updated [30]. Here, we pro-
pose a simplified alternative being equipped with the analysis
of the STLS. We first note that the of the Theorem 1 can be
readily obtained from the first and the third equations of (24)

(27)

Then, using the Lemma 1 and Theorem 1, we can obtain

Therefore, rather than minimizing (26) with respect to and
, we propose to minimize the following quadratic form with

respect to only,

(28)

where is a constraint set necessary to avoid the trivial solu-
tion. However, since the FRI problem only requires the roots of
the polynomial defined by the coefficients , neither the solu-
tion to this problem is unique nor there exists only one constraint
that will lead to the same solution. We will further discuss about
the possible conditions on and their effect on the solution of
the problem later on.
Next, we need to define the operator to proceed for the

FRI model-fitting framework. Indeed, the dual of the annihila-
tion (14) can be written using commutativity of the convolution
as

(29)

which can be written in matrix vector form

(30)

where is a rank-deficient Toeplitz matrix with .

A. Constraints on the Filter Coefficients

In this section, we consider possible cases for the constraint
set defined in (28) to avoid the trivial zero solution for the
filter coefficients .
1) Quadratic Norm Constraint (MF-1): We consider a

quadratic norm constraint such as for (28). We first
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note that this is an appropriate condition since the coefficients
of the filter in (13), i.e., , can always be scaled by a
constant such as without altering the roots of filter. With
this condition, we want to minimize

(31)

where the term also depends on . Hence, the problem
cannot be minimized directly and we propose an iterative
scheme, also known as iterative quadratic maximum likelihood
(IQML) algorithm [34]–[37], assuming the term remains
constant at each iteration of the solution and is obtained using
the previous estimate of the solution . Hence, the estimation
of the filter coefficients is implemented by iteratively solving

(32)
where and
randomly initialized. Then, the solution involves finding
the eigenvector corresponding to the minimum eigenvalue of

at each iteration. We denote this
method as model fitting 1 (MF-1) and provide the details in
Algorithm 1.
2) Linear Constraint (MF-2): We consider a linear constraint

such that one element of the to be 1. Specifically, we note
that scaling the coefficients of the filter (13), i.e.,
with respect to will not alter the roots of the filter. With this
condition, we want to minimize

(33)

where is a length- discrete impulse vector with "1"
in position and “0” elsewhere. Here the problem cannot be
minimized directly and the term depends on . Hence, we
propose to use the IQML algorithm [34]–[37] assuming the term

remains constant at each iteration. Hence, the estimation of
the filter coefficients is implemented by iteratively solving

(34)
where and ran-
domly initialized. Then, the solution update is given by

(35)

where as before and randomly
initialized. We name this method as model fitting 2 (MF-2) and
provide the details in Algorithm 1.
3) Randomized (Linear) Constraint (MF-3): We consider a

randomized (linear) constraint based on the randomly initial-
ized solution such that the inner product with and the initial
estimation remains 1; i.e., . Hence, we want to
minimize the following problem

(36)

which cannot be minimized directly and the term depends
on . Similarly, we propose to use IQML algorithm [34]–[37]
assuming the term remains constant at each iteration. Con-
sequently, the estimation of the filter coefficients is implemented
by iteratively solving

(37)

where and ran-
domly initialized. Then, the solution update is

(38)

where we note that the effect of the random initialization will
remain (only) in this case due to the imposed constraint. We
express this method as model fitting 3 (MF-3) and provide the
details in Algorithm 1.
Finally, we note that the methods MF-3 and MF-2 will be

equivalent if the filter coefficients are initialized such that
. Hence, it is clear that MF-3 has a certain flex-

ibility compared to MF-2 in updating the filter coefficients as
seen in (35) and (38).
A Note on the Choice of the Constraint: The problem in (28)

can be solved under different constraints. In order to better un-
derstand the underlying differences among the proposed con-
straints, we consider a geometric interpretation. As stated be-
fore, the FRI reconstruction requires the estimation of the
roots of the polynomial defined by the unknown coef-
ficients. The solution points lie on a line in this dimen-
sional space since any scaling of the filter coefficients forms an
equally valid solution. In this representation, the constraint of
MF-1 is a unit hypersphere where the MF-1 solution set is lim-
ited to the intersection between the hypersphere and the solution
points line. Hence, there are two drawbacks of MF-1, due to the
quadratic constraint: first, the solution set has two intersection
points, i.e., no unique solution, and second the coefficient up-
date is done on the unit hypersphere, which requires a solution
of eigenvalue problem at each iteration. On the other hand, the
linear constraints (MF-2 and MF3) represent a hyperplane, and
the solution set is limited to the unique intersection point be-
tween this hyperplane and the solution points line. Moreover,
the coefficient update is also done on this hyperplane, which
allows a linear update term; i.e., the hyper plane yield simpler
surface than the unit hypersphere. Specifically, the constraint of
MF-2 is the hyperplane that is tangent to the unit hyperplane
(i.e., the surface defined by the constraint of MF-1) whereas the
constraint of MF-3 is the hyperplane that is tangent to a hyper-
sphere of radius at . Hence, where both constraint
uses a simpler update term on a plane, the constraint of MF-3
has another advantage over the MF-2: the update plane can be
randomly initialized rather than using a fixed plane defined by

.
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B. FRI with Model Fitting Algorithm
We propose a full FRI reconstruction algorithm integrating

the model fitting approach. Once we have the FRI samples ,
we first construct and using randomly initialized .
Then, choosing any of the FRI model fitting approaches (MF-1),
(MF-2) or (MF-3), we iteratively obtain the filter coefficients

to retrieve by finding the roots of the filter in (13).
We then obtain the locations using the solution , since

from (11). By construction, the zeros of the filter
uniquely define the values provided that the instants ’s are
distinct.
In the next step, the amplitudes can be determined either

by solving first consecutive equations of (2) or (10) with the
estimated locations . Specifically, given the locations , we
determine the amplitudes by solving consecutive equa-
tions of (12). Indeed, we propose to minimize the following
complex-valued least-squares problem constrained to the real
solution

(39)

where is a complex matrix with entries
and is the complex-moment vector. As a

convergence test, we compute the recovered FRI samples as

(40)

and check the numerical convergence by

where is a chosen threshold. Although we have no proof of
convergence of this algorithm, numerical experiments demon-
strate that convergence is typically reached after 10 iterations.
It is important to realize that we look for the convergence in

terms of fitting quality in FRI samples, but not the filter coeffi-
cients. One could have chosen the convergence criterion based
on the filter coefficients which would not require to extract the
parameters of the signal in each iteration. However, we have ob-
served experimentally the first condition converges earlier than
the second one, especially with increasing noise levels.
We note that the filter coefficients are initialized uniformly

in a dimensional unit hypercube. Hence, each element of
is uniformly distributed between 0 and 1 forming the unit hy-

percube. It is important to state that the solution might not con-
verge for some realizations of the random initialization under
the linear constraint. For example, consider the case for MF-3
when the initialization is realized orthogonal to the solution, i.e.,

where is the solution to the problem. In this case,
the solution update cannot converge to the solution due to the
initialization. However, this event is very unlikely to take place
especially in higher dimensions. Nevertheless, the convergence
of the algorithm can be monitored and in case of a failure of con-
vergence after certain number of iterations, the algorithm can be
restarted with a different initialization.

Algorithm 1: FRI Model Fitting

Require: Inputs:
1: Initialization: Choose and construct and
2: for till convergence do
3: Solution to either (31) or (33) or (36)
4: Find the roots of the filter (13)
5:
6: Solution to (39)
7: Recovered FRI samples (40)
8: If converged stop, else go to 2
9: end for
10: return

C. Model Order Selection

The estimation of the model order is a challenging part of
all FRI frameworks when the samples are corrupted by noise.
Although there exist some methods to estimate the model order,
the performance significantly depends on the amount of the
noise. In this case, current model order estimation methods for
FRI fail in particular at low SNR. Here, we propose a novel
model order selection procedure that allows us to choose the
model number based on the noise level of the samples.
We start by noting that the annihilation system (16) can be

solved if we have samples of to solve for
innovations; i.e., we need at least as many equations as un-
knowns. This implies that samples can be used to reconstruct
at most innovations. Now, we define the model order selec-
tion problem as estimating the optimal model order , which
can take the values from a discrete set of , for a
given samples of degraded by noise. For this purpose, we
define a training error of the estimator

(41)

where is the recovered FRI sample for model order in
(40) with the estimated parameters . Notice that
the training error curve reveals a U-curve pattern in which
the initial drop and final rise regimes represent an under-fitting
and over-fitting behavior, respectively, and the flat region in
the middle shows the optimal fitting region. We then define the
fitting level as the minimum of the training error

(42)

which is a good estimator of the input noise level for small
amount of noise. Finally, the plausible model order is chosen
at the intersection of under-fitting and fitting regions; i.e., min-
imum that yields the sharpest decrease in the training error and
achieves the fitting level in the range . Hence, this
framework allows to determine the model order based on SNR
level. We refer the reader to Appendix B for a detailed discus-
sion on the training error.
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Algorithm 2: FRI model order selection

Require
1: for to
2: Apply Algorithm 1
3: Find the training error (41)
4: end for
5: Find the fitting level (42)
6: Model order selection (see Section III-C)
7: return

IV. NUMERICAL RESULTS AND EXPERIMENTS

We now present various simulation results to validate the pro-
posed approach and demonstrate its practical feasibility. Specif-
ically, we investigate the performance of the FRI model-fitting
methods from Section III and compare them with the state-of-
the-art FRI reconstruction algorithms introduced in Section II.
Moreover, we show results for the model order selection frame-
work developed in Section III-C.
We assume that an FRI signal (1) with signal innova-

tion, , is sampled with a kernel that satisfies (3) as
in Section II-A. Then, we assume that the signal samples are
used to obtain the FRI samples using the FRI framework of
Section II-B. Here, we specifically focus on the reconstruction
of FRI signal innovations from FRI samples. Hence, we con-
sider FRI samples of

(43)

where is complex additive white Gaussian
noise with variance . The real and the imaginary parts of

are uncorrelated and each has a variance of , i.e.,
, so that the covariance matrix of the

noise is . The signal-to-noise-ratio (SNR)

is defined to be .

A. Comparison of FRI Algorithms
In the first part, we compare the performance of FRI

model-fitting approach combined with three constraints (MF-1
to MF-3) developed in Section III with the most common
methods in FRI reconstruction. Among these, the annihilating
filter (AF) method and its extension with Cadzow (AF+C)
enhancement were the first methods applied to FRI problem
[6]. We also added Matrix Pencil (MP) method [20] and Ku-
maresan-Tufts (KT) algorithm [38] into our comparison [18],
[19].
In the absence of noise, every method is able to recover the

signal innovations exactly. However, as noise increases, the ac-
curacy of each method significantly degrades. The FRI signal
innovations are generated randomly such that we have in-
novation instants between with innovation weights

. Then, we take samples of (43) degraded
by noise. The variance is chosen according to the target SNR.

Fig. 2. Comparison of FRI algorithms: Parameter estimation of a signal with
frequencies and for an average of

independent trials.

The signal is fully characterized by the innovation parame-
ters: the instants and the weights . For the
numerical experiments, we define two metrics to facilitate com-
parisons: a normalized localization error in instant estimation,

, and a normalized error in FRI samples

(44)

(45)

where is the recovered instants, and is the recovered
FRI samples (40) in trial , and is the number of total in-
dependent trials. We further assume that the number of innova-
tions is known and provided to each method so as to make a fair
comparison.
We start with a particular realization where we

have five innovations to recover with the parame-
ters given as and

. In Fig. 2, we observe
the plot of normalized localization and moments error with
respect to the SNR level. Clearly, , in Fig. 2(a), exhibits
a thresholding effect with respect to SNR level due to the
non-linear estimation step. Furthermore, we observe that
three of the methods, namely, AF, AF with Cadzow, and the
MF-1, differ in their asymptotic behavior for high SNR. They
show significantly poor performance even for high SNR while
Cadzow enhancement helps AF method to attain its asymptotic
behavior at a lower SNR. In contrast, , in Fig. 2(b), follows
a rather smooth curve due to the compensation effect by the
estimation of the weights as a solution to the complex least
squares problem (39).
For the same setting, we now focus on the comparison of the

performance of the methods on individual parameters. In Fig. 3,
we observe the estimator’s variance and the theoretical CRLB
for each parameter. For the details of the derivation of the CRLB
for complex AWGN, we refer the reader to Appendix A. Here,
we show the observed standard deviation (over
independent realizations) compared to CRLB of each param-
eter. In Fig. 3, column (a), we observe the same thresholding
effect for the innovation instants that reveals differences for dif-
ferent FRI algorithms. Note that MF-3, the model-fitting ap-
proach with randomized linear constraint, performs better for
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Fig. 3. Compare the performance of FRI algorithms based on estimator vari-
ance (Var) and CRLB with respect to each parameter for various SNR levels:
Column (a) innovation instants to from top to bottom (b) innovation
weights to from top to bottom. Parameter estimation of a signal with

frequencies and for an average of
independent trials.

the low SNR and together with MF-2, they achieve the theo-
retical limit given by the CRLM around 10 dB despite other
methods attain this level around 20 dB. In contrast, the weights
do not follow a general pattern expressing the compensation be-
havior the complex least squares step.
We next provide a different visualization of the innovation in-

stants estimation to better illustrate the interaction between the

Fig. 4. SNR bagel: Visualization of frequency estimation for annihilating filter
method, where each ring corresponds to a different SNR and the color repre-
sents probability of detection for each frequency averaged over
realization (see text for details).

SNR level, resolution and variance of the estimation. For this
purpose, we design a visualization such that each trial of esti-
mation for the innovation instant can be mapped to a point
on a ring with a phase given by and the radius of the ring
determines the SNR level, hence termed an SNR bagel. The con-
tinuous instant is mapped to with 1 degree radial reso-
lution and the colorbar shows an average probability of detec-
tion for each innovation instant value. In Fig. 4, we observe the
SNR bagel of the AF method where each ring corresponds to
different SNR levels between to 50 dB. For each SNR
level, we compute the average over independent
realizations. Clearly, the uncertainty of the estimation drops as
we move from inside to outside of the SNR bagel. Moreover,
we also observe another interpretation of the CRLB, i.e., the
varying thickness of the uncertainty cloud. We observe that in
the low SNR region the estimations are spread reflecting the big
variance on the estimation whereas the white narrow regions in
high SNR show that themethod achieved the minimum variance
given by the CRLB. Moreover, we observe the thickness of the
uncertainty region changes with respect to the spacing of the
two instants which is also another interpretation of the non-di-
agonal entries of the inverse of the Fisher information matrix
(49) in Appendix A.
With this new visualization, we can now observe the

Fig. 5 and compare the performance of the known FRI re-
construction methods with our FRI model-fitting approach
combined with three constraints. We observe that the MF-2,
MF-3 and KT methods achieve better performance in the low
SNR regime whereas all the methods performs similarly at high
SNR. However, MF-1 clearly performs inferior with respect
to the other two constraints of the model-fitting approach.
Hence, we conclude linear constraints for our FRI model-fitting
approach performs better than the quadratic constraint.
Next, we compare the FRI algorithms for varyingmodel order
and SNR levels. For this experiment, we consider randomly

generating innovations with instants in
and randomweights using

samples given by (43) degraded by complex AWGN as before.
In Table I, we compare the performance of all FRI algorithms
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Fig. 5. Comparison of FRI algorithms on frequency estimation performance mapped to SNR Bagel: (a) Annihilating filter Cadzow (b) Matrix Pencil
(c) Kumaresan and Tufts (d) MF-1 (e) MF-2 (f) MF-3.

TABLE I
COMPARISON OF FRI ALGORITHMS FOR NORMALIZED LOCALIZATION ERROR

AVERAGED OVER INDEPENDENT REALIZATIONS OF
VARYING MODEL ORDER

TABLE II
COMPARISON OF FRI ALGORITHMS FOR NORMALIZED FRI SAMPLE ERROR

AVERAGED OVER INDEPENDENT REALIZATIONS OF
VARYING MODEL ORDER

with respect to normalized localization error in frequency esti-
mation, whereas in Table II we provide the comparison with
respect to normalized FRI sample estimation error . From
both tables, we conclude that MF-3 outperforms the other algo-
rithms in terms of innovation parameter estimation.

Fig. 6. FRI Model Selection: (a) Training error curve at different SNR for a
true model order of , the selected order at each SNR level is given by
the gray square (b) Model order selection for different true model order with
respect to SNR levels an average of independent trials.

B. Model Order Selection
Several applications of FRI require a robust model order se-

lection as an integral part of the framework. In this section,
we demonstrate the feasibility of the model order selection de-
veloped in Section III-C using the MF-3. We first observe the
training error curve for the same setting designed in the pre-
vious part with frequencies. In Fig. 6(a), we observe
the corresponding U-curve, i.e., the training error curve (41),
for each SNR level. Using Algorithm 2, the estimated model
order is indicated as a gray square on the U-curves. Clearly,
the model order selection algorithm successfully determines the
true model order above 10 dB. Moreover, it allows to predict the
best model selection for a low SNR-regime which results in re-
liable parameter estimation of the FRI signal.
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We further extend and demonstrate this SNR level dependent
property of the model order selection framework in Fig. 6(b).
Here, we consider randomly generating inno-
vations in with random weights
using samples as before. We observe the av-
erage of the model selection over independent trials.
From each curve in Fig. 6(b), we clearly observe that the frame-
work chooses a lower model order for low SNR (up to 10 dB)
whereas it converges to the true model order for high SNR on
the average. Hence, the model order selection framework dis-
plays robust performance with respect to model order . We
conclude that Algorithm 2 of Section III-C can be used for re-
liable estimation of the FRI signal innovations for a range of
SNR.

V. CONCLUSION
We have considered the FRI reconstruction problem in pres-

ence of noise and proposed a novel reconstruction algorithm
with model fitting approach and a model order selection that al-
lows to estimate innovations even at very low SNR. Numerical
results showed that the proposed algorithm with the linear con-
straint outperforms the other FRI reconstruction methods. This
new method with model fitting approach would have a potential
effect on applications with FRI signal degraded with realistic
levels of measurements noise [8], [7], [39].

APPENDIX A
DERIVATION OF CRLB

The goal of the reconstruction problem given in (43) is to
estimate the parameters
from a vector of noisy samples where

is complex additive white Gaussian noise with vari-
ance . The real and the imaginary parts of are uncorrelated
and each has a variance of , i.e.,
so that the covariance matrix of the noise is

. Now, assume that the of satisfies the regu-
larity condition, i.e.,

(46)

then, the variance of any unbiased estimator satisfies
, where is the covariance matrix and

is the Fisher information matrix given by

(47)

Consider the given by

(48)
in which case, the covariance matrix is lower bounded by

(49)

where the Fisher information matrix is written explicitly by

(50)

where

...
...

...
(51)

Hence, the variance of the estimator is bounded by

(52)

APPENDIX B
TRAINING ERROR OF THE ESTIMATOR

We will further analyze the training error and the
underlying model order selection framework devel-
oped in Section III-C. For a given parameter set

, we assume that
available samples are degraded versions of the true samples

where is complex additive
white Gaussian noise with variance . Let us assume
is a nonlinear denoising method that includes a nonlinear
estimation method; e.g., the data fitting framework in our case.
Then, the computation of the estimated complex moment is
given by

(53)

where are the estimated parameters for a model
order . Finally, the training error curve is defined as

(54)

where and is the number of samples of .
We can than write

(55)

where the three terms are known as the true MSE of the esti-
mator, the noise power, i.e., , and the divergence of the es-
timator for additive Gaussian noise case, respectively. Although
this is well-known from Stein’s unbiased risk estimate for real
valued functions [40], [41], we develop the case for the complex
valued functions for the sake of completeness. We work on the
following expectation

where the first and the second terms are the real and the imag-
inary parts, respectively. We first assume the mapping

be weakly differentiable. Then,

(56)

(57)



DOĞAN et al.: RECONSTRUCTION OF FINITE RATE OF INNOVATION SIGNALS WITH MODEL-FITTING APPROACH 6035

(58)

(59)

(60)

where is the PDF of the real part of the noise and
is the divergence with respect to real part. Hence,

the second term is written similarly

(61)

which finally yields

(62)
We note that this can be useful since one can define an unbi-
ased MSE estimator using the training error, the noise variance

and the divergence of the estimator without knowing the true
value of the signal [40], [41]. However, although an approxima-
tion of the divergence can be done using a Monte-Carlo SURE
approach, computing the divergence of a nonlinear estimator is
always a challenging problem itself. Hence, we leave this dis-
cussion at this point and focus only on the training error curve.
The model selection requires to choose the number of degrees
of freedom in our estimation problem. We rather proposed a
model selection framework in Section III-C following our ob-
servation that the training curve exhibits a U-curve pattern. This
can be easily seen from the first two terms of the analyze in (55)
and ignoring the last term. Obviously, the second term does not
change with respect to our mapping . Hence, the first term,
i.e., the MSE of the estimator, will dominate the training error
for the under and the over fitting values of model order as
there will be a contribution coming from the bias of the esti-
mator. However, for the true model order, the estimator MSE
will be the variance for an unbiased estimator. Therefore, once
the training error hits the fitting region defined by a Plato be-
havior, we choose the minimum of model order in this plato to
favor a parsimonious model.
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