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ABSTRACT

Photoacoustic tomography (PAT) is a hybrid imaging method, which combines ultrasonic and optical imaging
modalities, in order to overcome their respective weaknesses and to combine their strengths. It is based on
the reconstruction of optical absorption properties of the tissue from the measurements of a photoacoustically-
generated pressure field. Current methods consider laser excitation, under thermal and stress confinement
assumptions, which leads to the generation of a propagating pressure field. Conventional reconstruction tech-
niques then recover the initial pressure field based on the boundary measurements by iterative reconstruction
algorithms in time- or Fourier-domain. Here, we propose an application of a new sensing principle that allows
for efficient and non-iterative reconstruction algorithm for imaging point absorbers in PAT. We consider a closed
volume surrounded by a measurement surface in an acoustically homogeneous medium and we aim at recovering
the positions and the amount of heat absorbed by these absorbers. We propose a two-step algorithm based on
proper choice of so-called sensing functions. Specifically, in the first step, we extract the projected positions
on the complex plane and the weights by a sensing function that is well-localized on the same plane. In the
second step, we recover the remaining z-location by choosing a proper set of plane waves. We show that the
proposed families of sensing functions are sufficient to recover the parameters of the unknown sources without
any discretization of the domain. We extend the method for sources that have joint-sparsity; i.e., the absorbers
have the same positions for different frequencies. We evaluate the performance of the proposed algorithm using
simulated and noisy sensor data and we demonstrate the improvement obtained by exploiting joint sparsity.

Keywords: photoacoustic imaging, sensing principle, source imaging, k-space models, inverse problem, source
localization, wave equation, Helmholtz equation, joint sparsity

1. INTRODUCTION

Photoacoustic tomograpy (PAT) is a hybrid imaging modality that combines high intrinsic contrast of optical
imaging and high spatial resolution of ultrasonic imaging. It is based on the generation of acoustic waves due
to the tissue dependent absorption of optical energy. The absorbed energy initially creates a thermally induced
pressure jump that leads to an emergence of the propagating acoustic waves in the tissue.1,2 Then the activated
field is recorded with ultrasound sensors placed on the surface of the volume. The problem is to recover the
absorption properties of the tissue from the measured data.

Numerous approaches have been proposed for the inverse problem of PAT. Many of these algorithms are
based on the inversion of the generalized spherical Radon transform and requires the measured data to be
densely sampled.3,4 Exact analytical solutions in both time and frequency domains are provided assuming
continuous aperture with infinite bandwidth.5,6 A variety of iterative reconstruction algorithms are proposed to
solve the problem for lower sampling density,7,8 which mostly requires computationally heavy iterations.

In this paper, we propose a new non-iterative reconstruction framework for the detection of point absorbers
in PAT based on the measured data that has a certain spatial sampling density. First, we propose the sensing
principle to provide a link between the volumetric parameters of the unknown absorption profile and the measured
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data. Then, we propose a two-step algorithm based on proper choice of the sensing functions that are solutions
of the homogeneous Helmholz equation in the volume. In the first step, we use a sensing function that is well-
localized on the complex plane surrounding the observed volume. Then, we extract the projected positions on
the complex plane and the intensity weights of each point source. In the second step, we recover the remaining
z-locations by choosing a second set of test function, which are plane waves. Finally, we extend the method
for the case when the point absorbers exhibit joint sparsity; i.e., the point absorbers have same positions for
different frequencies. We propose to use the data jointly from a frequency range that is known to be less-aliased
spatially by the design of the sampling process.

The paper is arranged as follows. In Section 2, we introduce the problem setting of PAT. In Section 3, we
provide the main idea of the sensing principle. In Section 4, we develop the the proposed method for a 3D
spherical imaging setup. In Section 5, the feasibility of the proposed method is demonstrated with numerical
experiments.

2. PROBLEM SETTING

In PAT, the optical radiation absorbed by the tissue gives rise to thermal heating. Under the condition of thermal
confinement, the tissue subsequently goes into a thermal expansion. The generated acoustic field in which the
absorbed energy can be modelled as an heating source is governed by the wave equation

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= − β

Cp

∂

∂t
H(r, t), (1)

where H(r, t) is the heating function that gives rise to an acoustic field p(r, t), β is the isobaric volume expansion
coefficient [K −1], Cp is the specific heat [J/(K kg)], and c is the speed of sound. Under the thermal confinement
condition, the heating function can be further decomposed as the product

H(r, t) = A(r)I(t),

where A(r) is the spatial absorption function and I(t) the temporal illumination function, which is known by
the excitation protocol.

In particular, we consider a closed volume of Ω in free space where the optical absorption occurs with a
surface ∂Ωand the activated acoustic field and its normal derivative are measured on the surface of the volume,
i.,e., p(r, t)|∂Ω and ∇p(r, t)|∂Ω. Then, we parametrize the spatial absorption function

A(r) =

M∑
m=1

cmδ(r− rm), (2)

where cm ∈ R, rm ∈ Ω. With this parametrization, absorption function is completely characterized by the
positions and intensities of M sources, i.e., with 4M parameters, and the inverse problem becomes well-posed.9

The key to the reconstruction problem is to recover the spatial absorption function A(r); i.e., the parameters of
(2) from the boundary measurements of the acoustic field.

3. SENSING PRINCIPLE FOR PAT

The time harmonic solutions of (1) will be

∇2p(r, ω) +
ω2

c2
p(r, ω) = − β

Cp
(iω)A(r)I(ω), (3)

which is the inhomogeneous Helmholtz equation. Considering a specific frequency, ω, we propose a sensing
principle based on the second Green’s identity such that we can obtain a link between the absorption function
and the measurements on the surface.

〈Ψ, A〉 = α(ω)
{

∂Ω

[Ψ(r, ω)∇p(r)− p(r, ω)∇Ψ(r, ω)] · e∂ΩdS (4)
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where α(ω) = iCp/(βωI(ω)) is a constant that we use to compensate the surface integral and Ψ(r, ω) is a sensing
function satisfying the homogeneous Helmholz equation in the the volume

∇2Ψ(r, ω) +
ω2

c2
Ψ(r, ω) = 0 in Ω. (5)

This way the sensing principle allows to extract volumetric samples of the absorption function through a surface
integral of the sensor measurements of the activated acoustic field.

4. IMAGING OF POINT ABSORBERS

We propose a two-step algorithm to extract the parameters of the absorption function from the observed acoustic
field by means of applying the sensing principle with properly chosen sensing functions.

4.1 Projection onto Complex Plane

In the first step, we extract the positions of the point absorbers on the complex plane. For this purpose, we
choose a set of test functions Ψ(1) satisfying (5):

Ψ(1)
n (r, ω) =

eiωz/c

x+ iy − an
, an /∈ Ω, (6)

where an’s are the poles of the sensing function on the complex plane located at equidistant angles an = aeinθ, n ∈
J0, N − 1K, |a| is greater than the radius of Ω excluding the volume and θ is an arbitrary angle. Then, we define
a polynomial, R(X) whose roots are the positions of the point absorbers on the XY-plane:

R(X) =

M∏
m=1

(X − sm) =

M∑
k=0

rkX
k where sm = xm + iym with rM = 1. (7)

With this selection of the proposed family of sensing function,10 the extracted samples of the absorption function
(4) turns into an annihilable function as follows:

〈
Ψ(1)
n , A

〉
= µn =

M∑
m=1

cme
iωzm/c

xm + iym − an
(8)

=

∑M−1
m=0 c

′
me

imnθ∏M
m=1(xm + iym − an)

=

∑M−1
m=0 c

′
me

imnθ

R(an)
,

where c′m are complex-valued coefficients that do not depend on n nor θ. The sequence u = {un} for n ∈ J0, N−1K,
whose coefficients are defined by un = R(an)µn, can be annihilated by an FIR digital filter h = {hk} for k ∈
J0, N − 1K characterized as follows:

H(z) =
∑
k∈Z

hkz
−k =

M−1∏
k=0

(1− eikθz−1), (9)

where the zeros of the filter are chosen at eikθ for k ∈ J0,M − 1K to annihilate the sequences u as h ∗ u =
0, ∀n ∈ JM,N − 1K. The coefficients of the polynomial R(X) defined by (7) satisfy the following linear system
of equations:

M∑
k=0

An,krk = 0, An,k =

N−1∑
n′=0

hn−n′akn′µn′ , (10)

where n=M,...,N-1. Finally, solving the linear system expressed as AR = 0, the point absorbers’ positions on
the XY-plane are found to be the roots of the polynomial R.
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Determining the weights

Using the projected locations on XY-plane from the previous section, the same samples in (8) are now used to
solve another linear system to extract the weights of the point absorbers. The system will satisfy〈

Ψ(1)
n , A

〉
= µn︸ ︷︷ ︸

known

=

M∑
m=1

pm
xm + iym︸ ︷︷ ︸

projected locs.

−an
, pm = cme

iωzm/c. (11)

where we redefine pm as a complex variable to be solved. In matrix notation, we can express this system as
Bp = µ, where B is an N ×M matrix with the entries Bm,n = 1

xm+iym−an , and p is an M ×1 vector with entries

pm = cme
ikzm and µ is an N × 1 vector with entries µn.

4.2 Recovery of the Z locations

The phase of the solution in (11) also gives information about the z−locations. However, due to the periodicity
of the exponential term with 2πc/ω, the z-locations cannot be determined with the samples from (8). Previously,
we proposed a solution to recover the z-locations using a modified Dijkstra’s algorithm11 for a point source model
that shows joint-sparsity. Here, we propose to recover the remaining z-locations by means of applying the sensing
principle with a proper set of plane waves:

Ψ(2)
n (r, ω) = ei(ωxx+ωyy+ωzz)/c, s.t. ω2

x + ω2
y + ω2

z = ω2, (12)

where ωz <
πc
Ro

, Ro being the radius of the volume of interest, and (ωx, ωy) =
√
ω2 − ω2

z(cosαn, sinαn), αn =
2π
N n, n ∈ J0, N − 1K. With this selection of the proposed family of plane waves, the extracted samples of the
absorption function become〈

Ψ(2)
n , A

〉
=

M∑
m=1

cme
i(ωxxm+ωyym+ωzzm)/c (13)

=

M∑
m=1

cme
i(ωxxm+ωyym)/c︸ ︷︷ ︸

C′
m,n

Zm, Zm = eiωzzm/c

where we redefine Zm to be unknown. By construction, the phase of the solution is uniquely determined due to
the choice ωz, which guarantees a unique solution in the domain, hence

zm =
arg (Zm)

ωz/c
, (14)

where Zm is the solution of the sensing equation (13).

4.3 Model Mismatch and Denoising

For the noiseless case, the system achieves exact recovery of the parameters, but in a real application the
measurements are corrupted with noise. Hence, one needs to compensate for the measurement noise and model
mismatches. Here we assume that the temporal measurements of the sensors, p(r, t)’s are corrupted with signal-

depended AWGN at a certain SNR; i.e. p̃[r, l] = p[r, l] + n[r, l] and SNR = 20 log
∑N

l=1 |p(r,l)|
2∑N

l=1 |n(r,l)|2 .

Considering that the point absorber configuration shows joint sparsity for different frequencies, we propose to
solve (10) in a joint framework such that multiple frequency samples of the measurements can be jointly used to
compensate for the sensor measurements.11 Hence, the samples that are extracted according to (8) for different
frequencies ω can be annihilated with the same filter defined in (9). The joint-annihilation equation will have
the following form

{µn ·R(an)} ∗ h = 0, for all selected ω (15)

where the frequency range should be chosen such that the spatial aliasing due to discrete sampling process can
be controlled.
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5. EXPERIMENTAL RESULTS

We performed numerical experiments to validate our reconstruction algorithm. Specifically, we considered a
spherical detection geometry having a radius of 8 cm that is typical for the imaging of breast tissue in a PAT
setting.12 The speed of sound is taken as constant c = 1500m/s considering human breast tissue as an homoge-
neous medium with negligible variations in the speed of sound.12 The method achieved exact reconstruction of
the absorption profile for the noiseless case assuming continuous sensor data. However, for the real application
the sampling process has to be done at discrete points in space. In this section we assumed that the activated
acoustic field and its normal derivative are sampled by ideal omnidirectional point detectors. Due to inevitable
modal aliasing in the sampling process of a space-time signal, the frequency range of operation has to be limited
properly.13 Therefore, we focused on the frequencies up to fmax = 200kHz assuming that the temporal sampling
frequency of the sensors are 1MHz. Decomposing a wave field into a set of spherical harmonics and Bessel
functions, the periodic zeros of the spherical bessel function are used to determine the necessary spatial sensor
number that limits the spatial aliasing. We define the polar mode of the signal, P as the maximum spatial
frequency; i.e., P = 2πfmaxR/c. Following the same reasoning in a sampling process with a conservative design
rule, a minimum of Q ≥ (2P )2 sensors are necessary to sample the field on the spherical surface.
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Figure 1: Setup for the numerical experiments (a) Spherical imaging geometry with uniformly placed sensors,
(b) Sample measurement of the activated field for 3 absorbing points (c) Sample measurement of the normal
derivative activated field on the surface for 3 absorbing points.

Considering the maximum spatial frequency the polar mode; i.e., P = 67, we assumed that there are 1342

sensors uniformly positioned on the surface. The setup for the experiment is shown in Fig.1(a). We also
provide a sample sensor measurement of a multiple detection problem with M = 3 using a normalized Gaussian
illumination profile I(t) = e−t

2/2σ2

/
√

2πσ2, e.g., Fig.1 (b) and Fig.1 (c).

The performance of the proposed algorithm strongly depends on the initial step where we extract the XY-
projections of the point absorbers. Therefore, we define two separate measures to evaluate each step of the
method

RMSE =

√√√√ 1

M

M∑
i=1

||rm − r̂m||2 (16)

where rm is the true position, r̂m is the estimated position and we evaluate it for the XY-plane projection (Dp)
and for the full 3-D location (Dt). In all experiments, we assumed that the weights of the absorbing points are
unity and we focused on the localization accuracy of the point absorbers. In the first experiment, we compared
the reconstruction error with respect to the chosen frequency of the signal. In Fig. 2 (a), the experiment was
carried out for the noiseless case and considering the spatial aliasing of the sensors, we conclude that up to
a 300 kHz, i.e., slightly above the frequency range of operation, it is still possible to recover the parameters.
However, in Fig. 2 (b), we observe that even a for the signal measured at 20 dB, the corruption of the noise
drastically effects the performance of the method. Therefore, we used the information in the the frequency range
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Figure 2: RMSE of results of 200 independent realisations (a) using the individual frequency samples of the
noiseless sensor data; (b) using the individual frequency samples of the sensor data at 20 dB; (c) using the
frequency samples of the sensor data jointly with respect to different SNR levels.

of operation jointly; i.e., the frequencies between 5 kHz and 200 kHz with 5kHz steps according to (15) for the
XY-plane and we picked up the data at 100 kHz for the z-locations. For the second experiment in Fig 2 (c),
we compare the localisation error with respect to the SNR level of the measurements with the proposed joint
framework. Here, joint sparsity shows significant improvement upon the robustness of the estimation results
even in the low SNR regime. All the experiments showed that the error in the localisation increases as the model
order increases due to the interaction between the point absorbers. Considering the errors in plane, Dp and
in volume, Dt, we conclude that the accuracy of the planar projection with better localised complex sensing
function (6) is more robust than the plane waves (12).
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Figure 3: Scatterplot of independent realisations using the frequency samples of the sensor data jointly at 20 dB.
(a) Retrieved estimations in XY plane. (b) Retrieved estimations in XZ plane.

Finally, we provide a scatterplot for the localization of 5 point absorbers on for XY-plane and XZ-plane in
Fig. 3 (a) and (b), respectively. We observe that the accuracy of the localization on XY-plane depends on the
depth of the point absorbers from the measurement surface and the distance between each point absorber. We
conclude that the projection onto complex plane with (6) performs robust estimation of the projected position
for the point absorbers that are far enough with respect to each other. On the other hand, the accuracy on the
recovery of Z locations depends highly on the estimation quality of the projected position on XY-plane and the
distance from the z-axis. The plane waves (12) recovers the z-locations of the point absorbers that are far from
the z-axis accurately.
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6. CONCLUSION

We proposed a non-iterative algorithm for PAT of point absorbers from the surface measurements of the activated
field. We investigated the necessary spatial sampling rate to control the amount of spatial aliasing of the
sampled data. To reconstruct accurate positioning of the point absorbers, the sensing principle requires accurate
evaluation of the surface integration in (4), which necessitates dense sampling of the data. However, using the
information in the frequency range of operation, we investigated the joint-sparsity model for the recovery of
the parameters of the absorption profile. The experimental results revealed that the reconstruction algorithm
achieves accurate results even for the low SNR regime. We have shown that the locality of the selected families of
sensing functions plays a key role in the accuracy of the estimation. In our case, the sensing functions with poles
on the complex plane (6) are better localized in space than the plane waves which results in increased robustness
on the projection of the positions on the XY-plane. Therefore, it would be of interest to further analyse the effect
of the parameters of the sensing functions to better control the locality to increase the accuracy. Another subject
of future work is to extend the method for the case where full view data is not available, i.e., the sensor coverage
is limited to some local neighbourhood in the half-space which is of significant practical interest. Finally, sparse
models for the accurate imaging of absorption profile in PAT remains as a promising research area of further
research. Moreover, we also consider the applicability and feasibility of different families of sensing functions for
the imaging of sparse absorption profiles in PAT.
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