
MULTIFRAME SURE-LET DENOISING OF
TIMELAPSE FLUORESCENCE MICROSCOPY IMAGES

Saskia Delpretti1, Florian Luisier1, Sathish Ramani1, Thierry Blu2 and Michael Unser1

1Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne, Switzerland
2Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong

ABSTRACT

Due to the random nature of photon emission and the various

internal noise sources of the detectors, real timelapse fluores-

cence microscopy images are usually modeled as the sum of

a Poisson process plus some Gaussian white noise. In this

paper, we propose an adaptation of our SURE-LET denoising

strategy to take advantage of the potentially strong similari-

ties between adjacent frames of the observed image sequence.

To stabilize the noise variance, we first apply the generalized

Anscombe transform using suitable parameters automatically

estimated from the observed data. With the proposed algo-

rithm, we show that, in a reasonable computation time, real

fluorescence timelapse microscopy images can be denoised

with higher quality than conventional algorithms.

Index Terms— Noise, Fluorescence, Wavelet, SURE

1. INTRODUCTION

Photon counting noise is the major source of noise in fluores-

cence imaging. Indeed, light emission, whether during illu-

mination, observation or detection, is a random process where

photons are emitted at random time intervals. This inherent

statistical variation in the emission rate of photons is well-

described by a Poisson process.

In addition to photon counting noise, signal-independent

noise contributions also exist (e.g., electronic thermal noise,

read-out noise, background noise,...). When all put together,

these signal-independent noise contributions can be consid-

ered as normally distributed.

Denoising of such fluorescence images is currently an ac-

tive area of research [1, 2]. In particular, wavelet-based [3]

methods, especially in their redundant representations, have

been proved to be very efficient for 2D image processing.

However, redundant transformations become less attractive

for data with larger size due to their high computational cost.

In this paper, our motivation is to come up with a both

qualitatively and computationally efficient algorithm for de-
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noising timelapse (2D+time) fluorescence microscopy im-

ages. To achieve this goal, we introduce a time component

in our recent 2D denoising strategy (orthonormal SURE-LET

[4]), by taking into account the strong correlations between

adjacent frames. This temporal sliding-window approach

thus avoids the application of time-consuming 3D transfor-

mations by using neighboring frames as predictors of the

current frame (see Fig. 1).

1.1. Observation Model

Similarly to [2], we consider that every observed pixels y are

i.i.d. random variables defined as:

y = αs + b (1)

where s ∼ P(x) models the random nature of photon count-

ing, b ∼ N (μ, σ2) represents the signal-independent noise

contribution and α > 0 symbolizes the overall gain of the

photodetector.

Provided that the underlying intensities x are suffi-

ciently large (typically x ≥ 10), the variance of the above

Poisson-Gaussian mixture can be stabilized by the general-

ized Anscombe transform (GAT) [5]:

A(y) =
2
α

√
αy +

3
8
α2 + σ2 − αμ (2)

Then, the transformed pixels approximately obey A(y) ∼
N (A(αx + μ), 1), which makes the standard additive Gaus-

sian white noise assumption relevant for denoising applica-

tions.

1.2. Parameters estimation

The knowledge of the parameters (α, μ, σ2) is essential for

the application of the GAT (2). While μ and σ2 may be mea-

sured by running separate calibration experiments [6], α may

not be equivalent to the gain factor that is typically provided in

microscopes and therefore must be estimated from the given

data. For this, we devise a simple mechanism to estimate α
and (σ2 − αμ) based on the following identities:

μy
def= E {y} = αx + μ (3)

σ2
y

def= Var{y} = α2x + σ2 (4)
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This leads to the relationship:

σ2
y = αμy + (σ2 − μα)︸ ︷︷ ︸

β

. (5)

To utilize (5), we first perform a segmentation of the noisy

image stack into regions wherein the underlying noise-free

signal is approximately constant. We then estimate μy and σ2
y

by computing the sample-mean and sample-variance, respec-

tively in each segment. Once that is done, we simply perform

a robust linear regression on the set of points (μy, σ2
y): the

slope yields an estimate of the gain α and the intercept at

μy = 0 yields an estimate of β.

2. MULTIFRAME SURE-LET

The rationale behind our approach is that adjacent frames

of fluorescence microscopy image sequences contain strong

common information. In order to take into account these tem-

poral correlations, we need to adapt our recent SURE-LET

denoising algorithm [4].

2.1. Principle

In this section, N denotes the number of pixels in an image,

and C, the number of images in a sequence. We thus represent

an image sequence x by a C ×N matrix:

x = [x1,x2, . . . ,xN ], where xn = [xn,1, xn,2, . . . , xn,C ]T

We consider that the distorting noise b is white, additive

and independent from x, and that it follows a multivariate

Gaussian distribution whose C×C interframe covariance ma-

trix is given by σ2Id. The observed noisy sequence is thus

modeled as:

y = x + b (6)

We recall here the two key ingredients of the SURE-LET ap-

proach devised in [4] and show their adaptation to multiframe

denoising:

1. Stein’s unbiased risk estimate (SURE) [7]: in denois-

ing, the most popular measure of quality is the mean-

squared error (MSE) between the original signal x and

the denoised one x̂. In real applications, we can ob-

viously not compute this actual MSE since it involves

the unknown noise-free data. We propose instead to

minimize an unbiased estimate of the MSE, known as

SURE. For multiframe processing x̂n = θ(yn,pn) in-

volving the noisy data yn and any other information pn

statistically independent of yn, SURE becomes:

ε =
1

CN

N∑
n=1

‖θ(yn,pn)− yn‖2 +

2σ2

N

N∑
n=1

Tr {∇yn
θ(yn,pn)} − σ2 (7)

2. A linear expansion of thresholds (LET): to take full ad-

vantage of the quadratic form of ε w.r.t. θ, we use a

thresholding function that is a linear combination of el-

ementary non-linear denoising functions θk, with un-

known C × C weights ak:

θ(yn,pn) =
K∑

k=1

aT
k θk(yn,pn) (8)

With the above thresholding function, the search for the

parameters ak that minimize the SURE derived in (7)

simply amounts to solving a linear system of equations.

Note that these theoretical adaptations (7,8) are similar

to those encountered in [8] for multichannel denoising, with

the noteworthy difference that, for multiframe denoising, C
(odd) adjacent frames are considered to denoise the central

c = (C + 1)/2 frame, as illustrated in Fig. 1. The parameters

of (8) have therefore to be optimized for this central frame

only.

yi−1yi−2 yi yi+1 yi+2︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
x̂ix̂i−1x̂i−2 x̂i+1 x̂i+2

Fig. 1. Use of adjacent frames for multiframe denoising.

2.2. The Algorithm

The GAT (2) is first applied to the raw image sequence. Then,

for each frame, a 2D orthonormal wavelet transform (OWT)

[3] is performed and the stabilized noise standard deviation

σstab is estimated in the highest frequency subband using the

robust MAD estimator [9].

OWT

Prediction

Highpass
subbands

Lowpass
subband

GDC Parent
subbands

WHL ∗ LLj

WLH ∗ LLj WHH ∗ LLj

LLj

Fig. 2. Multiframe illustration of the group delay compensa-

tion (GDC). The GDC is obtained by appropriately filtering

the same scale lowpass subband.

Thanks to the orthogonality of the wavelet transform, the

noise model (6) is still valid inside every wavelet subbands,
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and their respective noise components are statistically inde-

pendent. Therefore, we propose to build pn out of the group

delay compensated [4] lowpass subband at the same scale (see

Fig. 2).

These interscale predictors pn are then used as discrimi-

nators between zones of high magnitude and low magnitude

(i.e. mainly due to noise) wavelet coefficients, to give the fol-

lowing interscale multiframe thresholding:

θ(yn,pn) = γ(pT
nR−1pn)γ(yT

nR−1yn)︸ ︷︷ ︸
small parents and small coefficients

aT
1 yn +

γ(pT
nR−1pn)γ(yT

nR−1yn)︸ ︷︷ ︸
large parents and small coefficients

aT
2 yn +

γ(pT
nR−1pn)γ(yT

nR−1yn)︸ ︷︷ ︸
small parents and large coefficients

aT
3 yn +

γ(pT
nR−1pn)γ(yT

nR−1yn)︸ ︷︷ ︸
large parents and large coefficients

aT
4 yn (9)

where

{
γ(x) = exp

(
− |x|

12C

)
γ(x) = 1− γ(x)

are the discriminative func-

tions.

The denoised sequence is finally obtained by performing

the inverse wavelet transform on the processed coefficients

and the inverse GAT on the reconstructed images.

3. EXPERIMENTS

3.1. Validation on simulated data

We applied the proposed algorithm on a simulated sequence

of size 496 × 400 × 10 with a mean intensity of 16.14. We

then degraded this sequence with a signal-dependent Poisson

noise with gain α = 1 and an additive zero-mean Gaussian

white noise of variance σ2 = 25, which gave an input signal-

to-noise ratio (SNR) of 9.25 dB (see Fig. 3). By applying

the procedure described in Section 1.2, we got the estimated

noise parameters: α = 0.98 and β = 24.9. After the GAT,

the estimated noise standard deviations σstab lied in the range

of [1.00, 1.02] for the whole sequence. Using these estimated

parameters, we got an output SNR of 25.78 dB in 15s using

C = 3 adjacent frames. To compare with, we obtained a SNR

of 24.40 dB in 5s with the monoframe (C = 1) restriction of

our algorithm and a SNR of 22.57 dB in 2s when applying the

SUREshrink [9] independently inside each frame.

3.2. Results on real data

We show the result of our SURE-LET algorithm applied on a

real timelapse fluorescence microscopy image sequence1 of

C. Elegans embryos2. The embryos were imaged with an

Olympus IX 81 motorized inverted microscope equipped with

1Acquired with the invaluable help of the BIOP team at EPFL.
2Kindly provided by Prof. Pierre Gönczy, UPGON, ISREC, EPFL.

Fig. 3. 3 adjacent frames of the simulated noisy sequence.

a spinning disk Perkin Elmer Ultra View ERS. 1000 frames

were imaged at 2 Hz for a total duration of 8min20sec. Frame

number 40 is displayed in Fig. 4(A).

In this special worm line, a GFP encoding cassette was

inserted under the promoter of tubulin, a major cell cytoskele-

ton component active during cellular division. The green

fluorophore thus tags the tubulin molecules in the embryos.

More precisely, we see two C. Elegans embryos at different

stages of early development. The lower embryo has just gone

through its very first division, whereas the upper embryo has

already gone through multiple divisions.

We obtained the following noise parameters: α = 8.72
and β = −3770.17. Using these values for the GAT gave

a stabilized noise standard deviation σstab in the range of

[0.98, 1.02], which confirmed the considered observation

model (1). We considered C = 5 adjacent frames and four

iterations of an OWT using Daubechies’ symlets filters with

eight vanishing moments [3].

As can be seen in Fig. 4, the denoising quality of the

proposed algorithm (D) is much higher than standard proce-

dures such as the median filtering (B) or the wavelet-based

SUREshrink (C). Many relevant details are extracted from the

noisy image (A). Polar bodies that were ejected during meio-

sis get clearly visible as two different entities in the lower

embryo, whereas as a single entity with the conventional al-

gorithms. The linear shape of microtubules appears more

clearly, in a star-like disposal from the centrosome to the pe-

riphery in the right cell and globally dispersed in the left cell

of the lower embryo, enabling both cells to be visually easily

separable from one another. In the upper embryo, the various

cells can now be distinguished from one another, with inter-

nal filamentous structure appearing in each cell. Finally, the

egg shell that is surrounding both embryos gets clearly visible

with the proposed algorithm, whereas hardly distinguishable

with conventional algorithms.

4. CONCLUSION

Thanks to an efficient integration of adjacent frames depen-

dencies in our SURE-LET denoising strategy, we show that,

in a reasonable computation time, real timelapse fluorescence

microscopy images can be denoised with higher quality than

conventional algorithms.
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(A) (B)

(C) (D)

Fig. 4. One particular frame (at t = 20s) of the fluorescence sequence. (A) Raw data. (B) Median filter. (C) SUREshrink. (D)

The proposed algorithm.
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