
HEXAGONAL VERSUS ORTHOGONAL LATTICES:
A NEW COMPARISON USING APPROXIMATION THEORY

Laurent Condat∗

Laboratoire LIS – Fédération ELESA
Av. Félix Viallet

38031 Grenoble cedex, France
E-mail: laurent.condat@lis.inpg.fr

Dimitri Van De Ville, Thierry Blu

Biomedical Imaging Group
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ABSTRACT

We provide a new comparison between hexagonal and or-
thogonal lattices, based on approximation theory. For each
of the lattices, we select the “natural” spline basis function
as generator for a shift-invariant function space; i.e., the
tensor-product B-splines for the orthogonal lattice and the
non-separable hex-splines for the hexagonal lattice. For a
given order of approximation, we compare the asymptotic
constants of the error kernels, which give a very good in-
dication of the approximation quality. We find that the ap-
proximation quality on the hexagonal lattice is consistently
better, when choosing lattices with the same sampling den-
sity. The area sampling gain related to these asymptotic
constants quickly converges when the order of approxima-
tion of the basis functions increases. Surprisingly, nearest-
neighbor interpolation does not allow to profit from the
hexagonal grid. For practical purposes, the second-order
hex-spline (i.e., constituted by linear patches) appears as
a particularly useful candidate to exploit the advantages of
hexagonal lattices when representing images on them.

1. INTRODUCTION

Digital image processing systems require a sampling strat-
egy to represent and manipulate two-dimensional (2-D)
data. The orthogonal lattice is commonly used for this pur-
pose. Hexagonal sampling, although less popular, offers
many theoretical advantages for image processing tasks: the
twelve-fold symmetry for more isotropic treatment, and the
six-connectivity allows Jordan’s theorem to be satisfied with
applications in edge detection and pattern recognition [1].

An important issue in image processing is the link be-
tween the discrete and the continuous domain: operations
such as resampling ask for a continuous model to be fitted
on the discrete samples; e.g., for image resizing, rotating,
or other geometric operations. Spline models have shown
to be particularly suitable for this purpose [2, 3]. This is
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due to their tunability and optimal approximation capabili-
ties [4, 5].

Recently, a novel spline family, especially designed for
hexagonal lattices, has been proposed [6]. These splines,
named “hex-splines”, arise naturally from the shape of the
Voronoi lattice cell. In the hexagonal case, they preserve the
twelve-fold symmetry since they are built from the hexag-
onal tiling cell by successive convolutions. The hex-spline
family includes the classical tensor-product B-splines as a
special case. Hex-splines were already successfully applied
to some printing applications [7].

In this paper, we compare hexagonal and orthogonal lat-
tices with the same sampling density. For each of them, we
deploy the “natural” spline basis function; i.e., the tensor-
product B-splines for the orthogonal lattice and the hex-
splines for the hexagonal lattice. For a given order of ap-
proximation of the basis functions, the asymptotic constants
of the error kernel are useful indicators to compare the ap-
proximation quality. We show that the hexagonal lattice is
consistently better, in particular starting from second-order
splines. This result confirms the classical observation that
isotropic band-limited images can be represented more effi-
ciently on a hexagonal lattice than on an orthogonal lattice.
However, our new comparison does not require the band-
limited assumption of the signal, neither the use of ideal
(sinc-like) basis functions.

2. 2-D SPLINES ON PERIODIC LATTICES

Some conventions are used throughout this paper. Vectors
are denoted as x = [x1 x2]T ∈ R

2. The 2-D Fourier
transform of a function f(x) is defined as f̂(ωωω) =

∫
R2 f(x)

exp(−j ωωωTx) dx.
A 2-D periodic lattice Λ is characterized by two inde-

pendant vectors r1 and r2 grouped in a matrixR = [r1 r2],
so the lattice sites are given by Rk; k ∈ Z

2. We define
Ω = |detR|. Then the density of the lattice is 1/Ω [lattice
sites per unit surface]. We also define Λ̂, the dual lattice of
Λ, whose matrix is R̂ = (R−1)T. The effect of sampling a
function f(x) on Λ is to replicate its spectrum f̂(ωωω) on the
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lattice sites 2πR̂k.
A discrete sequence h = (h[k])k∈Z2 defined on a lattice

Λ can be regarded as a Dirac comb
∑

k∈Z2 h[k]δ(x−Rk),
where δ(x) is the Dirac distribution located at the origin 0.
Therefore its periodized Fourier transform ĥ(ωωω) is defined
as ĥ(ωωω) =

∑
k∈Z2 h[k] exp(−j ωωωTRk).

A well-defined tiling cell of a lattice is the Voronoi cell,
consisting of all points closer to 0 than to any other lattice
site. The Voronoi cell of a lattice characterized by R has
surface area Ω and can be represented by the indicator func-
tion χR(x) :

χR(x) =

⎧⎨
⎩

1, x ∈ Voronoi cell,
1/mx, x ∈ edge of the Voronoi cell,
0, x /∈ Voronoi cell

(1)

where mx is the number of lattice points to which x is
equidistant. Note that χR(x) tiles the plane by definition.

Splines suitable for the regular orthogonal lattice, de-
scribed by the unity matrix R = I2, can easily be ob-
tained by using the tensor-product of two one-dimensional
B-splines βn(x) = βn(x1)βn(x2). The superscript n refers
to the n-th degree of piecewise polynomials or to the n+1-
th order of approximation [4]. We recall that the 1-D B-
splines βn(x) are constructed by successive convolutions:
βn(x) = βn−1(x) ∗ β0(x) where

β0(x) =

⎧⎨
⎩

1, x ∈ (− 1
2 , 1

2 ),
1/2, |x| = 1

2 ,
0 else.

(2)

β0(x) can be considered as the indicator function of the
“Voronoi interval” for the 1-D lattice Z. Therefore it is
natural to extend the construction to any 2-D lattice, by
defining the first-order hex-spline from the Voronoi cell as
η1(x) = χR(x). Note that this spline is normalized to the
surface area of the Voronoi cell:

∫
R2 η1(x)dx = Ω. Hex-

splines of higher orders are constructed by successive con-
volutions

ηL+1(x) =
η1 ∗ ηL(x)

Ω
, L ≥ 1. (3)

When the orthogonal lattice is considered, the hex-spline
ηL(x) simply reverts to the separable B-spline βL−1(x).

Consider now the uniform hexagonal lattice (of the sec-
ond type) Λhex and the orthogonal lattice Λorth, both with
density 1, and described by the matrices:

Rhex =

√
2√
3

[ √
3/2 0

1/2 1

]
, Rorth =

[
1 0
0 1

]
.

(4)
These two lattices and their Voronoi cells are depicted in
Fig. 1. The hex-spline of second order, constructed onΛhex,
is shown in Fig. 2. As L increases, ηL becomes more and
more Gaussian-like. For more interesting properties of the
hex-splines (analytical form, Riesz basis, convexity, parti-
tion of unity, . . . ), we refer to [6].
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Fig. 1. The hexagonal Λhex and orthogonal Λorth lattices,
and their associated Voronoi cells.

3. APPROXIMATION IN 2-D SHIFT-INVARIANT
FUNCTION SPACES

A linear shift-invariant function space VR(ϕ) (e.g., a spline
space), spanned by shifted versions of a generator ϕ(x),
contains all the signals

s(x) =
∑
k∈Z2

c[k]ϕ(x−Rk); (c[k])k∈Z2 ∈ �2(Z2). (5)

When approximating an original function f ∈ L2(R2)
by a representative s ∈ VR(ϕ), the coefficients c[k] are de-
termined using a prefilter ϕ̃ as

c[k] =
∫

R2
f(x)ϕ̃(x−Rk) dx. (6)

The optimal choice for the prefilter, minimizing the L2 dis-
tance ‖f−s‖L2 �

∫
R2 |f(x)−s(x)|2dx corresponds to the

orthogonal projection of f onto VR(ϕ), thereafter denoted
PRf . The associated prefilter of this choice is ϕ̃ = ϕd,
where ϕd is called the dual function of ϕ, defined in the
Fourier domain by

ϕ̂d(ωωω) =
ϕ̂(ωωω)
âϕ(ωωω)

, (7)

where âϕ(ωωω) is the Fourier transform of the autocorrelation
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Fig. 2. Hex-spline η2(x) for the lattice Λhex.
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sequence (aϕ[k])k∈Z2 of ϕ defined by

aϕ[k] =
∫

R2
ϕ(x)ϕ(x + Rk) dx. (8)

In this paper, we want to characterize the approximation
error ‖PRf−f‖L2 . Approximation theory provides us with
a convenient way to quantify this error. A remarkable result
from [5] is that the approximation error can be predicted
very accurately by the quantity

εf =
1
2π

√∫
R2

∣∣f̂(ωωω)
∣∣2E(ωωω) dωωω, (9)

where the error kernel E(ωωω) can be written as

E(ωωω) = 1− |ϕ̂(ωωω)|2
âϕ(ωωω)

. (10)

As in practice most images are essentially lowpass, the
approximation error is controlled by the behavior of E(ωωω)
around ωωω = 0. It has been shown in [5] that E(ωωω) ∝ ωωω2L if
and only if the well-known Strang-Fix conditions of order
L [8] are satisfied:

ϕ̂(0) �= 0 and ϕ̂(n)(2πR̂k) = 0 for

{
k �= 0
n = 0 . . . L− 1

(11)
in which case ϕ is said to have approximation order L.

The Strang-Fix conditions also imply that, if the sam-
pling lattice is made finer by a scaling factor λ ∈ R

+ (cor-
responding to the lattice matrix λR), and λ tends to zero,
then the approximation error has an Lth-order decay; i.e.
‖PλRf−f‖L2 ∝ λL. Thus the asymptotic behavior tells us
how well the approximation converges to the original func-
tion f when the sampling lattice is made finer.

In order to compare approximation schemes with the
same approximation order, we have to go one step further
and evaluate the asymptotic constant C(θ) so that

E(ωωω) = C(θ) ‖ωωω‖2L as ωωω → 0, (12)

where θ is defined by the coordinates changes (ω1, ω2) =
(‖ωωω‖ cos(θ), ‖ωωω‖ sin(θ)). C(θ) depends on both ϕ andR.

In the next section, we compute the asymptotic con-
stants for the hex-splines on the hexagonal lattice. Then we
compare them with the constants for the separable splines
on the orthogonal lattice, so as to show that the hexagonal
lattice offers a better approximation quality.

4. HEXAGONAL VERSUS ORTHOGONAL:
APPROXIMATION QUALITY

Let us first consider the orthogonal latticeΛorth and theL-th
order tensor-product B-spline βL−1(x). The corresponding
asymptotic constant of (12), denotedCorth

L , does not depend

on θ. Using the Riemann-Zeta function ζ(x) =
∑∞

n=1
1

nx ,
we have [5]

Corth
L =

2ζ(2L)
(2π)2L

. (13)

Here, we are particularly interested in the approximation
quality of the hex-splines ηL for the lattice matrixRhex. We
have obtained the corresponding constant Chex

L (θ) (proof in
Appendix) as

Chex
L (θ) =

6
(72
√

3π2)L
ζ(2L)

�L/3�∑
n=−�L/3�

(
2L
3n + L

)
(−1)n cos(6nθ)

+
(

27
8
√

3π4

)L ∑
k∈Z

2

k1+k2≡/ 0[3]

⎡
⎣

(
sin(θ+2π/3)

k1+k2
− sin(θ−2π/3)

k1−2k2

)
2k1 − k2

⎤
⎦

2L

,

(14)
where 0[3] stands for all multiples of 3. Chex

L (θ) is π
3 -

periodic, and its maximum is attained at θ = 0. So we
define Chex∗

L � Chex
L (0). This new constant can be in-

terpreted as the worst case behavior and has the following
closed form (again see Appendix):

Chex∗
L =

2ζ(2L)2
(
9L − 1

)2

(
32
√

3π4
)L

+
4ζ(2L)(

24
√

3π2
)L

. (15)

When L → ∞, we have the asymptotic equivalence
Chex∗

L ∼
(

27
√

3
32π4

)L

, which is a good approximation of (15):

for L = 4, the value is exact within 0.9%.
To compare the asymptotic constants (13) and (15), one

typically considers the “area sampling gain” λ2
L, defined

as the change in sampling density to make the two con-
stants equal. Specifically, scaling R to λLR changes the
corresponding density 1/Ω to 1/(λ2

LΩ). Consequently, the
asymptotic constant C(θ) becomes λ2L

L C(θ). The area
sampling gain of the hexagonal over the orthogonal lattice
must make

λ2L
L Chex∗

L = Corth
L , (16)

from which we find λ2
L = L

√
Corth

L

Chex∗
L

. The values for the first

four orders are listed in Tab. 1. When L tends to∞, λ2
L →

8π2

27
√

3
, and this value is already achieved for L = 4 within

0.1%.

5. DISCUSSION

The area sampling gain suggests that we could reduce the
number of samples on the hexagonal lattice with about 40%,
and still obtain the same asymptotic constant as for the or-
thogonal lattice. Although spectacular at first sight, this
result should be interpreted with caution. The asymptotic
constant only gives the trend of the error kernel around the
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Table 1. Area sampling gain of the hexagonal lattice versus
the orthogonal lattice, for a given approximation order L.

approximation area sampling improvement of Λhex

order L gain λ2
L over Λort (%)

1 3
√

3
5 ≈1.039 3.8

2 3
√

2√
7
≈1.604 37.7

3 ≈1.676 40.3
4 ≈1.686 40.7
∞ 8π2

27
√

3
≈1.688 40.8

zero frequency. In practice, the full knowledge of the er-
ror kernel is required to make a complete evaluation of the
approximation quality. Reducing the sampling density as
much as 40% might keep the behavior for low frequencies
similar, but the orthogonal lattice will clearly behave bet-
ter for high-frequency components as its Nyquist region is
much larger. Nevertheless, in the case of equal sampling
density, the high value of the area sampling gain indicates
a strong advantage for the hexagonal lattice that influences
the whole range of the Nyquist region. In practice, the ef-
fective gain that can be expected by representing an image
on an hexagonal lattice greatly depends on how much its
energy is essentially low-pass.

Finally, we put our results in the perspective of the clas-
sical observation concerning the approximation of isotropic
band-limited signals on hexagonal lattices [9]. For such
a signal, an orthogonal lattice needs a density 2√

3
higher

than the one of a hexagonal lattice to satisfy the sampling
theorem. This corresponds to 15% more samples. Our re-
sults indicate that the use of ideal reconstruction functions
(corresponding to splines with order L → ∞) is not re-
quired to exploit the advantage of hexagonal lattices: while
a nearest-neighbor scheme (L = 1) is clearly too primitive,
the second-order hex-spline (L = 2) already offers a perfor-
mance close to the asymptotic behavior (L →∞).

6. APPENDIX: PROOFS OF EQS. (14) & (15)

We first note that η̂L(ωωω) = 1
ΩL−1 η̂1(ωωω)L. Consequently,

âηL
(ωωω) =

1
Ω2L−2

∑
k∈Z2

∣∣∣η̂1(ωωω − 2πR̂k)
∣∣∣2L

. (17)

Hence the expression of the error kernel (see (10)):

E(ωωω) =

∑
k �=0

∣∣∣η̂1(ωωω − 2πR̂k)
∣∣∣2L

∑
k∈Z2

∣∣∣η̂1(ωωω − 2πR̂k)
∣∣∣2L

(18)

=
1

Ω2L

∑
k�=0

∣∣∣η̂1(ωωω − 2πR̂k)
∣∣∣2L

+ O(‖ωωω‖4L),

because of the conditions in (11) and η1(0) = Ω. Therefore

Chex
L (θ) = lim

ωωω→0

1
Ω2L

∑
k�=0

∣∣∣η̂1(ωωω − 2πR̂k)
∣∣∣2L

‖ωωω‖2L
(19)

=
1

Ω2L

∑
k �=0

|A(k, θ)|2L,

where A(k, θ) = limωωω→0 η̂1(ωωω − 2πR̂k)/‖ωωω‖. We ob-
tain the general term in the sum of (14) by calculating the
Taylor development of η1(ωωω), whose analytical expression
is given in [6]. The terms corresponding to k1 + k2 ≡
0[3] give the first part of the rhs in (14), if we note that

3
∑�L/3�

n=−�L/3�
(

2L
3n+L

)
(−1)n cos(6nθ) is equal to

22L

[
sin(θ)2L + sin(θ +

2π

3
)2L + sin(θ − 2π

3
)2L

]
.

Hence

Chex∗
L =

4ζ(2L)
(24
√

3π2)L
+

(
27
√

3
32π4

)L∑
k2+k1≡/ 0[3]

[(k1+k2)(k1−2k2)]
−2L

(20)
After some changes of variables, this last sum turns out to
be 2(

∑
n∈Z

(3n + 1)−2L)2, which is equal to 2[ζ(2L)(1 −
3−2L)]2. Putting this together yields (15).
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