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ABSTRACT

A filterbank decomposition can be seen as a series of projections onto several discrete wavelet subspaces. In this
presentation, we analyze the projection onto one of them—the low-pass one, since many signals tend to be low-pass.
We prove a general but simple formula that allows the computation of the £2-error made by approximating the signal
by its projection. This result provides a norm for evaluating the accuracy of a complete decimation/interpolation
branch for arbitrary analysis and synthesis filters; such a norm could be useful for the joint design of an analysis
and synthesis filter, especially in the non-orthonormal case. As an example, we use our framework to compare the
efficiency of different wavelet filters, such as Daubechies’ or splines. In particular, we prove that the error made
by using a Daubechies’ filter downsampled by 2 is of the same order as the error using an orthonormal spline filter
downsampled by 6. This proof is valid asymptotically as the number of regularity factors tends to infinity, and for a
signal that is essentially low-pass. This implies that splines bring an additional compression gain of at least 3 over
Daubechies’ filters, asymptotically.
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1. INTRODUCTION

Filterbanks have become a standard way to analyze or to compress nonstationary signals. Beause of the strong
interpretation—frequency separation of the channels—given to the analysis it is customary to optimize the analysis
filters so that they get as close as possible to the ideal principal component filters.? In this approach, the filters
are most of the time assumed to be orthonormal, so that the synthesis side has exactly the same properties as the
analysis side. When it came to the biorthonormal generalization of filterbanks, researchers have seeked to remain
as close as possible to the orthonormal case by requiring that the synthesis filters be close to the analysis filters, at
least as far as frequency behavior was concerned.?

We maintain however that this measure is not the most natural for evaluating the accuracy of a filterbank. Instead,
we propose here a new measure that is directly linked to the accuracy of the analysis-synthesis reconstruction when
we keep only the most significant branch of the filterbank. This idea arises from the observation that most signals
that can be well compressed have their frequency content concentrated in a small fraction of the sampling frequency
interval: this is for example the case for images, which have a very lowpass behavior.

This measure has the advantage of putting together the analysis and the synthesis filters into a single expression,
and thus allows for more general biorthonormal designs than those previously available. The natural advantage of
this measure is that it directly provides a signal-to-noise ratio (SNR) of the whole scheme: the measure can be
interpreted as the SNR resulting from a large quantization step in the other bands of the filterbank.

The quartic form we are proposing can be easily computed. We give a simple induction relation to obtain the
quantities of interest, if iterated filters are to be used.

Since we are concentrating on lowpass signals, we have also evaluated the limit behavior of a filterbank when the
bandwidth of the signal tends to zero. This gives rise to an extension of what is known as “approximation order” in
approximation theory. Similarly, we extend to the discrete case the well-known Strang-Fix conditions* and obtain
the asymptotic constants that characterize the lowpass behavior of a filterbank.

Finally, we give some examples of the accuracy that can be obtained, for example by using spline filters instead
of Daubechies orthonormal filters. It is interesting to note that the gain can be quite large. As a matter of fact,
for large approximation order, the sampling gain spline/Daubechies is between 3 and 7 in terms of the number of
iterations.

1.1. Notations

Discrete real sequences{z[n]},ez will be designated without reference to the running index n, e.g. @ here. Their
associated z-transform 3" z[k]z~* will be denoted using upper case letters; e.g. X(z).

We also introduce a notation for the shifted version of a sequence by m samples: z,,[n] = z[n — m] for all n € Z.
Analogously, f,, denotes the function f shifted by the real number y; ie., fu(¢) = f(t — p).

Usual operations on discrete data are depicted graphically as follows

M

e Upsampling operator x—@—»y, which maps z into y with y[Mn + ng] = z[n]d[no] for all n € Z and
ng=0...M—1.

M
e Downsampling operator r—@—» y, which maps z into y with y[n] = z[Mn] for all n € Z.

o Filter z

G(z) |y, which maps z into y with y[n] = >, ., g[n — k]z[k] for all n € 7Z.

We also recall the two standard exchange rules, widely known as the “noble relations”>5:
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2. ANALYSIS-SYNTHESIS FILTERBANKS

An analysis filterbank is a Single Input Multiple Output (SIMO) linear system that maps an input signal z into
multiple output signals y/) as shown in Fig. 1.
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Figure 1. Analysis filterbank

Similarly, a synthesis filterbank is a Multiple Input Single Output (MISO) linear system that maps multiple input
signals y\Y) into a single output signal z as shown in Fig. 2.
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Figure 2. Synthesis filterbank



2.1. Perfect reconstruction filterbanks

When the input and output rates are equal (i.e., 1 = Z;V:_Ol Mj_l)7 then the filterbank is said to be critically sampled.
This condition is frequently required in practice, even though it may be advisable for some applications to allow
oversampling.”

The implementation of a dyadic discrete wavelet transform takes precisely the form of an analysis filterbank where
M; =2* for j=0...N—2and My_, = 2V=1 " and where the G; take a special form.

Another example is the implementation of a Short Time Fourier Transform (STFT) which takes the same form,
but where the analysis filterbank is now uniform;i.e., M; = M forall j =0... N — 1.

In those two cases, the inverse operator of an analysis filterbank takes the form of a synthesis filterbank, but
this property is not so general.®° We will from now on concentrate on such filterbanks. The perfect reconstruction
condition is equivalent to the N2 graphical equations

Mj M?"

4®7 Gj(z) Gj,(z—l) —@—» =6[j — j'] x Identity

for all 7,7 = 0...N — 1. These well-known conditions in wavelet theory are equivalent to the biorthonormality
conditions. Their mathematical formulation is

> gi[nM + k) Gy [k] = 8[j — 516[n] (1)
k

forall j,77=0...N—1and all n € Z.

We will see that it is possible to cast the perfect reconstruction problem into an approximation problem for which
we have developped efficient tools. 10712

2.2. The basic {?>-approximation problem

In most cases, the interest of transforming a signal into downsampled subbands arises from the need to find a more
compact representation of the input signal. At first sight, increasing the number of signals—although downsampled—
does not compress the information; however, if most of the subband signals have such a negligible energy that they will
contribute little to the reconstruction, then a substantial coding gain can be achieved by discarding these subbands.
The natural question that one is thus led to formulate is: is there an optimal way to choose the filters GG; and Gj SO
that most subbands contribute for nothing to the reconstruction? The extreme case is obviously when all subbands,
except for the first, can be neglected.

We have thus to answer the dual question: how much of the signal do we loose if we reconstruct with the first
branch only? This is truly an approximation problem, as we are going to see.

We first need to define a measure for estimating the approximation error. Our choice is the £2 norm for discrete
1
sequences ||z[|,2 = (Y, z[n]?)=.

The reconstruction of a signal with only one subband can be depicted graphically as
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and we are interested in evaluating ||z — Z||;2. The mathematical expression of the sequence z is

)= gln — k' M] gk — k' M] z[k] (3)
kK
This transformation is a projector, (i.e., z = Z) if and only if G and G are biorthonormal. However, it is not

integer-shift invariant: if we shift by one sample we do not obtain a shifted version of z. In fact, we have

Zm = T If M divides m



2.2.1. Continuous formulation of the problem
Notice that if we build the function z(¢)

z(t) = x[n]sinc(t — n) (4)

n

then we have ||z||p2 = [|z]|s2. That is, if we are to evaluate the £2 difference of the discrete sequences, we might as well
evaluate the L? difference of the functions z(t) and Z(t). Let us emphasize that by using this discrete-to-continuous
reformulation, we do not mean that the signal from which we got the samples z[n] would be best represented within
a sinc space. Instead, the present formulation only aims at defining an equivalent—continuous—form of the problem.

Using the same “discrete to continuous” mapping, we define the two functions

p(t) = VM > glk]sinc(Mt — k) (5)

p(t) = VM > jlk]sinc(Mt — k) (6)

A consequence of the orthonormality of the sinc basis and of the perfect reconstruction conditions (1) is that ¢ and
¢ are biorthonormal, i.e., [ ¢(T —n)p(7)dr = &[n] for all n € Z.

Then, it is not too difficult to see that

2ty =Y {/:E(T)gﬁ (% - k) d%} v <% - k) (7)

k

This expression takes exactly the same form as the usual approximation of a function onto an integer shift-invariant
space Vr = spangcz{p(% — k} with T = M; @(t) is the so-called sampling distribution.'® We can thus use the
powerful results obtained in the field of approximation theory to evaluate ||z — Z||,2.

3. CONTINUOUS APPROXIMATION RESULTS

We apply here one of the main theorems we have obtained in the evaluation of the approximation error of a function
x(t) € W3, the Sobolev space of order r (i.e., x(t) has r derivatives in L?) where r > 0.5.1%11  We assume that
|G(e™)| and |G(e*)| are upper bounded over [—, 7.

THEOREM 3.1. Let F(w) be defined by

B(@) = [1 - by o] + 1) Y 6w + 2nm)l” (8
n#0

Then, for any integer N greater than 1, we have

[ e | - 2 dw
3 [, e Faladu= [ @) BwM) g

27

)

2km

Moreover, if 2(w)t(w + 57) = 0 for all k € Zy and w € R, then ||z, — T,z = ||x — Z||2 for all real p, i.c.,
|z — Z||2. can be expressed exactly as the right-hand side of (9).

1
Proof. Tt suffices to verify that the conditions required in'® are met. Obviously, z(¢) belongs to W;—i_E since
{z[n]}nez is in £2; it is even in W for any a > 0, because of our choice of the sinc basis bunction.

The other requirements for these results to hold are that 50 be upper bounded, and that ¢ satisfy the upper Riesz
condition 3" |@(w + 2nm)|? < Const < oo for almost every w € [—m,w]. This is clearly the case if |G(¢'“)| and
|G(e)| are bounded. Thus we can apply the main approximation theorem.'® O

From this “continuous” average result we can deduce the following “discrete” average theorem.



THEOREM 3.2. Let Fy(w) be defined by

fw iwy 2 A iw ) .
Fy(w) =1~ Gy Gle) | |G(;Jz)| 3G (e )2 (10)
k=1
Then we have
1 B , dw
3 2 o =l = [ ()P Fa ) 57 ()
m=0 -T !

This theorem states that the quality of the approximation is directly given by the rhs of (11). In particular, if
the signal’s main energy is concentrated in a frequency interval I, then the quality of the approximation is given by
the values of Fias(w) over this interval.

As an example, if I = [— 57, 77] and if  is white within this frequency band, then

T

J(G,G) = /M Fag (w) dw (12)

o
M

is the expression to minimize in a corresponding design problem. Note that, when G is orthonormal and G =G, we
recover the classical L? design measure J(G) = 2 [ |G(e™¥)|? dw, i.e., the energy of the attenuated band.
M

3.1. Least-squares error

We transform the expression (10) into

o) =1 = G A ) = G| (13)
Fopt(w)
= jetdkn o ~ iw G(e™)
where A(e') = ; |G(e' ™ )|° and Gopt(e ):MW.

It is clear from (13) that the approximation kernel Fas(w) is always larger than the expression Fyp¢(w), which is
attained only when G' = G, a special choice of the analysis filter. This optimum corresponds to the orthogonal
projection of the sequence  onto the vector space generated by the sequences {g._gar}.

The optimal kernels corresponding to Daubechies’ filter of order 4 (i.e., length 8) and to the cubic spline filter
(ie., G(z) = ﬁ(%)‘l) are plotted in Fig. 3.

3.2. Approximation order

It is particularly interesting to characterize the approximating behavior of the projector depicted in (2) at low
frequencies, since many natural signals are essentially low-pass (e.g., images). For this, we extend the classical notion
of approximation order* to these discrete schemes.

We can continuously change the scale of the signal z by building z/(t) = /f.z(ft); the amplitude factor \/f
ensures that ||zf||yz = ||#||rz. When f < 1, this transformation amounts to shrinking the digital spectrum of the
sequence z by a ratio f and to setting to 0 the values that are between fm and w. Thus, when f < 1, f is the
measure of the bandwidth of the scaled signal 2.

We are thus interested in evaluating [|z/ — éL‘_pr when f tends to 0. We say that the filters (G,G) are of
approximation order L if ||z/ — z/||;z oc f& as f — 0.

THEOREM 3.3. Assume that the biorthonormal filters G(e') and é(e“‘)) are continuous at w = 0. Then, they define
L Z_M)L divides G(z).

an order L approrimation scheme iff (1__7
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Figure 3. Plot of the least-squares approximation kernels of Daubechies’ order 4 filter and of the B-spline filter
ﬁ(%)‘l; Although both filters have the same order, the B-spline outperforms Daubechies’ in the first halfband

Moreover, we have ||zf — 2 ||z = Cp & X ||| Le + o(FL) with

M-1 = 2ikm 2ikm 2 M-1 2ikmw
¢z = |3 GO LN Q)P (14)
- —2ikm —2ikm
@ M o1 (L—emar)b M oy [1—e™ar |20
where we have defined Q(z) by Q(z) = (3¢ 11__ZZ:A1/I)_LG(,2).

Proof. When f is smaller than ﬁ we know from Theorem 3.1 that ||zf — I_f||g2 is exactly given by the right-

hand side of (11). Thus, the condition that (G,é) be of approximation order L is equivalent to the condition
f:rﬂ | X (e?)|? Far(fw) dw o< f?£ as f — oco. Then, using a similar technique as in,!° we find that this condition is
equivalent to requiring that Fas(w) cancels 2L times at w = 0. Since the filters are biorthonormal, this is finally
equivalent to require that (ﬂ)L divides G(z). O

1—2z-1

2ikm

The first part of this theorem is the discrete analog of the well-known Strang-Fix equivalence.* When G(e M) =0
for k=1...M —1, the second part of the theorem is also the discrete analog of Unser’s expression of the asymptotic
constant'3; under this mild condition, always met in practice, we get

M-1 2ikm
1 Qe )2
Cga=0Ca= > S 15
@G M = | — == 2L (15)

This expression is in fact the least-squares asymptotic constant; it might prove useful to minimize it when the input
signal z has a very low-pass behavior.

3.3. Approximation results for wavelets

The expression Cg can be computed for filters that are generated by a multiresolution analysis; 1.e., for filters GG; of
the form G;(z) = G(2)G(2?) .. .G(z2j_1) and for M = 27.

THEOREM 3.4. Let A;(z) be defined by induction by Ay =1 and by

A(2%) = %[G(Z)G(Z_l)Aj—l(Z) +G(=2)G(=27) A1 (~2)]



forj > 1. Then, if G(z) = (H';_I)LQ(Z), we have
Céj = Céj—l + 22L(j_2)_1Q(_1)2AJ'—1(_l)a (16)

which allows to compute C’éj inductively from C’éo =0.

As a special case, when G is orthonormal, then we have Aj(z) =1 for all j, and thus

[Q(-D?22H7 — 1
i T 92L+1 92L _ | (17)

Cq

Proof. The demonstration uses the same trick as for the asymptotic “continuous” constant.!? [

Of course, when j tends to infinity, we recover the asymptotic constant for the limit functions generated by the
filter G, and its expression is given in.10:12

4. EXAMPLES: SPLINES AND DAUBECHIES

It turns out that it is possible to express the constant for Daubechies and spline filters. In the first case, taking into
account the formula |Q(—1)|? = (QLL) that was given in,'? we get

2L
D; =471 &) V22hi — 1 (18)

2(1— 4-L)

. . 12
“continuous” asymptotic constant

for the Daubechies discrete asymptotic constant.

L
On the other side, we use the direct expression of the B-spline filter, i.e., G(z) = \/M(ﬁ 11__22_1 ) in (15) for
computing the B-spline constant, and we get

M-1

1
Su=4 > o (19)

k=1 |1_6

We can compare the constants, when the approximation order, L, tends to infinity. We see that

9L(i=1)

17 VanL

as L — oo

12

using Stirling formula, as in."* On the other side, for the spline constant, we get

We thus see that asymptotically as L — oo, a downsampling by

T

M= arcsin 27 (20)
for the spline scheme yields the same low-pass approximation error as the Daubechies scheme with a downsampling
by 27. In other words, this means that, by using the spline filter, we are able to compress the data STaresmg=7 bimes
more than with an iterated Daubechies filter. When j — oo, we observe that we get the result stated in'? that
splines are asymptotically m-times better than Daubechies. In fact, even for j = 1 we obtain a compression gain of
3, a result that is already close to .
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