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Abstract— We extend the classical interpolation
method to generalized interpolation. This exten-
sion is done by replacing the interpolating function
by a non-interpolating function that is applied to
prefiltered data, in order to preserve the interpo-
lation condition. We show, both theoretically and
practically, that this approach performs much better
than classical methods, for the same computational
cost.

I. INTRODUCTION

Interpolation techniques are essential in various
applications of digital signal processing; in partic-
ular, in medical imaging: reslicing of MRI or CT
data, tomographic reconstruction, unwarping, cali-
bration, enlargement of images [1]. Other potential
applications such as digital publishing also require
interpolation algorithms. In biomedical imaging
specifically, the emphasis is placed on high qual-
ity processing.

In this paper, we show how, what we call “gen-
eralized interpolation”, outperforms classical inter-
polation methods which are based on compactly
supported interpolating kernels. Our method gives
much more flexibility for the design of the inter-
polator, whereas the computational cost increase
remains negligible.

We give a quantitative comparison of the ap-
proximation accuracy of the classical interpolation
kernels with kernels that are derived from non-
interpolating functions through generalized inter-
polation. The results show that our method, com-
bined with a careful kernel design, provides sub-
stantial quality increase for the same computa-
tional cost.

Most of the problems we are interested in are
multidimensional by nature (images, volumes), but
they can be brought back to one dimensional inter-
polation issues if we assume, as 1t will be the case
here, that the interpolators are separable.
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Fig. 1. Block diagram representation of the interpolation

scheme: (a) classical method where @iy is assumed
to satisfy ¢int(n) = én; (b) generalized interpolation
method.

II. (RENERALIZED SAMPLING

We consider the problem of interpolating a dis-
crete data sequence {si}o<k<n—1 in a computa-
tionally efficient way. The usual method consists in
defining a compactly supported interpolating func-
tion @int (¢); i.e., a function that satisfies @in (k) =
o for all integer k, and to build the approximating
function s(z) as

s(z) = ZSk‘sOint(él‘ — k) (1)
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This is, for example, Keys’ approach [2]. Here the
computational complexity depends only on the size
of the support of @ins ().

The goal of this paper is to outline the compu-
tational and approximation advantages of the fol-
lowing slight modification of (1), namely

s(z) = exp(z — k). (2)

kEeZ

As for (1), we still require the interpolation con-
dition s(k) = si. Thus, the ¢ in (2) satisfy the
following convolution equation sg = @(k)*cx. This



TABLE 1
COMPUTATION TIMES FOR THE ROTATION OF A 512 X 512 IMAGE

B-spline || Data handling | Filter | Total Ratio
degree times in seconds %
0 0.039 0 0.333 0%

1 0.039 0 0.467 0%

2 0.233 0.036 1 3.6%

3 0.233 0.036 | 1.217 3%

4 0.233 0.072 | 1.428 5%

5 0.233 0.072 | 1.689 4.3%

6 0.233 0.122 | 1.95 6.3%

7 0.233 0.122 | 2.261 5.4%

implies that the unknown coefficients ¢; can be ob-
tained by inverse filtering of the si’s

Ck:hk*sk

(3)
where hy is the impulse response of the filter
B 1

B Zkez W(k)z_k .

In effect, the interpolation constraint ensures that
formulee (1) and (2) are equivalent.

The interpolation procedure defined by (2)
and (3) is called “generalized interpolation”. Here,
the function ¢(z) is still assumed to have com-
pact support, but does not need to satisfy the in-
terpolation constraints, which obviously provides
additional degrees of freedom. We will show that
this generalization can yield dramatically better
approximation accuracy, at the additional cost of
low-order prefiltering (3). We now give some argu-
ments that show that this additional cost 1s negli-

gible.

H(z) (4)

A. Implementation Notes

From the definition (2) it appears that the only
computational addition to (1) is the prefiltering (3).
This filter is symmetric if ¢(z) is chosen symmetric,
which will be the case in general. However, it will
also have an infinite impulse response, unless ¢(z)
is interpolating: this calls for a proper extension
of the samples s; beyond the interval 0... N — 1.
One extension that has most good properties (con-
sistency with respect to symmetric filtering, “conti-
nuity”) is the mirror boundary extension [3]. As a
preliminary to the prefiltering step, we decompose
H(z) as follows

K-1 1
H(Z):Cklzll (1 —2zk2)(1 — zgz=1) ®)
Hi(z)

where [—K, K] is the support of ¢(2). Then, we
implement successively each Hy(z) using a succes-
sion of forward and backward 1-pole recursions; this

requires approximately 2 multiplications and 2 ad-
ditions per input sample. The final cost of the
prefiltering step is thus approximately 2(K — 1)
mults+adds per point, which is to be compared to
the cost of evaluating ¢ at a 2K given points, as
required by (1) or (2) for each output point. In gen-
eral, the former cost is negligible compared to the
latter, in particular, if we choose a small support
function ¢(z); e.g., K = 2 for cubic B-splines. This
cost gets even smaller in D > 1 dimensions, since
the cost due to the prefilter increases linearly with
D, while the cost of the evaluation of ¢ increases
exponentially with D.

In support of our claim, Table I shows the repar-
tition of this computation time for image rotation
using splines of various degrees. More surprisingly,
we observe that this cost is also negligible compared
to the simple cost resulting from the handling of
data before filtering. Note that, in our tests, this
handling cost is 6 times higher for non interpolating
splines (i.e., for degree > 2) because the prefilter
requires additional line and column manipulations.

I1I. APPROXIMATION ERROR

To evaluate the approximation error involved, we
use a recent result [4] which expresses the L? error
as a scalar product between the squared Fourier
transform of the signal and a Fourier kernel which
depends on ¢ only. For the case where the si
are the samples f(k) of a well-behaved function

f(z) [4], [5], we have
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and where p; is a usually small correction term. In
fact, this term is such that 612, — 7]? cancels on the
average when f is shifted, i.e.

1 A
A—)OOﬂ/;A

lim 5?(_,_7) dr = 17?.

A similar result was also given in [6] for the par-
ticular case where ¢(z) satisfies the interpolation
constraint, and where f(z) is bandlimited.

As it is clear from (6), the general accuracy of
the approximation is entirely given by the kernel
F(w). Thus, optimizing the approximation scheme
for a given set of functions (here, the ones that sat-
isfy Shannon’s sampling theorem) is equivalent to
minimize the Fourier kernel over the frequency sup-
port of those functions (here [—m, m]). This is the
approach we adopted in a previous paper [7] where
we exhibited the expression of compactly supported
synthesis functions that minimize the Fourier ker-
nel in the neighborhood of w = 0.

The plots of some Fourier kernels in Fig. 2 show
that the “non-interpolating” synthesis functions
perform significantly better than the interpolating
ones. Note that, except for the linear spline and
Dodgson’s kernels, the synthesis functions have the
same support and the same polynomial degree.

From worst to best
Linear spline
Dodgson's quadratic kernel
Keys' cubic kernel
Schaum's cubic kernel [8]
Cubic spline

Optimal cubic kernel [7]
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Fig. 2. Fourier approximation kernels of interpolating
(dashed line) and non-interpolating (plain line) kernels.
The results are significantly better (i.e., closer to the
abscissa line) with generalized sampling.

The gap between the performance of generalized
vs classical interpolation is even more impressive
when we know that increasing the degree of the
interpolating function is of little benefit to the per-
formance of the interpolation [9]. This is not the
case with generalized interpolation.

IV. EXPERIMENTS

In order to test for the practical validity of the
theoretical prediction of Fig. 2, we have rotated fif-

teen times an original 512 x 512 image by an angle
of r‘i—g radians. We have used the 6 interpolation
methods (4 classical and 2 generalized interpola-
tion methods) analyzed in Fig. 2 to implement the
rotations. The central part of the resulting images
is shown in Figs. 3 and 4 for each interpolation
method. The concentric circle image is a simple
but efficient test to analyze the selective frequency
loss caused by the different methods: the closer
to the center, the higher the frequencies. We ob-
serve that generalized sampling is characterized by
a superior preservation of high frequencies. This is
also manifest on Lena’s image (better preservation
of contours, especially on the hat).

The results are summerized in Table II:
that, especially for Lena, the SNR results give an
imperfect account of the high frequency preserva-
tion

note

TABLE TII
NUMERICAL RESULTS OF THE ROTATION EXPERIMENTS

Synthesis SNR (dB)
function circles | Lena
linear spline 7.1 26.9
Dodgson 9.4 27.32
Keys 15.0 | 27.73
Schaum 14.0 | 27.69
cubic spline 23.2 | 27.99
optimal cubic 32.7 | 28.08

V. CONCLUSION

We have shown the quality improvement brought
by generalized interpolation as compared to the
classical approach. What is especially interesting
from a practical point of view is that this improve-
ment can be achieved at no additional computation
cost.

REFERENCES
[1] J.A. Parker, R.V. Kenyon, and D.E. Troxel, “Com-

parison of interpolating methods for image resampling,”
IEEFE Trans. Med. Imag., vol. 2, pp. 31-39, 1983.

R.G. Keys, “Cubic convolution interpolation for digital
image processing,” IEEFE Trans. Acoust., Speech and
Signal Process., vol. 29, no. 6, pp. 1153-1160, 1981.

M. Unser, A. Aldroubi, and M. Eden, “B-spline signal
processing: Part I—theory,” ITEEFE Trans. Signal Pro-
cess., vol. 41, no. 2, pp. 821-832, February 1993.

T. Blu and M. Unser, “Quantitative Fourier analysis
of approximation techniques: Part [—interpolators and
projectors,” ITEEE Trans. Signal Process., 1999, To
appear.

T. Blu and M. Unser, “Approximation error for quasi-
interpolators and (multi-) wavelet expansions,” Appl.
Comput. Harmon. Anal., vol. 6, no. 2, pp. 219-251,
March 1999.

S.K. Park and R.A. Schowengerdt, “Image sampling,
reconstruction, and the effect of sample-scene phasing,”
Appl. Opt., vol. 21, no. 17, pp. 3142-3151, September
1982.

T. Blu, P. Thévenaz, and M. Unser, “Minimum support
interpolators with optimum approximation properties,”

(2]

(3]



linear spline

Schaum’s cubic kernel cubic spline optimal cubic kernel
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Fig. 4. Rotation experiment (15 rotations of the original image by 2m radians) using 6 different kernels: the “non-
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interpolating” kernels show the least noticeable artifacts



