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A New Design Algorithm for Two-Band
Orthonormal Rational Filter Banks
and Orthonormal Rational Wavelets

Thierry Blu

Abstract—In this paper, we present a new algorithm for the Conjugate quadrature filters (CQF’s) [3], [4] made it clear
design of orthonormal two-band rational filter banks. OWIng that it was possib|e to have both FIR and perfect recon-

to the connection between iterated rational filter banks and g \ction, The research in this field [5] was then boosted,
rational wavelets, this is also a design algorithm for orthonormal

rational wavelets. It is basically a simple iterative procedure, resulting in an _algebralc deS(_:rlptlon of a_‘ filter bank by a
which explains its exponential convergence and adaptability un- polyphase matrix, the determinant of which was shown to
der various linear constraints (e.g., regularity). Although the characterize perfect reconstruction with FIR filters. An es-
filters obtained from this algorithm are suboptimally designed, sential achievement of this formulation was the mathematical

they show excellent frequency selectivity. . “ PP
After an in-depth account of the algorithm, we discuss the expression of the CQF property known as “paraunitarity,

properties of the rational wavelets generated by some designed Which resulted in the proof [6] that all CQF filter banks can
filters. In particular, we stress the possibility to design “almost” be (robustly) implemented by cascading simple paraunitary
shift error-free wavelets, which allows the implementation of a elements of degree 1. Not only does this factorization pro-
rational wavelet transform. vide new implementation solutions, it is actually a powerful
tool for the design of orthonormal filter banks [7], even
|. INTRODUCTION though the method relies on a strongly nonlinear minimization

algorithm. In the biorthogonal case [8], [9], other fruitful,

R MOST signals, the ti f h . o :
© OST signals, the tlme and frequency content a\fﬁough incomplete, factorization results have been devised
to be analyzed together since they convey complementar¥ well

information, and this is usually done by using a battery . . _
filters, i.e., a filter bank. However, due to the time—frequenc At that.tlme, the stress was p.Ut on gnn‘orm f||j[er banks,
uncertainty relations, a subtle tradeoff has to be found betwe Hereas In many cases (e.g., signal with nonuniform spec-
the time and frequency resolution of the analysis filters: The ym), nonuniform structures could arguably prove more ef-
the basics of filter design. Actually, it is often assumed that thig'€nt: The link between wavelets and iterated (dyadic) two-
filters have a finite impulse response (FIR) since this ensufnd filter banks [10], [11] then generated a sudden interest
that they are well localized in time, have finite delay, antj Nnonuniform filter banks, especially in the orthonormal
require simple hardware implementation. case for which quite a few.de5|gn algorlthms [4], [12]-[14]
Many efficient filter design tools are available, and the{/'® presented. T.he more involved blorthpgonal case can be
provide different solutions depending on the choice of me@PProached by using general (but expensive) design methods
sure of the time—frequency resolution. However, for sourdel: [15]- ) ) ) o
coding applications, it is necessary to set new constraints:Th? rational extension of.the |terated.dyad|c filter banks
nonredundancyof the information, which results in subsamWas first proposed by Kogavic and Vetterli [16]. The reason
pling, andstability of the reconstruction, which ensures thalior this extension is that noninteger scale factor analysis brings
the coding—decoding scheme is not sensitive to quantizatiét¢ advantage of a finer frequency resolution and is known, for
within the subbands. Critically sampled quadrature mirror filtéample, to be more accurately tuned to the human auditory
(QMF) banks [1], [2] were then introduced in order to tak@nalysis system. A theoretical study [17], [18] showed that
these additional constraints into account: Although reconstri@? iterated rational filter bank can be viewed approximately
tion is not perfect, aliasing is exactly cancelled so that tt&s @ wavelet transform; more specifically, an intrinsic shift
whole analysis—synthesis system behaves approximately aganance prevents this relation from being exact, although clues
allpass filter. suggest that the generating filter can be designed to minimize
the resulting shift error [34]. Unfortunately, this hypothesis
" - ved August 23. 1996 revised N ber 6. 1997 Tcould hardly be tested in the specific two-band orthonormal
assoacri]:tzcrtle‘gjitgfcfc;\(l)?dinal:i?];sthe lleview’o;et\gissepapg\r/eamndee;ppyroving.it tional case since no deSIQn algorlthm existed. The general
publication was Dr. Jelena Kobavi. methods [7], [15] are so heavy and CPU power consuming that
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Fig. 1. Rational branch.

This led us to devise a simple, yet efficient design algorithm X
[21], especially dedicated to the rational case. In contrast with . . . :
other methods that try to minimizthe attenuation together Coavor PN . PN v
with the reconstruction errqrours focuse®nly on the atten- ® - DY —(O EN”] O
uation and relies on iterations to decrease the reconstruction Fig. 2. Analysis (left) and synthesis (right) rational filter banks.
error; an advantage of this approach is that the levels of these
two errors are not linked together, as is usually the case (e.g., q
[19]). Furthermore, perfect reconstruction is mathematically
ensured when the algorithm terminates (i.e., when the iter-
ations converge); it providesxactly orthonormafilters that
generate orthonormal rational wavelets.

This algorithm, which was first presented in [21], will be
explained in detail after an introduction on rational filter banks Fig. 3. Iterated two-band rational filter bank and limit functions.
and will then be illustrated with design examples.

p
e .

RFB’s generated by the iteration of two-band filter banks. In
A. Notations this paper, we consider only iterations over the same branch
All the filters are assumed to be FIR. We denote the (the lowpass one) such as in Fig. 3 and show how to design
transform of a filterG(z) by G(z) = 3, g[n]=—". The filter the involved filters so that the resulting RFB preserves “good”
is written in upper case, and its coefficients are written iproperties.

lower case. Structurally, a rational branch (Fig. 1) performs a fractional
The kth p-polyphase version of this filter is denoted bysampling rate change. In the frequency domain, this property
G%(#), where extends the usual halfband filtering behavior that characterizes
. . the dyadic case (i.e., the cgse- 2 andg = 1) by allowing the
GR(z) =D _aiz™" = _glk+npl™". bandwidth to be any fraction<1) of the sampling interval.

This makes it possible to implement constant/ f transforms
The complex conjugate of any objectis written Z, and through iterations (as depicted in Fig. 3) with almost no
the notationG(z) refers to a filter whose coefficients aregestriction on the scale factor (it only has to be a rational

conjugates of the coefficients @¢f(z). N number). This freedom is a significant improvement over the
The Lth root of the unity(;, = ¢ is used in some dyadic case where the scale factor is frozen at 2.
equations. This finds a natural application in audio sound processing,

Vectors are written in roman fonts, whereas matrices arefir which an octave-band analysis is ill adapted. Instead, an
bold roman. This convention helps distinguish between a filterated rational filter bank with a scale factpfq = 6/5
G(z), a vectorG, or a polynomial vectot(z), and a matrix [24] closely approximates the Bark scale analysis [33] and,
G or a polynomial matrixG(z). thus, makes it structurally easy to take psychoacoustic masking

The identity matrix is designateH The dimension of this effects into account.
matrix remains implicit since no ambiguity will arise from
our equations. A. Two-Band Iterated Rational Filter Banks (IRFB’s)

We have proved in an earlier paper [17] that iterating a
rational filter bank on its lowpass branch yields limit functions
This section gives an introduction to rational filter banksn a very similar way as in the dyadic case. The difference is
putting the emphasis on two-band structures and their itethat these functions are not shift invariant when the generating
tions [16], [17], [22]. lowpass filterG(z) has a finite impulse response [16], [25],
RFB’s are made of elementary branches such as in Fig.ahd thus, they cannot rigorously be termed “wavelets.” They
They can be either of the analysis kind (one input-multiplere instead named “pseudo-wavelets” [17]. For the sake of
outputs) or of the synthesis kind (multiple inputs—one outpuimplicity, however, we shall not retain this terminology and
as shown in Fig. 2. The conservation of the sampling ratall them “rational wavelets,” owing to the many properties
through the analysis (or the synthesis) stage, which is termtaey share with true wavelets [18].
critical sampling, is mathematically enforced by the constraint As a matter of fact, the decomposition of a signal by an
PR + = 1. In the two-band case, the inverse structure dRFB can be interpreted within the multiresolution analysis
an “analysis RFB” is always a “synthesis RFB,” although thiformalism [10], [11] (i.e., embedded multiresolution functional
is not true in the generaV-band case [16], [23]. spaces..V_; C V...V, ... and associated complementary
A tree structure is a simple way to build complex filtebiorthogonal space®’,, with V,, & W,, = V,,1). As pointed
banks out of simpler ones, and this property carries over ¢ot earlier, the spacds, are generated by a set of nonshifted

[I. RATIONAL FILTER BANKS (RFB)
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functions {gaj({l’%t)}jez (instead of{x(2"t — j)},;cz in the which is a consequence of orthonormality. For example, let
dyadic case). us analyze a sinusoig?**/ py the filter bank. Denoting the

Many results carry over, with adequate adaptation, from th@wvpass and highpass outputs by andy,,, respectively, we
dyadic to the rational case. In particular, it is still possiblbave
to compute theglobal regularity of the limit functions (here,

q—1 q—1
the minimum value of the Blder exponents of the functions) |Z i = EZ |G(62iﬁ%) |2
via an infinite product of matrices [26], [27, dyadic case], =0 797
[28, rational case]. Actually, the rational fractioR(z) = p—g—1 | Pt
il i e i
%j_ij plays the role of a regularity factor, but unlike its [Yrir]? = — Z |H((32”%)|2
integer equivalent + z~! 4+ 272 4 ... z7P*L this is never k=0 P=1 1=

a polynomial wheng > 2. However, requiring that7(z _ g .
poy ¢ = quining (2) YvhereZL%J k24308 [yna ]2 = p. Now, if the low-

contains N regularity factors and that the true polynomial : ) , e
Ro(2)N = (ijj)N divides G(z) are equivalent conditions tphass branch. IS selectlvg, Wh]ch hap.pens whén) m|2|m|zes
for EIR filters. e attenuation (6) defined in Section Ill, théX{1) ~ \/pq.
Thus, Y725 |z 4x|? ~ p when f € [, 5] (passband of
B. Orthonormal IREB’s _G(e2_i’”’/q)). Using the power complementary relation3 this
_ _ implies that the lowpass energy that goes through the highpass
We shall now focus on orthonormal filter banks for whicly anch is small. The additional degree of freedom provided by
the syngheS|s filters are time-reversed versions of the analygjs (possibly nonunique) choice &f is thus neutral as to the
filters:. Gj(z) = G;(z71) in. Fig. 2. As shown in [16], an selectivity of theH branch.
RFB is equivalent to a uniforml/-band filter bank, which | contrast with the dyadic case, the orthonormality condi-
proves that an RFB can be described by a polyphase maffy, consists ofseveral (actually ¢) equations; see (1). This
IL'(z). Moreoyer, if the RFB is orthonormal, this matrix iSexplains why the tricks used in the dyadic case to solve
paraunitary, '-e-r(z)r(zf_l)T = L [6]. various problems (Chebyshev attenuation minimization [4],
~After some algebra, it can be shown that the analysayimum number of regularity factors [12]) do not hold in
sis/synthesis equations corresponding to an orthonormgd rational case. However, regarding regularity, it can easily

;vg?s-band RFB (notations of Fig. 3) can be written into threBe proved that ifG(z) is divisible by N factors zjj, then
(2=1)N divides G(») as well; this constraint is obviously
122 ok 1 X always satisfied in the integer case.
D ZG(C(ICP z )G(sz) =6
P30
fors=0...q—1 (1) [ll. DESIGN ALGORITHM
T We consider the following problem: Find the most selective
SCH(G G R H(¢ER) =6, filter G(z) satisfying the orthonormality equations (1) and,
rlr—9) = possibly, additional linear constraints (e.g., regularity). The
fors=0...p—¢g—1 (2) quality of the selectivity will be quantified by a measure of
p—1 the difference between the moduli@fz) and of an ideal filter
D H(G_Gh2 )G =0 F(z) on the unit circle. The normalized frequency response
k=0 of F(z) is such thal F(¢*™)| = \/pq if v € [-35;, 3], and

fors=0...p—q—1. (3) 0 elsewhere; thus, iff(z) = F(z), the whole rational branch

. L 1 i discards the frequencies abog)e However, other filters could
Note that if G(z) satisfies (1)~(3), so do&s(=""). This ex- 45 the job: They would not necessarily be lowpass since, in
plains why, in a design problem where the attenuation—whighe \\nsampled domain, the lowpass energy of the input signal
depends only on thmodulusof the frequency response of thgjag not only around frequency 0 but also négg, 2/q. .. We

filter—is minimized, the optimum is usually not unique. — cpgose, for the sake of simplicity, fdf(z) to be a template
Actually, we shall consider only the first set (1) of equationg,, G(z). Yet, we surmise that it is necessary 16tz) to be
which is related to the orthonormality of the “father” "mitlowpass in order for the iterations to be stable.

functions [17]. Once’ is designed, it is always possible to The first (s = 0) orthonormality relation (1) yields the
recoverH (see Section I1I-C); this filter is even unique Whe'bower complementary equation
p — g = 1. Moreover, once7(z) is designed, the attenuation

level of the H branch is frozen. This ensues from the power r—l i (ot 2
complementary equation > |Ge P = pa- (5)
k=0
g—1 ‘
Vv e R, S Z |G(62i7"VT+Z)|2 This shows that the values ¢&(c*™)J? in the attenuation
Pl band[3; + ¢, 3] determine uniquely the value ¢€(c*™)|?

1 roat T in the passban{D, % — €] for some positive number. Thus,
e > JH(F™=a)|"=1 (4 it is sufficient to minimizeG(z) on its attenuation band in
PP 15 order to minimize the difference between the modulif)
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and F'(z) over thewholespectrum. Of course, such a property 2) Constraints: Second, we rewrite half of the reconstruc-
would not hold in the biorthonormal case. We chooseRRe tion equations.

norm to quantify the attenuation For practical reasons of accuracy [because (1) contains
complex irrational numbers], we use an equivalent polyphase
formulation of (1)

DI P S
k
1

for v :.ﬁ + ¢ > 5 because of its many appealing VneZ
mathematical properties.
As usual in filter design issues, a tradeoff has to be found

between the attenuation level and the widtk, — ﬁ) of the  The degeneracy resulting from the symmetny, nj,n) —

transition band. (nf,no, —n) (10) is removed by considering the subkeof
index values defined by

1/2 ‘
1y (G) = / G2 2 dy 6)

Yno,np =0...q—1. (10)

A. Description

Our design algorithm is based on three key ideas. K= {(no,nﬁ,n) €0...q— 1 xNst.
e The attenuation to minimize iguadratic in G, and,
provided that the constraints are linear, this amounts to ‘
solving a linear system of equations.
¢ The orthonormality constraints (1) are quadrati@drbut

if n=0then0<ng<nj<g—1 (11)
if n>1thenng,ni,=0...q—1 )

The working idea of our algorithm is thus to enforce the

arelinear in G if we consider biorthonormality constraintsfouowing linear constraints orG(z).
instead.

* The orthonormality constraints (1) are degenerated and Z'Vq Tk — nplg®,, k] = 6 o b
contain approximateljwiceas many equations as needed, — P o Moo

due to the symmetry — 27!
These observations suggest a recursive procedure to compute

a sequence{Gi(z)}hien Of filters such thatGo(z) is the Here, y[n] is substituted forg;_;[n] (I = iteration step) to
designed filter:G;_; being given, minimizea,, (G) for G avoid too many indices.

under the linear constraints This set of equations is rewritten in vector notation as

for (ng,ng,n) € K. (12)

p—l SG=C 13
LS Gt )a() -
k=0 ] » where we have denoted Wy a constant column vector and
= 6, + strictly positive powers o (7) by S the rectangular constraint matrix. The coefficients of this
matrix are those of7;_;, and actuallyS is linear with respect
for s = 0...q — 1, i.e., roughly half the biorthonormality to G; ;.
constraints; this provide§ = G,.;,. Then, we let The numberNg of rows of S is directly computed in the
software by simply counting the number of constraints. It can,
G114+ G (8) in fact, be expressed exactly in function &f, p, and ¢ but
- 2 yields such an intricate form that it would be pointless to
write it down here.
which prevents convergence toward a nonorthonormal so-Other linear (with respect t6/) conditions can be added,
lution. At each iteration sted, a reconstruction error is such as the regularity constraints. For instankeregular-
computed, and the iterations stop when this error is smaj factors imply that(Z=t==L)X divides G(z), which is
enough. We now come to the details of the implementationequivalent to

> (k+np)ghln] = (np)'ghln] VI<k<p—1

Gl(z)

B. Implementation

1) Quadratic Functional: First, we identify G(z) with the > (k +ng)"gi[n] = (ng)"giln] V1<k<g-1
column vectorG of its coefficients|go, g1, - - - gn]*, Where n n
N = deg(G(z)). Thus, (6) takes the form forr=0...K-1 (14)

1y (G) = G' AoG ©) or under vector form
TG =0. (15)

where the symmetric positive definite Toeplitz matry is

defined by[Ao];; = —=750=0" if 0 < i # j < N and In this equation,T is an Ny x (IV + 1) rectangular matrix,

[Aoli; =1/2—1pfori=0...N. where Ny = K(p+ q — 2).
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3) The Minimization: Using Lagrange’s method, our con- « The convergence rate is exponentialx 0.7'. This is
strained minimization problem can be rewritten into an un- not a particularly surprising result since the algorithm is
constrained form. Introducing the vector multipligrof size a kind of fixed-point algorithm, which usually shows this
(Ns + Nt) x 1, we have to minimize the functioth(G) = behavior.

G'AoG — 2\'XG, whereX is the global constraint matrix < Although vV is arbitrary aboveVr 4+ Ng — 1 (this ensures
¥ = [S* T!J'. X is then determined by enforcing (13) and  that there are at least as many unknowns as constraints),

(15). the resulting filter always ends up with deg®¥g, where
The minimization ofJy(G) amounts to solving, foX, an N —p < Ny < N, and Ny = —1modp. Actually, the
equation of the formA,X = Y. However, Ay is ill condi- coefficients betweeVy + 1 and N are below computing

tioned whenV is large enough so that a “stabilization” trick accuracy, and choosiny or Ny does not change the
has to be devised. In this purpose, we add another quadratic result. The degree df(z) can thus be restricted to be of

term to Jo(G), namely,||SG — C||%, which obviously does not the formk x p — 1.
change the final resutf,,;,. For conditioning reasons, we are
thus led to minimize the function off C. Highpass Filter

J(G@) = G'"AoG + (G'S' — C)(SG — C) — 2)\'=G. (16)  The highpass filter will be deduced from the lowpass. In
the dyadic case, for example, we have the formHlg) =

The result is +z72"1G(—z"1), which can be extended to the rational
B e[ C] [C case, p_rovidedu — ¢ = 1, this is shown in the following
A=(EMTXY |:0NT Oy (17) Subsection.

-l t 1) Direct Method: Assumep — ¢ = 1, and consider (1)—(3).
Cunin = M7 (3A+8°0) We can rewrite them into matrix fornf'(z)['(z~1)t = 1,

whereM = A, -+ S'S is a much better conditioned matrixWhere

than Ay. 1 [G(?Ckcl)] 0<k<g—1
4) To SummarizeThe algorithm as it is currently imple- I'(z) = — °r ; 0i<po1 | (19)
mented (MATLAB, MaclIntosh Quadra 840) runs through the VP | [VaH (21 )]0§l§p—1

following steps.

1) Choose an initial filterG, of degreeN. It turns out " i i
that since the algorithm isompletely insensitiveo the & Pure delay. Specifically, this delay is of the fo
choice of the first filter, the initialization method doed!P to the multiplication by a constant of modulus 1 for some

The perfect reconstruction hypothesis implies tha{T’) is
M7t 3 )pa

not really matter. integern; this is because the change— ze: rotates thep

2) Compute the constant parameters of the algorithm sugpfumns and the firsy rows of I'(z) by 1, and this actually
asT, Ao, andC. results in the multiplication of déF(z)) by —1.

3) At iteration stepl, we assume thaty_; is known.  Denote [I'[x; as the minor of order:,! of I', i.e., the
ComputeS with (13), and obtainG..;, according to determinant of the—1xp—1 matrix built fromI" without line
(17). k and columni. The classical matrix inversion theorem states

4) UpdateG; according to (8), and compute the reconstruc- 1
i i I = (=1 Tla]
tion errore(-) defined by = Jeil Lk|o<k,i<p—1-

(@) = sup Zngp[k]gZp[k] il (18) Applied to our case, this provides
n,n’'c’z %
H(zt) = 2 (e )rpty) (20)

If £(G) is greater than or equal to some small prede-

fined value (e.g.107""), go to Step 3; else exit with ;1 the multiplication by a constant of modulus 1. Once
Gaesigned ~ Gi. again, it is easy to verify directly that the right-hand side is
5) Convergence:The mathematical convergence of this akruly polynomial inz¢ by making the change — z¢2%/¢. The
gorithm is still an open problem, and we are not goinfr| term is multiplied by(—1)” (rotation of column vectors
to answer it here. However, the overwhelming agreemet ||, ; o), which is cancelled by the change of the delay
between our observations (settingl@ ! threshold for the term. As in the dyadic case, the right-hand side depends only
perfect reconstruction error) leads us to claim the followingon G(z), which shows that? determinesH uniquely (up to
e If ¢ =1, convergence is unconditional; but increased reg- delay).
ularity order (above 5 for small filters and higher orders This exactresult is, however, not very practical because
for larger ones) requires increased computing accuracyf the following problem: IfG is of degreeN, (20) implies
e if ¢ > 1, convergence is unconditional if no more thamthat H is of degree/N as well, whereas by other means, we
one regularity order is required. know that the true degree dff is (approximately)%. An
« Convergence (i.e., rate and limit) is independent of traternative method, based on the factorization of paraunitary
initial filter G, although an adequate choice may redugeatrices [6], is more reliable once the reconstruction error is
the number of iterations. kept small enough.
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2) Via the Lossless Cascadé&Ve do not assumg — g = 1 computation comes from the (experimental) observation
anymore. The analysis/synthesis equations from (10) can be that exactly(%} paraunitary sections are sufficient to de-
put into matrix form [17], resulting in the polyphase matrix ~ composel’' » whenG(z) is obtained from our algorithm.
I' » of the filter bank being paraunitary. Specifically, we have « The factorization (23) is nicely adapted to the implemen-
[6] Tp(2)Lp(z 1)t =1, whereI'p can be decomposed into tation of filter banks in fixed precision [6] while retaining

two rectangular submatrices the perfect reconstruction feature; the trick amounts to
G using non-normalized versions, with integer coefficients,
I'p= [H} (21) of the unitary vectors;, in (23). As indicated in [6], the
orthogonal matrixP, can itself be put into the similar
Here, G =[Gy, ] is of sizeg x p and depends only o(z), form
whereasH = [H; ] is of sizep — ¢ x p and depends only on »
H(z). Their respective expressions are Po =[] (T 2vx0}) (24)
k=1
Gr(z) = GZZ_IQ(Z) for {% é ]; gg_ 11 where the vectors; are unitary.

(22) We shall thus use this economic description in Section IV
for the presentation of our design results. Note that our method
requires the lowpass filter to show a very low reconstruction

Note thatG(z) and H(z) can be retrieved fronG and H error. This is always the case for our algorithm when we set the

through maximum reconstruction error to be less thHarr!!, although,

B for very large filters, a greater accuracy may be needed.
G(z) = Ug(2")' G(")Up(27%) Whenp — ¢ > 2, the matrixP, has to be filled by more

H(z) = U,  (zP)'H(ZP®~O)U, (2 PF9) than one row. ThusH (=) is no longer unique, but as shown

I v in Section 1lI-B, this degree of freedom does not change the

where Un(z) = [1, 274, 272, ... 2~ N+ - - :

i . . L selectivity of the highpass branch, which only depends on the
Since I'p Is a square paraunitary matrix, It can b(?owpass. This means that any filtéf(z) obtained will meet
(nonuniquely) factorized [6] into the form our requirements.

0<k<p-q-1

kp—i(p—q) 0<I<p—1.

Hy () = H'?9  (2) for{

M
Tp(z) =z "Po [[ T+ (z ' — Dwry).  (23) IV. DESIGN RESULTS AND COMPARISONS
. =t o This section provides some design examples. We compare
The parameters of this factorization are chosesas M =  our filters with those obtained by other existing methods.
deg(det I'p(2)), Po is a constant orthogonal matrix, andquite a few design algorithms are now classical in the dyadic
{urtr=1..m are unitaryp x 1 vectors. orthonormal case [3], [4], [13], [14], [31] as well as in the

Equation (23) still holds for rectangular paraunitary matricegadic biorthonormal case [9], [32]. In contrast, much less
[18], [29] (for which T'p(2)L' p(2~1)" = I, whereI'p(z) has [16], [22, orthonormal], [32, biorthonormal] has been done in
more columns than rows). The only change is that the constgqé true rational case.
orthogonal matrixP is replaced by aectangularmatrix that e shall first compare our new algorithm with others in
satisfiesPoPf = L the dyadic case. Then, for/q = 3/2, we shall see that our

Although the product is still finite}/ is no longer a constant gesigned filter shows better characteristics than Kevi's
and depends on the other parameters of the factorizatipre] [22], whose method is based on a direct minimization
The vectorsu,, are computed by induction, using a techniquyr the parameters of the cascade decomposition [6], [30] of
described in [30] (for square matrices) and are also sketched filter bank.
in [18, pp. 67-68]. Finally, we shall exhibit a set of filters fqr/q = 6/5. This

Thus, computing (z) amounts to factorizing the rectangufactor is especially adapted to audio processing because it is
lar matrix G(z) into paraunitary components and then addingery close to the Bark scale factor, which is a psychophys-
rows to the rectangular matriR, so that it becomes a squargcg| frequency unit [33]. Actually (psychoacoustic), coding
orthogonal matrix. In turn, the product (23) will provide theyttempts [24] using these filters proved quite promising.
global polyphase matrix of the systdig(z) from whichG(z)

and H(z) can be extracted. A. Comparison with the Dyadic Case

Here, we see some advantages of this method.

« The filter bank hagxactperfect reconstruction, whereas
out of the design algorithn@;(z) is only almostorthonor-
mal (e ~ 10711).

 The degree off(z) is now (approximately)%.

« The factorization provides an economic way to descri
the two-band system. Only? + % real numbers are
required for the whole system to be compared wit
the (1 + %)N + 2 numbers by the direct method. This;

Our algorithm is able to provide filters for any value
of p and ¢ (p > ¢), and, in particular, forp/q = 2/1.
Depending on the attenuation measure, various orthonormal
filter design algorithms exist. For tHe™ norm (a Chebyshev
approximation problem), solutions are worked out in [3], [4,

regularity], and [14, with regularity]; for thB? norm, [31]
Rrovides a method that uses linear programming.

The orthonormality equations and the attenuation measure
volve only the filter R(z) = G(2)G(z71), and thus, the
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Fig. 4. Frequency responses of the three filters described in Section IV-A. Full scale (left) and closeup around the transition frequency (right).

minimization process provides onlft(z) = Rmin(z). A algorithm with theirs, we set the length of our filter to 30

consequence is that any filtéi») satisfyingG(2)G(»~*) = and 14 to 0.208, thus ensuring the same “real” transition

R,in(2) is a solution of the minimization problem, implyingfrequency. Our algorithm converged after 72 iterations in 28

that several filters are minimal. In contrast, our algorithrs, the exponential convergence rate lying between 0.6824

provides only one filter. Experiments show that it is alwayand 0.6825. The lowpass and highpass filters designed by

the one that has all its rooteside the unit circle. both algorithms are plotted in Fig. 6. It is evident that
We have thus computed filters of degree 39 for a (normadur algorithm has a much better attenuation (the difference

ized) L° transition frequency of 0.279. This compares with amounts to 12 dB).

transition frequency of 0.275 for tHe* norm andvy = 0.2754

for our algorithm. Fig. 4 shows that the first ripple is highe _aE _

for the L? solution, followed by our algorithm, and then%' Examplep/q = 6/? a_md_]\-f =208 -

by the Mintzer/Smith-Barnwell (MSB) solution. There is a 1he last example is justified by the critical band phenome-

difference of approximately 3 dB between our solution arfg®n brought to light by psychoacoustic experiments [33]. We

MSB’s and 1 dB with the quadratic solution. These differencéfowed [24] the advantage of tiig5 scale factor for large

are obviously very weak. Actually, we have always observéfnd audio coding. o

that the solution of our algorithm performs slightly better than N order to ensure a good frequency selectivity up to the 19th

the L2 solution and slightly worse than tHe solution. !terat|on (29 |ter§t|ons span five ocFaves, i.e., the_freq.uency
The convergence has been achieved within 78 iteratiofiderval over which th.e Bgrk scal_e is almost Iogarlthml.c), a

which take approximately 37 s on a Macintosh Quadra 84@ther long lowpass filter is required. Here, the behavior of

under MATLAB. The convergence of the reconstruction errdh€ iterations is not negligible, as far as shift error (closely

plotted in Fig. 5 is almost exactly exponential after 30 iteiconnected to the selectivity of the iterated filter bank [18])

ations. A very accurate computation of the convergence r&@d regularity [28] are concerned. _
yields a value between 0.7366 and 0.7367. Since our algorithm is fast and unsupervised, we took the

opportunity to try various transition frequencies and filter
lengths. It appeared that the choieg= 0.093 (for the ideal
filter 1y = % ~ 0.083), degreeN = 204, and one regularity
Rational design examples are rare in the literaturtactor was suitable for our application.
Kovatevic and Vetterli [16], [22] described a method The design algorithm converged after 81 iterations and
(orthonormal case) that is essentially based on the losslagproximately in 36 min, whereas the reconstruction error
decomposition of the polyphase matrix [6]. They designetbcreased exponentially at the rate @361 <ation, The
a lowpass filter of length 32 and of transition frequenclpwpass and highpass filters are plotted in Fig. 7.
approximately 0.21. Actually, their algorithm was not fully For the reasons discussed in Section IlI-C2, we use the
optimized since they essentially wanted to show the advantdgssless decomposition to express the filters obtained by our
of direct instead ofindirect design. In order to compare ouralgorithm. They are given in Table I, where the vectors are

B. Comparison in the Case/q = 3/2
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Fig. 6. Frequency responses of the filters obtained by the following algorithm (case 1V-B) and by the lossless factorization [16], [22]. Lowpass (left
and highpass (right) filters.

non-normalized versions of the vectats (23) andw;, (24). D. Remarks

Notice that quantizind®, removes the regularity factor from The filters designed by the proposed algorithm have excel-

the lowpass filter; in sp|t_e of_that, the values of the qugntlz? t attenuation characteristics. This is particularly obvious in
filter at these frequencies is small enough (approximat . . .
e few cases where optimal solutions are available.

107) to prevent any divergence resuiting from the lack o As far as iterations are concerned, regularity is a more
regularity, given that we make 19 iterations. » T€0 Y

To be complete, we computed the limit functiops gen- ?mportant matter th.an fqr dyadic §chemes. Basically, more
erated by these filters [17]. Here, the functions are almdirations are required in the rational case. Although the
shift invariant, i.e.,on(z) & @o(z — n). The shift error is ratlor?al schemes may arguably diverge more slowly than the
approximately 0.004 [18], [34]. We have thus plotted onl§lyadic whenG(z) is not regular (because/q is closer to 1),
one of them (see Fig. 8) together with the correspondi¥e advise at least one regularity factor to ensure the stability
“mother” wavelet (i.e., highpass). Thaeoreticalsupport of Of the frequency response of the iterated lowpass filter.
both functions is approximately the degree @f(see [17]),  Unfortunately, except in the integer= 1 case, our algo-
i.e., 203. In practice, however, these functions almost cancghm diverges almost surely when more than one regularity
outside intervals of size 40 and 50 respectively. factor is required, and because of this divergence, we are also
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unable to compute the rational equivalents of Daubechies’regularity hypothesis, this iterated filter is lowpass, and its
filters [12]. A full account of the advantages of regularity isrequency support is close to the id@alﬁ, ﬁ]. Besides, the
thus left unanswered at that point. In the dyadic case, a stuginsition bandwidth o3, (z) is bv; = I% and its degree is
[35]_ highlighted |'Fs pot_entlal for image codmg. N, = NZ=2 \which implies that®=%.N;6v; — C as; tends
Finally, as noticed in case IV-C, theffectivesupport of R P -

L . : to infinity. Thus,G; has the same design characteristics as an
the limit wavelets is much smaller than theinheoretical ) i J - ) .
support. This observation has long been known for dyaa‘?(?t'mal f||te.r of dggreeﬁ times smaller. 5'”0@, IS very
wavelets [12]. Let us explain and quantify this characteristi€lose to an ideal filter, we conclude that its coefficients almost
The attenuation level of a filtei(z) being given, it is cancel (out of an interval of lengtly; 7%), and this explains
experimentally observed [36] that its transition bandwiéith Why the support of the limit lowpass function is approximately
is (roughly) inversely proportional to its degredr ~ C' if included in an interval of size.
we let N = deg(G(z)). On the other hand, iterating times It is thus because of the iterations and of the selectiv-
yields [17] G;(z) = G(z" " )G(z%"7")...G(z7 ). Under ity constraint that an iterated filter bank loses a part of
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TABLE |
ResuLTs FOR THECASE IV-C: DESCRIPTION BY THE
(NON-NORMALIZED) PARAMETERS OF (23) AND (24)

(2]

By [3]
Vi Vg V3 V4 Vs
70734 0 0 0 0 4]
23869 | -70869 0 0 0
55675 | 46536 | -80228 0 0 [5]
-21414 | 40972 | 53091 | -73221 0
6445 | -23857 | 22899 | 66486 | -37641 [6]
28760 | -23753 | 14849 | -14774 | 92645
Vectors of the lossless factorization (7]
ug Uy us uy 5 ug usz
-40520 | -42634 | -33906 | -48059 | -23538 28| 0
41126 | 40059 | 40627 | 35260 | 42460 | 479 | © (8]
-41720 | -37055 | -49555 | -18513 | -61601 | -4455 | 0
41657 | 36465 | 52392 | 13719 | 59329 | 25498 | 0 [9]
-39817 | -44374 | -31302 | -56285 | 14705 | -96591 | 0
40069 | 43655 | 31929 | 52423 | 10599 1] 1 [10]
its computational efficiency, This is the price we pay fo H

a recursive, low-memory storage, flexible (e.g., addition of
new branches) implementation of a const@nanalysis. This [13]
relative inefficiency may be relieved by the direct design of
a close M-band nonuniform filter bank [19]. In this case,
however, structural perfect reconstruction is most often log#l
[19], [20], the storage cost for the filters is heavy, and tI*ﬁS]
flexibility is much reduced.

V. CONCLUSION (16]

The new design algorithm we have presented has tﬂg]
following properties.
* It is recursive, and each iteration amounts to solving a
simple linear system of equations. s
« It is fast, due to its exponential convergence.
« It is automatic (independence from the initialization). [1°!
+ It can be adapted to various needs by adding new lingag;
constraints or by changing (e.g., weighting) the quadratlc
attenuation measure. [21
« It provides excellent, nonequiripple, filters, as shown by
the comparison with optimal results in the dyadic casel22]
Furthermore, as suggested by a reviewer, the universality[gd
the main trick used here—i.e., keeping half of the orthonor-
mality equations—makes it potentially useful for design i issues,
other than rational filter banks.

8]

[25]
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