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We investigate the approximation properties of general polynomial preserving op-
erators that approximate a function into some scaled subspace ofL2 via an appropriate
sequence of inner products. In particular, we consider integer shift-invariant approxi-
mations such as those provided by splines and wavelets, as well as finite elements and
multi-wavelets which use multiple generators. We estimate the approximation error as
a function of the scale parameterT when the function to approximate is sufficiently
regular. We then present a generalized sampling theorem, a result that is rich enough to
provide tight bounds as well as asymptotic expansions of the approximation error as a
function of the sampling stepT. Another more theoretical consequence is the proof of
a conjecture by Strang and Fix, which states the equivalence between the order of a
multi-wavelet space and the order of a particular subspace generated by a single
function. Finally, we consider refinable generating functions and use the two-scale
relation to obtain explicit formulae for the coefficients of the asymptotic development
of the error. The leading constants are easily computable and can be the basis for the
comparison of the approximation power of wavelet and multi-wavelet expansions of a
given orderL. © 1999 Academic Press

I. INTRODUCTION

Obtaining a discrete representation of a function is an unavoidable step if one wishes
to develop numerical methods for solving problems that are formulated in the continuous
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domain. A general approach is to project the input functionf( x) { L2 onto an appropriate
subspaceVT of L2, whereT is a scale (or bandwidth) parameter that determines the quality
of the approximation. One of the simplest forms of projection is interpolation where the
function and its approximation are in perfect agreement at some specified grid points.

In digital signal processing (DSP), this discretization is obtained by sampling, using
Shannon’s sampling theorem [41], which allows one to represent a bandlimited function
by a countable set of uniform samples. Usually, the considered functions do not satisfy the
conditions of the sampling theorem exactly but this discrepancy is not detrimental: the
important point is that the quality of the representation improves as the sampling
frequency increases. Most of the research done in this field is thus made with data already
discretized. However, the sampling theorem, which is at the basis of the theory, is still
used regularly when continuous operations (such as a 2D rotation, or a noninteger time
delay) have to be implemented in a discrete manner. In these cases, it is highly desirable
to have a good handle on the approximation error, especially if one uses alternative signal
representations such as splines and wavelets [48]. A precise characterization of the
approximation power of wavelet bases may also be very valuable for coding applications
[5, 38].

Interpolation methods have been studied extensively in approximation theory and areas
of applied mathematics where the goal is to discretize continuous equations that cannot be
solved easily without the help of a computer. These problems often involve several
dimensions, which explains why most results in approximation theory are published for
multivariate functions. The underlying process is otherwise very similar to the sampling
scheme, with the important difference that here the approximation error is a parameter that
has to be estimated, since in that case, the adequacy of fit between continuous and discrete
data has to be controlled. The philosophy here is rather different from the one which
prevails in DSP: emphasis is placed on theregularity of the function instead of on its
bandlimited character.

In this paper, which we have divided into three parts, we present a detailed and
quantitative characterization (Section III) of theL2 error introduced by such linear
approximation schemes under very general conditions on the functions to be approximated
and on the analysis and synthesis functions which define the approximation algorithm
(Section II). An application (Section IV) to the special case of refinable generators shows
the potential of our general results.

An aspect of our paper is the consideration of representation spaces generated from
equidistant translates of several functions (“multi-wavelets”), instead of only one (“wave-
lets”). In order to preserve the sampling density, we use a shift increment that is a multiple
of the number of generating functionsq, so that our basic representation spaces are
q-integer shift-invariant. We use a vector formalism well adapted to the study of multi-
wavelets, which have attracted much attention recently [1, 15, 27, 28, 51].

For our analysis, we have purposely chosen to consider a very broad class of linear
approximation operators. An interesting subset of them includes the cases usually desig-
nated by quasi-interpolants [11, 20, 24, 42], the various types of projectors encountered in
the context of the wavelet transform [14, 45], but also more general polynomial preserving
operators that have been studied recently [9, 29, 33]. A general account of quasi-
interpolation can be found in [21]. Here, we will see that the order constraint is translated
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into a simple moment condition for the analysis functions—a very weak form of bior-
thonormality, which we call “quasi-biorthonormality.”

Our key result is a formula for the approximation error (Theorem 1) and its “phase
average” (Theorem 2) which should be relevant for both DSP and approximation theory.
Alternatively, Theorem 1 can be seen as a sampling theorem for which the sampling

frequency,
1

T
, is the most important parameter or as an approximation theorem for which

the regularity of the function is of greater concern. Using this result, we are also able to
identify new conditions on the synthesis functions under which the Strang–Fix equiva-
lence [42] is true. We finally show how to obtain asymptotic expansions and upper bounds
for the expansion error: this constitutes a wide extension of what is already known in the
literature [44–46, 48].

When there is an underlying multiresolution structure the computation of asymptotic
constants is made much more tractable. Thus, our formulation applies directly to the
various multiresolution spaces of the wavelet transform [19, 35, 36], which corresponds
to the simpler caseq 5 1. The case is well known for wavelets, but is also of interest for
multi-wavelets, which are a more recent construction [1, 15, 27, 51]. One advantage of
multi-wavelets is that one can construct orthonormal, symmetric, and compactly sup-
ported basis functions, which is not possible otherwise. The multi-wavelet framework also
allows for richer classes of piecewise polynomial functions including splines and Hermite
polynomials [27]. Our present contribution is an exact computation of the asymptotic form
of the approximation error as a function of the generating filters. This result is also an
improvement for the wavelet case since it adds higher order terms to the asymptotic result
in [45]. All these results, to our knowledge, are new.

Note that the unconstrained character of our hypotheses may also have some practical
advantages: it may suggest alternative approximation procedures that are essentially as
adequate as the least squares solution, but much easier to implement because the analysis
functions can be much shorter (e.g., [46]).

To keep the presentation simple and understandable, we have chosen to concentrate on
the case of univariate functions. There is no fundamental difficulty in extending our results
to multiple dimensions: this can be checked theorem after theorem, at least for our
theoretical results.

A. Notation

Our analysis relies heavily on Fourier techniques. We define the Fourier transformf̂ of
a function f by f̂(n) 5 * f( x)e2ipnxdx. Also, we consider distributions [40] and, in
particular, the Dirac massd( x) and its derivativesd(s)( x). With a similar notation, the
Kronecker symboldn is defined as the sequence which takes the value 1 forn 5 0, and
0 for n Þ 0.

We recall the well-known Poisson summation formula which holds in the sense of
distributions for everyL1 function f( x),

O
n

f̂~n!e2ipnx 2 O
n

f~ x 1 n! 5 0. (1)
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This means that, for any test (i.e., compactly supported and indefinitely differentiable)
function c( x), the scalar product between the lhs of (1) andc( x) vanishes.

The usual operations acting on a complex numberz, i.e., conjugation and real part, are
denoted by, respectively,z# andR{ z}.

The conventional inner product* f( x)g( x)dx between two complexL2 functionsf, g
is denoted̂ f, g&, and the associated euclidean norm is\ z \L2. We also denote by\ z \L2(I )

the localL2 norm over an intervalI .
The usualL` norm is denoted by\ f \` and equals sup

x

u f ~x!u. For simplicity, we also

denote\V~n!\` 5 sup
n

\V~n!\ in the case where V is a vector function; no confusion should

arise from the two similar notations, since we make a typographic distinction between
scalar and vector functions (see below).

Let r be a positive real number. The Sobolev spaceW2
r is defined as the collection of

functions satisfying* (1 1 n2)r u f̂(n)u2dn , `. In line with this definition of regularity,
we extend\ f (r )\L2 to noninteger values ofr by equating it to the square root of
* u2pnu2r u f̂(n)u2dn.

For some estimates we need the Riemann zeta function defined asz~s! 5 O
n$1

n2s for

all real s . 1.
Filters are described either by polynomials (transfer function) or by their impulse

response, i.e., the coefficients of these polynomials. To make the distinction clear, our
convention is to use a lower-case letter for the coefficients, and upper-case for the
corresponding polynomial. Knowing that scalar functions are italic, vector functions are
roman, and matrix functions are boldface roman, we thus follow the notation described
below:

scalar H~ z! 5 O
n

hnz
n

vector H~ z! 5 O
n

hnz
n

matrix H ~ z! 5 O
n

hnz
n.

The square root of a positive Hermitian matrixA can be uniquely defined as the positive
Hermitian matrixB such thatB2 5 A: this square root is denoted by=A, as if A were
a scalar.

Most asymptotic expansions are presented with “o( z )” and “O( z )” terms, which
allows us to give a more compact and understandable form to the results: writingf( x) 5
o( xn) is equivalent to writing lim sup

x30

u f ~x!/xnu 5 0; in the same spirit, writingf( x) 5

O( xn) is equivalent to lim sup
x30

u f ~x!/xnu , ` (not necessarily 0).

II. APPROXIMATION BY MULTI-WAVELETS

The theories developed for digital signal processing would never have been possible
without the tool of sampling and its dual, interpolation. The problem of the description of
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a continuous signal by a discrete sequence of numbers was first solved for the bandlimited
case [41, 50]. In the classical result, a bandlimited functionf(t) can be written as a linear
interpolation(Tf(t) of its equally spaced samplesf(nT), provided that the sampling
frequency,T21, is at least twice the signal’s bandwidth. This interpolation is written as

(Tf~t! 5 O
n

f~nT!sincS t

T
2 nD , (2)

where sinc(x) 5 sin(px)/(px).

A. Invariances

The Shannon–Nyquist interpolation exhibits many “good” properties, in particular so
far as scale changes and time shifts are concerned. For instance, if we denote byVT the

interpolation space generated by the sinc basis (i.e.,VT 5 span
n{Z

HsincSx

T
2 nDJ restricted

to L2 functions) then for eachf in VT we have the following properties:

;t { R ft 5 f~ z 1 t! { VT (general shift invariance) (3)

;a $ 1 f~a21 z ! { VT (general scale invariance). (4)

On the other hand, there are “bad” features, such as the infinite support of any nontrivial
function of VT, and more precisely the fact that the interpolation formula (2) is slowly
convergent. This prevents us from giving the Nyquist function a local meaning.

These remarks led to a first generalization of the notion of interpolation through the loss
of a certain amount of shift invariance [4, 42]. More specifically, it was recognized that

defining an approximation spaceVT 5 span
n{Z

HwS t

T
2 nDJ ù L 2, wherew is a function

with acceptable frequency and time localization, can be more robust and useful in practical
applications than the space of bandlimited functions. In that case, shift invariance is now
satisfied only for integer increments; thus, the generalization operates by replacing (3)
with the much weaker property

;t { TZ ft 5 f~ z 1 t! { VT (integer shift invariance) (5)

for all f { VT: this property is satisfied by wavelet-like approximation spaces. It can be
further generalized by consideringq generating functions instead of one: in order to keep

the space density constant, we defineVT 5 span
n{Z,i50 . . . q21

HwiS t

T
2 nqDJ ù L 2; now, (3)

is replaced with

;t { qTZ ft 5 f~ z 1 t! { VT ~q-integer shift invariance! (6)

for all f { VT: this property is satisfied by multi-wavelet-like approximation spaces.
Similarly, the weaker forms of scale invariance led to the concept of multiresolution
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analysis [35, 36]. In the usual case of interest wherew is compactly supported and where
VT is a wavelet-like space, it has been shown [13] that (4) must be replaced by

;n { N f~a0
2n z ! { VT (integer scale invariance), (7)

where a0 $ 2 is a positive integer (scale factor). Yet, noninteger scale factors (of
particular interest is the case 1, a0 , 2) are allowed, if we give up the shift invariance
property [7]. Among the integer scale-invariant functions such as Daubechies “father”
wavelets [18] (wherea0 5 2), B-splines have the noteworthy feature of being integer
scale-invariant forany positive integer scale factora0.

B. Multi-wavelets and Their Vector Formalism

In this paper, we concentrate onq-integer shift-invariant approximation spaces, which
are generated by a finite number,q, of shifted functionswk. We shall refer to thewk( x)’s
as thegenerating functionsor generatorsof the representation, or also assynthesis
functions.Note that some authors also use the term “finitely generated shift-invariant”
(FSI) space [22]. In order to simplify some further expressions, we shall denote these
generating functions (also qualified as multi-wavelets here, though they are of the “father”
kind [36]) by wn wheren spansZ, instead of emphasizing the shift dependence of thewn,
i.e., wn01n1q

( x) 5 wn0
( x 2 n1q), wheren0 5 0, . . . , q 2 1 andn1 { Z.

We do not distinguish between the cases of single and multiple generators, because the
mathematics are exactly the same. As a matter of fact, it can be shown [51] that
multi-wavelets behave likevectorwavelets, and this is why it will also prove efficient to
use the following equivalent vector notation: to thewn’s, we associate aq-vector (i.e., a
vector of lengthq) w( x) 5 (w0, w1, . . . , wq21)t.

As in the wavelet case, it is possible to orthonormalize theq-shifted vector functions
through matrix filtering. Indeed, if we let

A ~n! 5
1

q O
n

ŵSn 1 n

q D ŵSn 1 n

q D t

, (8)

thenA(n) is Hermitian, positive and 1-periodic so that we can defineG(e2ipn) 5 =A(n).
Assuming thatA(n) is invertible (which will ensue from our hypotheses), we can define
the orthonormalized generating functions through their vector formulation [26]

f̂~n! 5 G~e2ipqn!21ŵ~n! (9)

f̃
ˆ
~n! 5 G~e2ipqn!ŵ̃~n!. (10)

Expressed using this orthonormalized basisfn, our results take a particularly simple form.

C. Approximation Method

The error induced by the approximation process will be evaluated using theL2 norm:
as will be seen later (Section III), this choice makes it possible to obtain an explicit
computation of the approximation error.
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We now need to define a linear functional operator6T, providing the coefficients of the
linear decomposition (12) of the approximated function, on thewn’s. The form of this
operator is

6T: f ° HE f~t!w̃nS t

TDd
t

TJ
n{Z

, (11)

where we assume thatw̃n are q-integer shift invariant distributions, i.e., once again
w̃n1q( x 1 q) 5 w̃n( x) for all n { Z. In analogy with Shannon’s sampling theorem (2),
we interpret6T as a sampling operator, and we have the approximation operator

4Tf~t! 5 O
n

6T~ f !nwnS t

TD
5 O

n

E f~t!w̃nS t

TDwnS t

TDd
t

T
. (12)

Using the vector formalism for the sampling and synthesis sides, this fundamental
approximation formula can be rewritten as

4Tf~t! 5 O
n

E f~t!w̃S t

T
2 nqD t

wS t

T
2 nqDd

t

T
, (13)

where w̃( x) 5 (w̃0, w̃1, . . . , w̃q21)t.
Of course, in order for these definitions to have a meaning (e.g., convergence of the

summation in (12), existence of the scalar product in (11)) we must restrict somewhat the
choice off, wn, and w̃n. Our hypotheses will be given in subsection II-D.

Now, following the de Boor and others [20, 24, 45], we define the notion of “order.”

DEFINITION 1. The set of synthesis functions isof order L iff there exist L real
sequences {ln

(s)} n{Z such that, in the sense of distributions

xs 5 O
n

ln
~s!wn~ x! (14)

for s 5 0. . .L 2 1.
In general, (14) is assumed to hold pointwise, a property which is necessary when one

considersL` error measure; this is not our case, theL2 norm beingglobal,so that we can
use a weaker1 condition: for additional hypotheses on the functionswn, so that the
Poisson’s summation formula hold pointwise, see [32].

In the approximation scheme considered here, unlike the minimal approximation

1 It is not true that the pointwise version of (14) is stronger than its distribution version, but this becomes true
once the pointwise convergence is uniform over any closed interval.
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scheme, the sampling distributions and the synthesis functions are independent parame-
ters: this is why we need to define another notion of order, based on both of them.

DEFINITION 2. We say that a set of sampling distributions {w̃n} n{Z and synthesis
functions {wn} n{Z constitute aquasi-biorthonormalset of orderL if and only if the
following two conditions are met:

● the functionswn are of orderL;
● the distributionsw̃n satisfy the moment conditions

E xsw̃n~ x!dx 5 ln
~s! for H n { Z

s 5 0· · ·L 2 1,
(15)

where theln
(s) are assumed to satisfy (14).

It is easy to understand why this property is called “quasi-biorthonormality of orderL”:
if the sampling and the interpolating functions were exactly biorthonormal then, under
technical convergence hypotheses, it would be possible to use the approximation formula
(12) to recover any function—including the monomials (14)—that lies in the span of the
wn’s. Here, we are primarily interested in the polynomials which can be reconstructed
exactly under the much weaker condition (15).

Note that theLth-order quasi-biorthonormality property puts a rather strong constraint
on the synthesis functions, i.e., the reproduction of the polynomials of degreeL 2 1 (cf.
(14)). The moment condition (15) on the sampling distributions is much less constraining
and leaves room for many design alternatives.

D. Hypotheses

We shall have to make substantial assumptions on the approximation scheme, which in
turn will provide us with very sharp estimates together with the theoretical equivalence
between quasi-biorthonormality of orderL and approximation error of orderL (see
Theorem 3 below).

Hypotheses on the synthesis functions.We shall assume that the synthesis functions
wn are inL2 and satisfy the Riesz conditionA O

n

ucnu2 # \O
n

cnwn\L2
2 # B O

n

ucnu2 for any

l2 sequence {cn} n{Z, and where 0, A # B , `. Following the proof of [2, 4], one finds
that this requirement is equivalent to the condition

AI q # A ~n! # BI q (16)

for almost everyn { R. In this paper, we require slightly more, specifically that this
inequality hold pointwise, i.e., for alln { R: actually, this subtlety is largely theoretical
since in practical casesA(n) is always continuous. The important Riesz hypothesis means
that the functions are linearly independentwhenever l2 coefficients sequences are con-
sidered.However, this does not rule out the possibility that non-l2 sequences make the
linear combination cancel for every value ofx. Besides, a close examination of our proofs
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indicates that it might be sufficient to restrict the lower Riesz inequality to the invertibility
of A(0), at least for our theoretical results (Section III).

In order to be able to derive some valuable equivalences in our theorems, we add
another, more exotic assumption, which limits the amount of linear dependence of the
basis functions. Let} be the vector space of all possible coefficientsln such that
O
n

lnwn 5 0 in the sense of distributions. Then our hypothesis is that the dimension of}

is finite. In practice, this encompasses most interesting situations, such asstrict linear
independence (i.e., dim} 5 0) or compactly supported generating functions which satisfy
the Riesz condition (proof in Appendix A).

Finally, we assume that when thewn are of orderL then the integrals* ux 2
nukuwn( x)udx are finite for everyn 5 0, . . . , q 2 1 and for k 5 0, . . . , L. This
guarantees that the Fourier transforms of the synthesis functions areL times continuously
differentiable with bounded derivatives.

Hypothesis on the sampling distributions.On the sampling side, we only assume that
the w̃n’s have aboundedFourier transform: this in particular allows us to consider
distributions such as the Dirac mass.

Hypothesis on the functions to approximate.For (12) to generate a function that
belongs toL2, we need to restrict the choice off so that the sequence {6T( f )n} n{Z is in
l2. We reduce the set of admissible functions to those which are inW2

r with r . 1
2
, for

it can be shown (see Appendix C) that this constraint ensures the convergence of
O
n

u6T~ f !nu2. Note that this requirement is slightly stronger than continuity, since it implies

that f is Hölder continuous with exponentr 2 1
2
.

III. L 2 APPROXIMATION ERROR

Independently of the properties of the sampling/synthesis functions, we are interested
in evaluating the quantity

ef 5 \ f 2 4Tf \L 2. (17)

As in the wavelet case, it is possible to express theLth-order property of the synthesis
functions equivalently in the Fourier domain of the vector functions.

LEMMA 1. The three following properties are equivalent:

(i) The synthesis functionswn are of order L.
(ii) There exists a unique polynomial q-vectorP (i.e., with vectors of size q as

coefficients) of degree less than or equal to L2 1 such that

P~n!tŵSn 1
n

qD 5 qdn 1 O~nL! (18)

for all integers n.
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(iii) There exists a unique coefficient sequence{ bk} where k5 0, . . . , qL 2 1 such that
the function defined by

c 5 O
k50

qL21

bkwk (19)

satisfies the Strang–Fix conditionsĉSn 1
n

qD 5 qdn 1 O~nL! for all integers n.

The proof is given in Appendix B.
This result can be compared to what is known in the approximation theory literature

[23, 32, 42], where a form of this lemma is given; our form is slightly more general in that
it does not assume that the coefficientsln

(s) of (14) have a polynomial character (one
speaks of “polynomial preservation” [32, 39], not ofpolynomial reconstruction): however,
the finite dimension hypothesis on} implies (see Appendix B) that theln

(s) are actually
polynomial; other hypotheses [37] also lead to the same conclusion. Our lemma goes even
a little further: it provides the length of the minimum linear combination (see also [37])
of synthesis functions for building the functionc and also shows the uniqueness of this
minimallinear combination. Finally, note that the generating functions considered here are
not necessarily compactly supported: their Fourier transforms must beL times differen-
tiable.

Using the minimal polynomial P(n) of Lemma 1, we can construct many equivalent
quasi-biorthonormal sets of orderL such that̂w̃(n) 5 P(n) 1 O(nL) (cf. proof of Lemma
1). As a consequence of the uniqueness of this minimal polynomial, a more precise result,
namely the equivalence betweenLth-order quasi-biorthonormality and this equation can
be stated.

LEMMA 2. The two following properties are equivalent:

(i) The multi-waveletswn and w̃n constitute a quasi-biorthonormal set of order L.
(ii) The Fourier transform of the vector functions satisfy

ŵ̃~n!tŵSn 1
n

qD 5 qdn 1 O~nL! (20)

for all integers n.

A. Approximation Results

In the following, we state that the approximation erroref can be written as a main term
plus a perturbation. The dominating component can be computed exactly by integration of
u f̂(n)u2 against the kernel

E~n! 5
1

q2 uq 2 ŵ̃~n!tŵ~n!u2 1
1

q2 O
nÞ0

U ŵ̃~n!tŵSn 1
n

qDU
2

. (21)
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The additional correction,e( f, T), can take positive or negative values and its magnitude
depends on the (Sobolev-)regularity exponent of the function to be approximated. It
becomes negligible when the sampling stepT is small relative to the intrinsic smoothness
scale off.

Note that condition (ii) of Lemma 2 appears in a canonical way in (21), which suggests
that the kernelE(n) is thus intimately related to the quasi-biorthonormality of the
sampling/synthesis scheme. In the orthonormalized basis (providedA(n) is invertible),
this kernel takes the much simpler form

E~n! 5 1 2
2

q
R$f̃

ˆ
~n!tf̂~n!% 1

1

q
\f̃
ˆ
~n!\2 (22)

5 1 2
1

q
\f̂~n!\2 1

1

q
\f̂~n! 2 f̃

ˆ
~n!\2. (23)

The following theorem relatesE(n) to the approximation erroref and is the most
important result of our paper.

THEOREM 1. For all f { W2
r with r . 1

2
, the approximation error is given by

ef 5 \ f 2 4T f \L 2 5 FE u f̂ ~n!u2E~Tn!dnG 1/ 2

1 e~ f, T!, (24)

where the correction term e( f, T) 5 o(Tr ) is bounded as

ue~ f, T!u # KTr\ f ~r!\L 2 (25)

with

K 5 2
qr

pr Îz~2r !\E\`. (26)

In addition, the term e( f, T) in (24) exhibits a double aliasing character(in f and in w)
and cancels whenever one of the conditions

f̂ ~n! f̂Sn 1
n

qTD 5 0 or f̃
ˆ Sn 1

n

qD
t

~f̃
ˆ
~n! 2 2f̂~n!! 5 0 (27)

holds for all frequencyn and all non-zero integers n.

The proof is given in Appendix C.
There is one related result in the literature in [22, Eq. (4.2)] that applies to the

orthogonal projection onto a principal (i.e.,q 5 1) shift-invariant space. In this special
case,f̃n 5 fn, which implies thatE(n) 5 1 2 uf̂(n)u2; this is precisely the form of the
kernel appearing in [22, Thm. 2.20], which gives the minimum error for the approx-
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imation of a bandlimited function. However, these authors did not push their error
analysis further because their motivation was different from ours. They were inter-
ested primarily in finding an accurate link between the order of the expansion error
and the Fourier transform of the generating function. Our present error formula is
sharper and also more complete. Not only does it apply to multiple generators, but it
also covers a much wider class of approximation operators for which the sampling
and synthesis functions need not be the dual of each other; such approximation
schemes find numerous applications in finite element analysis and digital signal
processing.

Our result can also be interpreted as a sampling theorem. For the particular casew( x)
5 sinc(x) and w̃( x) 5 d( x), we recover Shannon’s sampling theorem [41]. However,
Theorem 1 is more elaborate for it provides an estimate of the error when the functions
are not bandlimited. Another extension is to consider the approximation problem in the
case of multiple analysis or generating functions: from the second part of the theorem, we
can deduce that one possible condition for the minimal expansion error to cancel is that

f be bandlimited with frequency supportF2
1

2T
,

1

2TG , and that the synthesis functionswk

be bandlimited with frequency support (respectively)F2
k 1 1

2q
, 2

k

2qG ø F k

2q
,
k 1 1

2q G
for k 5 0, . . . ,q 2 1. Also note that the latter condition is sufficient for the second error
term to vanish ifw̃k and wk have the same frequency support. These observations are
especially relevant for digital signal processing, where the bandlimited hypothesis plays
a central role in the theory.

From now on, however, we will leave these sampling issues aside and use Theorem 1
in connection with theLth-order biorthonormality property. Instead, we will exploit the
fact that forf sufficiently regular, the leading term of the error when the sampling stepT
is small, is given by the order ofE(n) in the neighborhood ofn 5 0, providing the
asymptotic development of«f nearT 5 0 (see Theorem 4). We believe that such an
asymptotic Fourier analysis is new; the first order of the development is known for some
projection operators but it is typically obtained via a pointwise analysis in the signal
domain [45].

In addition to asymptotics and other valuable upper bounds on the error, (24) also offers
a deeper insight into the theoretical relation betweenLth-order quasi-biorthonormality and
Lth power of the approximation error (through the formulation (21) ofE(n)). This double
character should make Theorem 1 appealing to approximation theorists as well as to
researchers working in more applied fields.

Averaged approximation error.Let us now examine the problem caused by the lack
of shift invariance in our approximation space. For this purpose, we choose to approxi-
mate the shifted versionfu(t) 5 f(t 2 u) of the function f. The resulting error is a
qT-periodic function of the shift incrementu, i.e., efu1qT

5 efu
. Moreover, since the first

term in (24) is shift-invariant, the influence of the phase factoru can only appear in the
second error component, which is therefore a direct reflection of the shift variance of the
approximation space.

As the initial phase of the sampler is somewhat arbitrary, we choose to evaluate an
averaged form of the error
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hf
2 5

1

qT E
0

qT

efu
2du 5

1

qT E
0

qT

\ fu 2 4Tfu\L 2
2 du, (28)

which takes the periodicity into account. A remarkable fact is that this quantity can be
computedexactlyand reduces to the first term in (24) (the second error term cancels on
the average). Thus if we assume that the phase of the sampler is random and uniformly
distributed, the term* u f̂(n)u2E(Tn)dn provides us with the expected value of the
approximation error.

THEOREM 2. The average approximation error of the sampling/synthesis scheme is
given by

hf
2 5 E u f̂~n!u2E~Tn!dn, (29)

provided the Sobolev exponent of the function f is strictly greater than1
2
.

Proof. In the Fourier domain, the shift changef 3 fu is equivalent to the multipli-
cation of f̂ by the phase terme22ipun, which explains why the first term of (24) does not
depend onu. If we consider the form of the terme2

2 given in Appendix C by (62), its
integrand is multiplied by a phase terme22ip(nu/qT) which does not depend onn. Due to
the absolute convergence of both the summations and the integrals, we can interchange the
order of these operations. Finally, we note that the average ofe22ip(nu/qT) over [0, qT]
cancels forn Þ 0. ■

This is a rather powerful result given that we started with an error formula in Theorem
1 that had the flavor of an upper bound. Thanks to Theorem 2, we now have an
interpretable measurehf that is easy to compute exactly and gives a correct estimate of the
error for many practical applications.

B. The Strang–Fix Equivalence for Multiple Generators

We will now use Theorem 1 to make the connection with the Strang–Fix theory of
approximation [42]. In the case of a single generator, there is a very direct equivalence
between the ability ofw to reproduce polynomials of degreen 5 L 2 1 (or the so-called
Strang–Fix conditions in the Fourier domain) and the rate of decay of the minimum
expansion error [10, 42] (initially least squares solution, later extended to the otherL2

measures [31]). In [42], Strang and Fix conjectured that such an equivalence would also
hold for multiple generators but their initial claim was put into question by the construc-
tion of a (rather involved) counterexample by Jia [30], discussed below. Several authors
worked around the problem forq . 1 by adding constraints and introducing sophisticated
notions of controlled approximation [16, 25, 32].

In our case, the situation appears to be more favorable and there is no major difficulty
in extending the Strang–Fix equivalence forq $ 1 without adding to our initial
assumptions.
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THEOREM 3. We assume the boundedness ofwn and of O
n

ux 2 nu2Luwn~x!u, and also

require that* uw̃nu , ` and * ux 2 nu2Luw̃nu , `. With these hypotheses we have the
equivalence

; f { W2
L, ef 5 O~TL!N $wn%n{Z and$w̃n%n{Z are orderL quasi-biorthonormal. (30)

The proof of this theorem is given in Appendix D. Note that the method is rather
straightforward due to the particular form (21) ofE(n): the difficulty is essentially
technical (one cannot bluntly differentiate an infinite sum of functions).

There are three points that distinguish this result from what has been reported before.
First, Theorem 3 is a constructive result (for a related construction, see also [33]) that
specifies a whole class of linearq-integer shift-invariant approximation procedures (not
only the minimal one) inVT that provide anO(TL) error decay rate. Second (minimal
error case), though our hypotheses are weaker in other aspects, the use of the Riesz basis
hypothesis is more restrictive than the condition of a controlled approximation initially
proposed by Strang and Fix [42], and implies it. Finally, Theorem 3 clarifies the discussion
around the Strang–Fix equivalence. Because of Lemma 1, Theorem 3 shows the existence
of a special functionc( x)—a finite linear combination of basis functions—such that the
error between the function to be approximated and the optimal expansion usingq-integer
shifts ofc is of the same order as the global minimal expansion error (using the full basis
set). It is the existence of such a function that has been a major point of contention in the
literature [30, 32]. Note that de Booret al. have shown recently that this problem
disappears if one drops the restriction of finite linear combinations [22].

In a counterexample to Strang–Fix conjecture, Jia [30] considers functions (smoothed
box splines) of two variables and builds a set ofq 5 4 generating functions such that the
expansion error is of order two, while no finitel2 linear combination of the synthesis
functions satisfies the Strang–Fix conditions. In fact, such a linear combination exists, but
is infinite as is explicitly written in [30]. As can be checked readily, Jia’s multi-wavelets
satisfy neither the Riesz condition nor dim} , `, and thus they contradict the hypotheses
of our equivalence theorem. This suggests that these conditions are essential for the
equivalence (30) to hold.

In [23], it appears that a more general characterization (for compactly supported
functions only) has been worked out: however, from the reading of the paper it is not clear
what kind of hypotheses are implied by a “compactly supported generating set” [23], in
particular in terms of linear independence of the basis functions.

C. Asymptotic Equivalents

We will now exploit the simple form of Theorem 1 to derive the asymptotic form of the
error as the sampling stepT becomes sufficiently small with reference to a “natural” time
scale off.

THEOREM 4. If f { W2
r and E(n) is 2r 2 1 times differentiable with bounded2rth

derivative, then we have the following development:
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\ f 2 4Tf \L 2
2 5 O

k50

r21 E~2k!~0!

~2p!2k~2k!!
\ f ~k!\L 2

2 T2k 1 O~T2r!. (31)

In particular, the first nonvanishing order for multi-wavelets satisfying the Lth-order
quasi-biorthonormality condition is given by

\ f 2 4Tf \L 2 5
TL\ f ~L!\L 2

q~2p!LL! FO
n

U dL

dnL H ŵ̃~n!tŵSn 1
n

qDJU
n50

2 G 1/ 2

1 O~TL11!. (32)

Proof. We developE in Taylor series around 0 and bound its 2rth term: sinceE(n)
is symmetric, all the odd powers cancel; the expansion (31) is therefore a straightforward
consequence of (24). From Lemma 2, we know thatLth-order quasi-biorthonormal
multi-wavelets must satisfy (20). Thus, all terms in (21) including the first one areO(n2L),
which implies all derivatives up to order 2L in (31) to vanish. The final form forr 5 L 1
1 is then equivalent to (32).■

Note that for the case of a single generator, we recover formula (17) of [45], which
involves the infinite sumO

nÞ0

uŵ~L!~n!u2. Similarly, if we consider the definition of quasi-

interpolation given in [48] (i.e., the sampling functions are Dirac massesw̃n( x) 5 d( x 2
n)), then again, we find Eq. (65) of [48] which, in this case, involves the unrestricted sum
O
n

uŵ~L!~n!u2. We can also go further and obtain the next terms of the development without

great difficulty. The main point is that Theorem 1 allows for an asymptoticL2-error
analysis simpler and more powerful than what has been obtained before by using Taylor
series expansions in the time domain.

In the general (multi-wavelet) case, we can constrainf̃
ˆ

(n) 5 f̂ (n) 1 O(nL11): this
is equivalent to fixing the firstL 1 1 moments ofw̃ to appropriate values provided byw;
then the first order of the asymptotic error equals the first order of theasymptotic minimum
error (least squares solution) that would be obtained with a dual set of basis functions. In
fact, the form (23) ofE(n) implies that this condition is necessary and sufficient for the
approximation to be asymptotically optimal. In particular, it is now possible to consider
compactly supported sampling functions associated with any kind of synthesis function.
This new freedom in the choice ofw̃n takes its full sense when we remember that, in
general, the dual functions of a set of synthesis functions are not compactly supported, and
often not so well behaved in the frequency domain. This fundamental remark has also
been stated in [46] with slightly stronger hypotheses (namelyw̃pw has to be a quasi-
interpolant of order at leastL 1 1, which implies additional constraints onw̃̂(n) for n Þ
0). Thus, our present contribution is to weaken the requirements on the analysis functions
and to extend the result to multiple generators.

Of course if we fix a greater number of moments ofw̃n throughf̃
ˆ
(n) 5 f̂(n) 1 O(nL1N)

then we can forceef
2 to agree with the minimum expansion error up to order 2L 1 2N 2 1.

D. Upper Bounds

Theorem 1 is also useful for deriving upper bounds for the approximation error.
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THEOREM 5. If the multi-wavelets are quasi-biorthonormal of order L, then the
approximation error for f{ W2

r with r $ L is bounded as

\ f 2 4Tf \L 2 # CTL\ f ~L!\L 2 1 KTr\ f ~r!\L 2, (33)

where K is given by(26), and

C 5
Î\E~2L!\`

~2p!LÎ~2L!!
. (34)

Proof. We use Theorem 1 and estimateE(n) by its Taylor series expansion. Using the
Lth-order quasi-biorthonormality property, we deduce thatE(n) is bounded by (n2L/
(2L)!) \E(2L)\`, which allows us to isolate\ f (L)\L2. From the proof of Theorem 3, we also
know thatE(2L)(n) is bounded so that the constantC is finite. ■

This type of result has to be compared with the more traditional error bounds of the
simpler form:ef # C9TL\ f (L)\L2. In the case of an extended formula, the bound can be
sharper because the leading constantC tends to be smaller. However, the result in
Theorem 5 is just an example of what can be obtained as upper bound. For example, using
the same type of argument as in the proof of Theorem 5, we can find a bound similar to
the one given in [46, Thm. 1]. In this particular setting withq 5 1, the sampling and
synthesis functions both satisfy the Riesz condition, plus an additional “quasi-projection”
requirement:̂w̃(n)ŵ(n) 5 1 1 O(n2L). Using (21), we can finda0, a1 such thatE(n) #

a0
2(2pn)2L 1 a1

2(2pn)4L; then the application of Theorem 1 yields

\ f 2 4Tf \L 2 # a0T
L\ f ~L!\L 2 1 a1T

2L\ f ~2L!\L 2 1 KTr\ f ~r!\L 2,

wherer $ 2L is the Sobolev exponent off. Inspection of the leading constanta0 reveals
that it is slightly smaller than the constantC2 in [46]. The second constanta1 is exactly
C1 in [46]. The third term is not present in [46], but can be easily absorbed into the second
by settingr 5 2L.

To conclude the discussion on upper bounds, we consider the case of the least squares
approximation withq 5 1. We haveE~n! 5 O

kÞ0

uŵ~n 1 k!u2/A~n!, where A~n!

5 O
k

uŵ~n 1 k!u2 is bounded by the Riesz constants. Thus, we can obtain the following

estimate of the constantC in Theorem 5:

C2 5

sup
n

(
kÞ0

~uŵu2!~2L!~n 1 k!

~2p!2L~2L!!A
.

The corresponding bound (33) is then quite comparable to the inequalityef # CTL\ f (L)\L2

1 C2T2L\ f (2L)\L2, which is given in [48] and uses the same definition of the constantC.
These examples are only meant to show that it is rather straightforward to find sharp

upper bounds with the help of our theorem. Of course when the basis functions are known
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a priori, it is probably better to compareE(n) exactly and obtain the most accurate
computation of the approximation error.

IV. APPLICATION TO REFINABLE GENERATORS

The concept of a multiresolution analysis (MRA) [35, 36] has proven to be the key for
the construction of a whole variety of wavelet bases. These include orthogonal [6, 18, 34,
35], semi-orthogonal [3, 12, 47], and biorthonormal wavelets [14, 49], as well as the more
recent multi-wavelets [1, 15, 27]. MRA provides a simple geometrical interpretation of the
decomposition process in terms of projections onto a sequence of nested subspaces and
their complements.

In this part, we will consider the case of a dyadic multiresolution analysis withT 5 2j,
wherej { Z represents the scale index. Consequently, we define a MRA as follows:

(i) A collection of embedded spaces {0}. . . , V22 , V2 , V1 , . . . L2.

(ii) VT 5 span
n{Z

HwnS t

TDJ with T 5 2j.

(iii) There exists an integerq such thatwn1q( x 1 q) 5 wn( x) for all x real, andn
integer.

(iv) lim
T30

Clos~VT! 5 L 2.

The only addition to our previous assumptions is the nestedness property (i). Other than
that the functions spacesVT are the same as in Section II-B, except that the generators are
now calledscaling functions.Also note that the completeness condition (iv) is automat-
ically satisfied as long as the generating functions have at least a first order of approxi-
mation.

The signal approximations that we consider do not involve wavelets explicitly but
rather scaling functions at a given scaleT (this is an important methodological difference
from [44], where the opposite is done). However, it is clear that a signal approximation
at scaleT 5 2j can also be expressed as a truncated wavelet expansion in which all finer
scale coefficients have been set to zero. Thus, a detailed characterization of the approx-
imation error as a function of scale is important for the comparison of wavelet bases and
the prediction of their coding performance.

The important point for this paper is that the multiresolution property (i) implies that the
generating functions follow a two-scale linear relation

w~ x! 5 O
k

hkw~2x 2 kq!, (35)

whereH is aq 3 q matrix filter. In fact, (35) provides the vector definition of the scaling
multi-wavelet.

In order to compute the asymptotic approximation constants, we shall examine the case
of wavelets and multi-wavelets separately: they do not exhibit the same degree of
complexity. In the present section, we are interested only in the minimumL2 value ofef,
which corresponds to the orthogonal projection off into VT, which we denote3Tf: this
least squares approximation can be obtained from (12) withf̃n 5 fn. If, instead, we were
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to use functions that are not exact duals of each other, we know from the results of the

preceding section that we need to include the additional term
1

q
\f̂ 2 f̃̂ \2 to the kernel

E(n). However, we also know that the order of this correction can be made as high as we
want by choosingw̃n appropriately. This type of consideration may be quite relevant for
the design of initialization algorithms, especially in the multi-wavelet case.

A. Wavelet Constants

For q 5 1, the refinement filter isH~e22ipn! 5 O
n

hne
22ipnn with H(1) 5 2, and it is

not difficult to derive the following two-scale relation forA~n! 5 O
n

uŵ~n 1 n!u2:

A~n! 5
1

4 F uH~e2ipn!u2ASn

2D 1 uH~2e2ipn!u2ASn 1 1

2 DG . (36)

This equation can be put in matrix form and solvedexactly if H has a finite impulse
response [43]. We shall thus assume that we have access to the values ofA(n). In addition,
we know that the functionw is of orderL iff ( z 1 1)L dividesH( z) (the analog of this
property will be shown in the multi-wavelet subsection: see Lemma 3).

For refinable functions, we can obtain not only the first asymptotic error equivalent as
a function of the generating filter coefficients, but also the following 2L 2 1 coefficients
of the development in powers ofT. This is stated in the next theorem:

THEOREM 6. If w is of order L then for all f{ W2
2L the least squares approximation

error in VT has the asymptotic development

\ f 2 3T f \L 2
2 5 O

k5L

2L21 ak

p2k~4k 2 1!
\ f ~k!\L 2

2 T2k 1 O~T4L!, (37)

where the constants ak are the first4L coefficients of the MacLaurin development

O
k5L

2L21

akn
2k 5

ASn 1 1

2 D uH~2e2ipn!u2

4A~n!
1 O~n4L!. (38)

Proof. We apply Theorem 4. Since we consider the minimumL2 error, we haveE(n)
5 1 2 uŵ(n)u2/A(n). Using (36) and the two-scale relation in the Fourier domainŵ(n)
5 (1/ 2)H(e2ipn)ŵ(n/ 2), we find, after some manipulations,

1 2
uŵ~n!u2

A~n!
5 1 2

U ŵSn

2DU
2

ASn

2D
1

ASn 1 1

2 D uH~2e2ipn!u2

4A~n!
1 O~n4L!.
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Here, we have taken into account the fact thatH(2e2ipn) 5 O(nL). Substituting (38),
we can then solve for the first 4L coefficients of the asymptotic development ofE(n) and,
hence, ofef

2. ■

This result adds higher order terms to the asymptotic form of the error given in [45].

Moreover, if we letH~z! 5 Sz1 1

2 DL

Q~z! with Q(1) 5 2, we obtain a closed form

formula for the first-order constantCw
2 of [45]:

Cw
2 5

1

~2p!LL!
~O

nÞ0

uŵ~L!~n!u2!1/ 2 5

uQ~21!u ÎAS1

2D
2L11Î4L 2 1

. (39)

The right-hand side improves upon the infinite sum formula that has been reported
previously. In [45], the calculation of the infinite sum formula was made possible through
the use of an induction formula for the derivatives in the center of (39), which were shown
to be proportional toŵ(n/ 2).

B. Multi-wavelet Constants

In this case, the situation is more intricate, even ifE(n) remains rather simple. We start

by writing the two-scale relation (35) in the Fourier domain:ŵ~n! 5
1

2
H~e2ipqn!ŵSn

2D . It

follows that 2 is an eigenvalue ofH(1). As in the wavelet case, it is then not difficult to
show thatA(n) is the solution of the equation

A ~n! 5
1

4 FH ~e2ipn!ASn

2DH ~e2ipn!t 1 H ~2e2ipn!ASn 1 1

2 DH ~2e2ipn!tG . (40)

Here again whenH is FIR, this relation can be solved in the time domain to yield the
expression of the polynomial matrixA. We shall from now on assume that this matrix is
known.

As a first step, we must find out how theLth-order property manifests itself on the
generating filterH.

LEMMA 3. The two following properties are equivalent:

(i) the multi-waveletswn are of order L;
(ii) there exists a unique polynomialL(n) of degree less than or equal to L2 1 such

that L(0) Þ 0 and satisfying together

H ~2e2ipqn!tL~n! 5 O~nL! (41)

and

H ~e2ipqn!tL~n! 5 2LSn

2D 1 O~nL!. (42)
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Proof. The main ingredients are the lower Riesz condition and the two-scale differ-
ence equation.

Let us first prove that (i)f (ii). From Lemma 1 we know that there exists a unique

polynomialL(n) of degree lesser or equal toL 2 1 such thatL~n!tŵSn 1
n

qD 5 qdn

1 O~nL!. Of course,L(0) Þ 0 sinceA(0) is invertible. Applying the vector two-scale
relation with 2n instead ofn, we find

●
1
2

L~2n!tH(e22ipqn)ŵSn 1
n

2qD 5 qdn 1 O~nL! if n is even;

● L~2n!tH~2e22ipqn!ŵSn 1
n

2qD 5 O~nL! if n is odd.

Due to a uniqueness ofL, (42) follows immediately from the first equation above. For the
second equation, we use the same technique as Lemma 1 to prove the uniqueness of the
polynomial P. We temporarily pose P(n) 5 H(2e22ipqn)tL(2n) so that the equation

above readsP~n!tŵSn 1
n

2qD 5 O~nL! for n odd. If we letn 5 0 then right multiplying

by ŵS n

2qD
t

and summing over oddn yields P(0)tA~1
2
! 5 0. Due to the invertibility of

A~1
2
! , this implies that P(0)5 0. We then take the equation again forn odd with

P~n!

n
instead of P(n), andL 2 1 instead ofL, which yields P9(0) 5 0. Iteration of this argument
L times leads to the result P(n) 5 O(nL), which is (41).

For the converse implication (ii)f (i), we simply observe that (ii) impliesL~n!tŵSn

1
n

qD 5 LSn

2D
t

ŵSn

2
1

n

2qD 1 O~nL! if n is even andL~n!tŵSn 1
n

2qD 5 O~nL! if n

is odd. By induction, this proves thatL~n!tŵSn 1
n

qD 5 adn 1 O~nL! for all n. Since

L(0) Þ 0, the constanta cannot cancel. Applying Lemma 1, we thus find that the scaling
functions are of orderL. The uniqueness of such aL follows directly from Lemma 1. ■

The same result (but making the hypotheses of linear independence and compact
support), expressed in a different way, can be found in [27, Thm. 1] and [15, Thm. 2.1].
See also [37] for relaxed hypotheses on the synthesis functions.

Condition (ii) of Lemma 3 is equivalent to theLth divisibility of H( z) at z 5 21 in
the usual case of wavelets whereH(1) 5 2. In the vector (or multi-wavelet) case,
however, the condition cannot be restricted to the values (or here the kernel) ofH at half
the sampling frequency (41) and must be completed by (42).

From now on, we also assume that the minimum expansion error is of orderL, which
implies that the scaling functions are of orderL; hence the existence of such aL: by
solving the linear system of Eqs. (41) and (42) we have access to its value. Consequently
we can compute the two constantsD0 andD1 which are implicit in (41) and (42):

D0 5 lim
n30

FH ~e2ipqn!tL~n! 2 2LSn

2DGn2L (43)

D1 5 lim
n30

H ~2e2ipqn!tL~n!n2L (44)
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It will be of interest to give the exact equivalent of the Fourier transform of the dual vector
function ofw up to the orderL, in the neighborhood of 0. In order to simplify slightly the
writing of the expression, let us poseH0 5 H(1) andH1 5 H(21). Likewise, we shall
denote byA0 andA1 the values ofA(n) at n 5 0 andn 5 1

2
, respectively.

LEMMA 4. We have the asymptotic development

A ~qn!21ŵ~n! 5 L~n! 2 VnL 1 O~nL11!, (45)

where

V 5
1

4
A 0

21F I q 2
1

2L11 H 0G21

~H 0A 0D0 1 H 1A 1D1! (46)

Proof. In fact, since the expansion error is of orderL, E(n) 5 O(n2L) and this, in
particular, means that if thew̃n are dual to thewn, then by inspection of (21) we have

ŵ̃~n!tŵSn 1
n

qD 5 qdn 1 O~nL!. It follows thatL is the orderL 2 1 development of

the dual function ofw, so that we need only to find the missing orderL.
We thus defineV by (45). This is, of course, equivalent toŵ(n) 5 A(qn)L(n) 2

A0VnL 1 O(nL11). We can now use the Fourier two-scale relation on the left side of this
equation, and with the use of (40), (43), and (44), and finally after some (tedious)
rearrangements, we obtain the value ofV; this validates (46).

Note that, as proven in [17],H0 has spectral radius 2 so thatIq 2 (1/ 2L11)H0 is never
singular. ■

With these constants, we can now derive the asymptotic value of the approximation
error in the multi-wavelet case.

THEOREM 7. If the scaling multi-wavelets are of order L, then for all f{ W2
L the

asymptotic form of the least squares approximation error in VT is

\ f 2 3Tf \L 2 5
~\ÎA 0Q0\

2 1 \ÎA 1Q1\
2!1/ 2

2pLÎq~4L 2 1!
\ f ~L!\L 2TL 1 o~TL!, (47)

where the vectors Q0 and Q1 have been defined by

Q0 5 D0 2 H 0
t V 1 22L11V (48)

Q1 5 D1 2 H 1
t V. (49)

Proof. Once again, we use Theorem 4. The result will first be proven for orthonormal

multi-wavelets. We start fromE~n! 5 1 2
1

q
\f̂\2, which can be rewritten using the

two-scale equationE~n! 5 1 2
1

4q
f̂Sn

2D
t

H tHf̂Sn

2D if we denote byH the expression

H(e2ipqn). Let us also denote byU the other expressionH(2e2ipqn) (these intermediary
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notations are meant only to simplify the visual aspect of the expressions). We thus have
(orthonormality)HH t 1 UUt 5 4Iq. One can verify that this implies the identity

I q 2
1

4
H tH 5

1

16
H tUUtH 1 F I q 2

1

4
H tHG 2

.

Multiplying this equation on both sides by (left)f̂Sn

2D
t

and (right)f̂Sn

2D , we obtain the

following recursion equation betweenE(n) andESn

2D :

1 2
1

q
if̂~n!i2 5 1 2

1

q I f̂Sn

2DI
2

1
1

4q FiUtf̂~n!i2 1 IH tf̂~n! 2 2f̂Sn

2DI
2G . (50)

We then compute the asymptotic equivalent of each element of this equation:

● E~n! 5 1 2
1

q
\f̂~n!\2 5 an2L 1 o~n2L!, wherea is the positive constant providing

the first asymptotic order: it is the goal of this theorem to formulate it explicitly.
● Using Lemma 4 and the definition (44) ofD1, we findUtf̂(n) 5 (D1 2 H1

t V)nL 1
o(nL).

● Using Lemma 4 and the definition (43) ofD0 we find H tf̂~n! 2 2f̂Sn

2D 5 ~D0

1 @22L11I q 2 H0
t #V!nL 1 o~nL!.

Replacing the values of these asymptotic equivalents in (50), we find the result for
orthonormal multi-wavelets mentioned earlier.

For nonorthonormal scaling functions, whereA may be different fromIq, we remark
that in (50),H(e2ipn) has to be replaced byG(e2ipn)21H(e2ipn)G(e2ipn), and f̂ by
G(e2ipqn)21f̂, whereG(e2ipn) 5 =A(n). Equation (50) is thus replaced with

E~n! 5 ESn

2
D 1

1

4q FI ÎASqn 1 1

2
DUtŵ̃~n!I 2

1 I ÎASqn

2
DSH tŵ̃~n! 2 2ŵ̃Sn

2
DDI 2G ,

(51)

wherew̃̂(n) 5 A(qn)21ŵ(n) is the dual function ofŵ(n), whose asymptotic development,
up to the orderL near zero, is given by Lemma 4. The generalized result of Theorem 7
is thus a consequence of the introduction of this square root into the scalar product.■

This result is in fact the exact extension of (39) to the multi-wavelet case, as can be
readily checked when replacing matrices and vectors by the corresponding scalars.
Specifically, we see that in the wavelet case, the vector/scalar Q0 cancels, while Q1
reduces toD1, the equivalent ofH(2eipn) in the neighborhood ofn 5 0.

In contrast with the wavelet case, we have noeasyaccess to higher order asymptotic
terms. This is because the multi-wavelet order property (41) and (42) is much weaker than
the corresponding divisibility constraint by (11 z)L in the wavelet case. However, if one
wishes to find higher order terms for the asymptotic error, it is always possible to
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determine the development of the dual function ofŵ recursively, similar to what has been
done in Lemma 4. One can verify that this leads to a triangular system of vector equations,
whose diagonal matrix coefficients are all invertible, and which can thus be solved by
induction; V is then the first input to the induction. Finally, this development can be
substituted in Eq. (51) in order to obtain the desired asymptotic equivalents.

V. CONCLUSION

We have stated a powerful quantitative result concerning the approximation ofL2

functions by the linear decomposition scheme given in Section II. We expect this formula
to be of interest both for applied researchers (e.g., as a basic error estimation tool in
geometric image processing), and for approximation theorists. In particular, our result has
been used successfully to prove in a very natural way the Strang–Fix equivalence for
multiple generators [42], while requiring very weak constraints. In addition, we could
derive asymptotic formulae in the case where the approximation spaces belong to a
multiresolution analysis: this application is of great interest to digital signal processing.
We are also currently working on the explicit computation of asymptotic expansions for
some representations of wide interest such as splines and Daubechies’ wavelets [8].

APPENDIX A: ON THE FINITE DIMENSION OF }

We prove here that, if thewn are compactly supported and satisfy the Riesz condition,
then dim} , `. By definition,$ln%n{Z { } iff O

n

lnwn 5 0 in the sense of distributions.

In vector notation, this is equivalent toO
n

Ln
t w~x 2 nq! 5 0, whereLn 5 (lnq, lnq11, . . . ,

lnq1q21)
t. Right multiplying byw(x 2 kq)t and integrating overx { R the resulting finite sum,

we obtain

O
n

bk2nLn 5 0, (52)

where bn 5 * w( x)w( x 1 nq)tdx is a finite sequenceunu # K , `. Notice that

B~n! 5 O
n

bne
2ipnn 5

1

q
A~n! in the sense of distributions, so that, due to the lower Riesz

inequality, the finite degree polynomial det(B(n)) is not trivial. If we build L~n!

5 O
unu#N1K21

Lne
2ipnn, then (52) impliesB~n!L~n! 5 z2NQS1

zD 1 zNR~z!, where Q and

R are polynomials of degree# 2K 2 1, andz 5 e2ipn.
Using the matrix inversion formulaB̃B 5 det(B), whereB̃ is a finite polynomial matrix,

we thus have det~B~n!!L~n! 5 z2NB̃~n!QS1

zD 1 zNB̃~n!R~z!. Consequently, if we let

det~B~n!! 5 O
k

dkz
k, thenO

n

dk2nLn 5 0; the coefficients of the induction equation being

now scalar, the finiteness of dim} immediately follows.
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APPENDIX B: PROOF OF LEMMA 1

The most difficult part is to prove the implication (i)f (ii). For this purpose, we shall
first study} and show that the coefficients of the polynomial expansions can be written
in a simple form, involving a set of quasi-biorthonormal analysis functions. Finally, we
will write the quasi-biorthonormality condition in the Fourier domain.

Characteristics of}. We first prove that any coefficient sequencem 5 { mn} n{Z

belonging to}, i.e., satisfyingO
n

mnwn 5 0, is such that there exists another coefficient

sequencem9 belonging to} such thatmn 5 m9n1q 2 m9n for all n. The finite dimension
of } and the invertibility ofA(0) both play a crucial role. Consider the linear operatorD
acting on elements of} throughDmn 5 mn1q 2 mn. Clearly, due to theq-integer shift
invariance,Dm is in }. The kernel of the endomorphismD is reduced to the coefficient
sequences that areq-periodic. In vector notation, this means that, for the kernel to be
nontrivial, it is necessary that there exist a constant vectorL such that

Lt O
n

w~ x 2 nq! 5 0. (53)

This is equivalent toLtŵSn

qD 5 0 for all n 5 Z (using Poisson’s formula). If we right

multiply by ŵSn

qD
t

and sum overn, this yieldsLtA(0) 5 0, so thatL 5 0, due to the lower

Riesz condition. Hence, the kernel ofD reduces to 0. As a consequence, the endomor-
phismD is one-to-one, and} 5 D}, thus proving our first claim.

Determination ofL(s). Consider now theL equalities (14), which can also be
expressed in vector notation: there existL sets of vectors {Ln

(s)} n{Z for s 5 0, . . . ,L 2
1 such that

O
n

Ln
~s!t

w~ x 2 nq! 5 xs (54)

in the sense of distributions. If we defineD9 as the linear operator acting on polynomials
throughD9P( x) 5 P( x 1 q) 2 P( x) then we haveO

n

DLn
~s!t

w~x 2 nq! 5 D9xs, which

is a polynomial of degree strictly less thans. By iterating the operator, we findDs11L(s)

{ }. It is now important to notice that we can chooseL(s) such thatDs11L(s) 5 0. To
show this, letDs11L(s) 5 M, where M{ }. We know thatD is one-to-one on}, as is
Ds11, and as a consequence, we can find M9 { } such thatDs11M9 5 M; now, L9(s) 5
L(s) 2 M9 satisfies the same monomial reconstruction property (54) asL(s), together with
Ds11L9(s) 5 0. We can thus substituteL9(s) to L(s).

Assuming that theL(s) are chosen so thatDs11L(s) 5 0, we expand (x 6 q)s 2 xs.
Replacing the monomials by theirL-expansions (54), we obtain for eachs an expression
of the formO

n

Kn
t w~x 2 nq! 5 0, so that Kn is in }. On the other hand, we haveDs11Kn

5 0. SinceD is invertible on}, we find Kn 5 0. Explicitly writing the value of Kn, we
thus find the following recursion forLn

(s):
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Ln61
~s! 5 O

k50

s Ss
kD ~6q!s2kLn

~k!.

Let us now choose a compactly supported vector function F(x) such that* xsF(x)dx 5

L0
(s) for s 5 0, . . . , L 2 1. This choice is always possible: it corresponds to imposing

the value of the firstL 2 1 derivatives of Fˆ(n) at n 5 0. The induction equation forLn
(s)

shows that in fact we have, as a general expression,Ln
(s) 5 * xsF(x 2 nq)dx. This means

that the analysis functions associated with F and thewn form a quasi-biorthonormal set of
orderL.

Equivalent Fourier condition. Taking the Fourier transform (in the sense of distribu-
tions) of the multi-wavelet equation that reproducesxs, and using Poisson’s formula (this
is valid since, by hypothesis, Q(x)tw( x) { L1 for any polynomial vector Q of degree less
than or equal toL 2 1), we find

1

q O
n

d~s!Sn 2
n

qD F̂Sn 1
n

qD
t

ŵ~n! 5 d~s!~n!

for s 5 0, . . . , L 2 1. Equivalently, we can writed~s!Sn 1
n

qD F̂Sn 1
n

qD
t

ŵ~n!

5 qdnd
~s!~n! for all n integers, alls 5 0, . . . , L 2 1, and alln real. Finally, this is

equivalent to saying that~ds/dn s!F F̂~n!tŵSn 1
n

qDG
n50

5 qdnds for all integersn and

s 5 0, . . . ,L 2 1. As we can see, this condition makes use only of Fˆ (0) and of theL 2

1 derivatives of Fˆ at zero, which are otherwise directly related toL0
(s) by definition. A

consequence is that if suffices to restrict Fˆ (which is entire) to its Taylor development
up to the orderL 2 1 and this provides the vector polynomial P of (18). This equation
has been stated with “o(nL21)” since we have characterized only the firstL 2 1
derivatives; however, sincewn satisfies\ŵn

(L)\` , ` we automatically haveo(nL21) 5

O(nL). This completes the proof of (18): (ii) implies (i) by reversing our set of
equivalent assertions.

The uniqueness of the polynomial follows from the invertibility ofA(0) once again: if
the polynomial were not unique, it would be possible to find a polynmial Q(n) 5 P(n) 2

P9(n) such thatQ~n!tŵSn 1
n

qD 5 O~nL! for all n. In particularQ(0)tŵSn

qD 5 0 for all

n: as shown earlier, this implies Q(0)5 0. In that case, we can divide Q byn and use the
same argument, making the degree of Q decrease. Finally, the only possible Q is trivial,
which proves P5 P9 and thus the uniqueness.

The equivalence between (ii) and (iii) is straightforward and results from the fact that
it is always possible to find a polynomial vector B such that B(e2ipqn) 5 P(n) 1 O(nL):
the wavelet defined through its Fourier transformĉ(n) 5 B(e2ipqn)tŵ(n) thus satisfies the
Strang–Fix conditions.
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APPENDIX C: PROOF OF THEOREM 1

We shall first show that under the hypotheses of the paper,6( f )n is in l2. Part of the
argument will be used again to prove Theorem 1.

A. l2 Convergence of the Samples

Let us define

U~n! 5
1

qT O
n

f̂Sn 1
n

qTD ŵSnT 1
n

qD (55)

Ũ~n! 5
1

qT O
n

f̂Sn 1
n

qTD ŵ̃SnT 1
n

qD . (56)

We prove that these expressions are meaningful and that these
1

qT
periodic vector

functions belong toL2(I ), whereI 5 F2
1

2qT
,

1

2qTG . Of course, if this is the case, then

using the well-known theorem about the development of periodic functions in Fourier
series, we have the alternative definition of U and U˜ ,

U~n! 5 O
n

FE f~t!wS t

T
2 nqDd

t

TGe2ipnqTn a.e. (57)

Ũ~n! 5 O
n

FE f~t!w̃S t

T
2 nqDd

t

TGe2ipnqTn a.e. (58)

We start with Ũand define the functional sequence

ŨN~n! 5
1

qT O
unu#N

f̂Sn 1
n

qTD ŵ̃SnT 1
n

qD , (59)

whereN is a positive integer; our goal is to prove that U˜
N is a Cauchy sequence, that is

to say,

lim
N3`

sup
N9.N

\ŨN9 2 ŨN\L 2~I! 5 0.

By Fischer–Riesz theorem, this property will automatically imply the convergence of U˜
N

toward anL2(I ) function Ũ.
We thus chooseN9 . N and assume thatf { W2

r with r . 0.5 and\w̃̂\` # K , `.
From f, we define a set of bandpass functionsfk through
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f̂k~n! 5







f̂~n! if 0 # unu 2
k

2qT
,

1

2qT

0 elsewhere

(60)

for k { N; of course, we have the partition equationO
k$0

fk 5 f. Replacingf with this sum

in (59), we can exchange the (finite–infinite) summations yielding

ŨN9~n! 2 ŨN~n! 5
1

qT O
k$0

O
N,unu#N9

f̂kSn 1
n

qTD ŵ̃SnT 1
n

qD .

Because of their support, not all thefk contribute to the sum of the right-hand side. For
our purpose, it is enough to say that only thosek such thatk . 2N will be involved; using
Minkowsky’s inequality and the upper bound for\w̃̂\, we find

\ŨN9 2 ŨN\L 2~I! #
K

qT O
k.2N

\fk\L 2.

Due to the definition (60) of thefk’s, u2pnu2r is upper bounded bySqT

kp
Dr

on the support

of f̂k so that \ fk\L2 # SqT

kp
Dr

\ f k
~r !\L2. Using Cauchy–Schwartz inequality for discrete

sequences, we find that

O
k.2N

\fk\L 2 # SqT

p
D r

Î O
k.2N

k22r\ f ~r!\L 2,

which tends to zero asN tends to infinity, whence U˜
N satisfies the Cauchy property. This

ensures the convergence of the sum of the squared samples and proves that U˜ { L2(I ).
Of course, we have the same result for U: this will be used in the next subsection.

B. Expression ofef in Fourier Variables

Expanding the square normef
2, we obtain three terms:ef

2 5 \ f \L2
2 2 2^ f, 4Tf & 1

\4T f \L2
2 . Let us concentrate on the third. First, we manipulate (13) by substitutingw̃̂(n)

5 * w̃( x)e22ipnxdx, which yields4Tf(t) 5 T * Ũ(n)tŵ(nT)e2ipntdn. As can be seen
from this formula, 4Tf and TŨ(n)tŵ(nT) are Fourier transforms of each other. A
consequence is that theirL2 norms are identical,\4T f \L2 5 \TŨ(n)tŵ(nT)\L2. Finally,

because of the
1

qT
periodicity of Ũ we find

\4T f \L 2
2 5 qT2 E

21/ 2qT

1/ 2qT

Ũ(n)tA ~qnT!Ũ~n!dn

5
1

q O
n

E f̂~n! f̂ Sn 1
n

qTD ŵ̃SnT 1
n

qD
t

A ~qnT!ŵ̃ ~nT!dn,
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whereA has been defined by (8). In the same spirit, we obtain

^ f, 4T f & 5 qT2 E
21/ 2qT

1/ 2qT

Ũ(n)tU~n!dn

5
1

q O
n

E f̂~n! f̂ Sn 1
n

qTD ŵ̃SnT 1
n

qD
t

ŵ~nT!dn.

From these formulæ, we identify two terms worthwhile to separate and writeef
2 5 e1

2 1
e2

2, where

e1
2 5 E u f̂ ~n!u2E~nT!dn (61)

e2
2 5

1

q O
nÞ0

E f̂~n! f̂ Sn 1
n

qTD ŵ̃SnT 1
n

qD
t

@A ~qnT!ŵ̃~nT! 2 2ŵ~nT!#dn, (62)

E( z ) being defined by (21). Rewriting (62) using the orthonormalized basis functions
further simplifies the formula. The second term exhibits adouble form of aliasing; it

vanishes wheneverf̂ ~n!f̂ Sn 1
n

qTDf̃
ˆ SnT 1

n

qD
t

~f̃
ˆ
~nT! 2 2f̂~nT!! cancels independently

of n and ofn Þ 0.

C. Evaluation ofef

Due to the aliasing character ofe2, we can benefit from decomposingf into its bandpass
componentsfk defined by (60): we necessarily haveefk

2 5 * u f̂ku2E(nT)dn. Using
Minkowski’s inequality we find

ef0 2 O
k.0

efk # ef # ef0 1 O
k.0

efk. (63)

Our first task is thus to estimate the sum ofefk
. As noticed earlier, due to (60), the

frequencyunu is lower bounded by
k

2qT
whenk . 0, on the support off̂k. In particular,

this implies that

efk # M
~qT!r

~pk!r \ f k
~r!\L 2 for k . 0,

where the constantM is defined as=\E\`. Thus, the Cauchy–Schwartz inequality on the
discrete sums yields
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O
k.0

efk # MÎz~2r !SqT

p
D r

\ f ~r! 2 f 0
~r!\L 2.

The second task is to boundef0
in order to replace it withe1 in (63). Using the integral

value foref0
and the definition (61) ofe1, then using Minkowski’s inequality once again,

we find

ue1 2 ef0u # MSqT

p
D r

\ f ~r! 2 f0
~r!\L 2.

Finally, we combine these estimates,

uef 2 e1u # 2MÎz~2r !
qr

pr Tr\ f ~r! 2 f 0
~r!\L 2

# Ka~ f, T!Tr\ f ~r!\L 2

# KTr\ f ~r!\L 2,

where we have bounded 11 z(2r )21/ 2 by 2 to get the result of Theorem 1. Note that the
middle inequality with

a~ f, T! 5
1

\ f ~r!\L 2
FE

unu$1/ 2qT

u2pnu2ru f̂~n!u2dnG 1/ 2

(64)

gives a sharper result becausea( f, T) # 1 vanishes asT goes to zero. Unfortunately, it
is dependent onf; however, this proves thatef 2 e1 5 o(Tr). Also, it is possible to show
that sharper bounds ofef can be obtained directly from (63) (i.e., usingef0

instead ofe1);
in that respect, Theorem 1 is essentially useful for studying the asymptotic behavior ofef.

APPENDIX D: PROOF OF THEOREM 3

Implication lhsf rhs. ef 5 O(TL) implies that the first term of (24) isO(TL). Due
to the positivity of the integrand, and more precisely due to (21), this implies that

* u f̂(n)u2a(Tn)dn is O(T2L), where a(n) is a template foruq 2 ŵ̃~Tn!tŵ~Tn!u2 and

Uŵ̃~Tn!tŵSTn 1
n

qDU
2

for n Þ 0. In addition, we note that our hypotheses imply thatw̃̂ and

ŵ can be differentiated 2L times and that all these derivatives are bounded: this property
is thus also true fora(n). We then show by induction thata(n) 5 O(n2L): sincea is
bounded and continuous, we can apply Lebesgue’s dominated convergence theorem to
show that lim

T30

* u f̂ ~n!u2a~Tn!dn 5 a~0! * u f̂ u2, which proves thata(0) 5 0; sincea(n) is

symmetric inn, and sincea is at least twice differentiable,a(n)n22 is bounded, so that
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we can use the same reasoning as above fore f
2T2 2 this time yielding

lim
T30

* unf̂~n!u2a~Tn!~Tn!22dn 5
a0~0!

2
* un f̂ u2. This induction can be repeated 2L times so

that we find a(n) 5 O(n2L). If we replacea(n) with its templates, this is exactly
condition (ii) of Lemma 2, which implies the quasi-biorthonormality of orderL for the
functionswn and w̃n.

Implication rhsf lhs. Let u be an arbitrary unit vector, andu( x) 5 u# tw( x) a scalar
function. A consequence of our hypotheses is that sup

x

O
n

ux 2 nqukuu~x 2 nq!u , ` and

* uxukuu( x)udx , `, for k 5 0, . . . , 2L, independent of the unitary vector u.
From u( x), we define the functionsvk( x) 5 * jku# (j)(j 1 x)ku(j 1 x)dj for k 5

0, . . . , 2L, which have the following properties:vk { L1 ù L`, and consequently
vk { L 2, O

n

uvk~nq!u , ` and finally v̂k 5 (1/(2p)2k)uû(k)u2.

Let us show that there exist constants {Ck} k50, . . . ,2L such that for everyL2 function
g,

O
n

E uĝ~n!u2U û~k!Sn 1
n

qDU
2

dn # Ck\g\2
2. (65)

For this, we first consider the case of indefinitely differentiable, compactly supported
functionsg, which are known to be dense inL2. In that case, it can easily be seen (using
Poisson’s summation formula forg2( x) 5 * g( x 1 j) g(j)dj) that

E uĝ~n!u2 O
n

v̂kSn 1
n

qDdn 5 q O
n

g2~nq!vk~nq!,

which proves that (65) is satisfied, if we letq O
n

uvk~nq!u # Ck , `; note thatCk can be

chosen independent of the unit vector u. In particular, (65) is still true if we consider only
a finite summation on the lhs, since each term is positive. We can thus extend by density
this result to the whole class ofL2 functionsg and, finally, prove (65).

Let us now consider the finite sum

aN~n! 5 O
0,unu#N

U ŵ̃~n!tŵSn 1
n

qDU
2

, (66)

whereN is an integer.aN is 2L times differentiable and its 2Lth derivative is a finite
(depending onL and not onN) sum (due to Leibnitz’ rule) of terms of the form

O
0,unu#N

ŵ̃a~n!tŵ~b!Sn 1
n

qD ŵ̃~g!~n!tŵ~d!Sn 1
n

qD ,
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wherea 1 b 1 g 1 d 5 2L. Remembering that all the derivatives ofw̃̂ are bounded
up to the order 2L and using Cauchy–Schwartz inequality, we can thus claim that
* u f̂(n)u2n2LaN

(2L)(nT)dn is upper bounded by a constant3\ f (L)\L2
2 ; moreover this

constant does not depend onN because of (65). Taking into account the quasi-
biorthonormality hypothesis of the right-hand side of (30) (which providesaN

(s)(0) 5 0 for
all s 5 0, . . . , 2L 2 1), Taylor’s theorem yields the inequality* u f̂(n)u2aN(nT)dn #

C9T2L whereC9 is a finite constant, independent ofN. If we let N tend to infinity, this
term remainsO(T2L) and on another side, its kernel tends to the second term of (21), the
first term of (21) beingO(n2L) by hypothesis. This proves thatef 5 O(TL).
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