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We investigate the approximation properties of general polynomial preserving op-
erators that approximate a function into some scaled subspacevia an appropriate
sequence of inner products. In particular, we consider integer shift-invariant approxi-
mations such as those provided by splines and wavelets, as well as finite elements and
multi-wavelets which use multiple generators. We estimate the approximation error as
a function of the scale paramef€when the function to approximate is sufficiently
regular. We then present a generalized sampling theorem, a result that is rich enough to
provide tight bounds as well as asymptotic expansions of the approximation error as a
function of the sampling step. Another more theoretical consequence is the proof of
a conjecture by Strang and Fix, which states the equivalence between the order of a
multi-wavelet space and the order of a particular subspace generated by a single
function. Finally, we consider refinable generating functions and use the two-scale
relation to obtain explicit formulae for the coefficients of the asymptotic development
of the error. The leading constants are easily computable and can be the basis for the
comparison of the approximation power of wavelet and multi-wavelet expansions of a
given order..  © 1999 Academic Press

I. INTRODUCTION

Obtaining a discrete representation of a function is an unavoidable step if one wis
to develop numerical methods for solving problems that are formulated in the continu
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domain. A general approach is to project the input functiog) € L? onto an appropriate

subspac#/; of L2, whereT is a scale (or bandwidth) parameter that determines the quali
of the approximation. One of the simplest forms of projection is interpolation where t
function and its approximation are in perfect agreement at some specified grid point

In digital signal processing (DSP), this discretization is obtained by sampling, usi
Shannon’s sampling theorem [41], which allows one to represent a bandlimited funct
by a countable set of uniform samples. Usually, the considered functions do not satisfy
conditions of the sampling theorem exactly but this discrepancy is not detrimental:
important point is that the quality of the representation improves as the sampli
frequency increases. Most of the research done in this field is thus made with data alre
discretized. However, the sampling theorem, which is at the basis of the theory, is :
used regularly when continuous operations (such as a 2D rotation, or a noninteger 1
delay) have to be implemented in a discrete manner. In these cases, it is highly desir
to have a good handle on the approximation error, especially if one uses alternative si
representations such as splines and wavelets [48]. A precise characterization of
approximation power of wavelet bases may also be very valuable for coding applicati
[5, 38].

Interpolation methods have been studied extensively in approximation theory and al
of applied mathematics where the goal is to discretize continuous equations that cannt
solved easily without the help of a computer. These problems often involve seve
dimensions, which explains why most results in approximation theory are published
multivariate functions. The underlying process is otherwise very similar to the sampli
scheme, with the important difference that here the approximation error is a parameter
has to be estimated, since in that case, the adequacy of fit between continuous and dic
data has to be controlled. The philosophy here is rather different from the one wh
prevails in DSP: emphasis is placed on tiegularity of the function instead of on its
bandlimited character.

In this paper, which we have divided into three parts, we present a detailed e
quantitative characterization (Section Ill) of the* error introduced by such linear
approximation schemes under very general conditions on the functions to be approxim
and on the analysis and synthesis functions which define the approximation algori
(Section 11). An application (Section 1V) to the special case of refinable generators shc
the potential of our general results.

An aspect of our paper is the consideration of representation spaces generated
equidistant translates of several functions (“multi-wavelets”), instead of only one (“wax
lets™). In order to preserve the sampling density, we use a shift increment that is a mult
of the number of generating functiortg so that our basic representation spaces ar
g-integer shift-invariant. We use a vector formalism well adapted to the study of mul
wavelets, which have attracted much attention recently [1, 15, 27, 28, 51].

For our analysis, we have purposely chosen to consider a very broad class of lir
approximation operators. An interesting subset of them includes the cases usually de
nated by quasi-interpolants [11, 20, 24, 42], the various types of projectors encountere
the context of the wavelet transform [14, 45], but also more general polynomial preserv
operators that have been studied recently [9, 29, 33]. A general account of qu
interpolation can be found in [21]. Here, we will see that the order constraint is transla
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into a simple moment condition for the analysis functions—a very weak form of bic
thonormality, which we call “quasi-biorthonormality.”

Our key result is a formula for the approximation error (Theorem 1) and its “pha
average” (Theorem 2) which should be relevant for both DSP and approximation thec
Alternatively, Theorem 1 can be seen as a sampling theorem for which the samp

1
frequency,—r, is the most important parameter or as an approximation theorem for whi

the regularity of the function is of greater concern. Using this result, we are also able
identify new conditions on the synthesis functions under which the Strang—Fix equi
lence [42] is true. We finally show how to obtain asymptotic expansions and upper bou
for the expansion error: this constitutes a wide extension of what is already known in
literature [44—-46, 48].

When there is an underlying multiresolution structure the computation of asympta
constants is made much more tractable. Thus, our formulation applies directly to
various multiresolution spaces of the wavelet transform [19, 35, 36], which correspol
to the simpler casgq = 1. The case is well known for wavelets, but is also of interest fo
multi-wavelets, which are a more recent construction [1, 15, 27, 51]. One advantage
multi-wavelets is that one can construct orthonormal, symmetric, and compactly s
ported basis functions, which is not possible otherwise. The multi-wavelet framework a
allows for richer classes of piecewise polynomial functions including splines and Herm
polynomials [27]. Our present contribution is an exact computation of the asymptotic fo
of the approximation error as a function of the generating filters. This result is also
improvement for the wavelet case since it adds higher order terms to the asymptotic re
in [45]. All these results, to our knowledge, are new.

Note that the unconstrained character of our hypotheses may also have some pra
advantages: it may suggest alternative approximation procedures that are essential
adequate as the least squares solution, but much easier to implement because the ar
functions can be much shorter (e.g., [46]).

To keep the presentation simple and understandable, we have chosen to concentre
the case of univariate functions. There is no fundamental difficulty in extending our rest
to multiple dimensions: this can be checked theorem after theorem, at least for
theoretical results.

A. Notation

Our analysis relies heavily on Fourier techniques. We define the Fourier trarfsédrm
a functionf by f(v) = [ f(x)e*™*dx. Also, we consider distributions [40] and, in
particular, the Dirac mas8(x) and its derivativess®(x). With a similar notation, the
Kronecker symbob,, is defined as the sequence which takes the value & forO, and
0 forn # 0.

We recall the well-known Poisson summation formula which holds in the sense
distributions for every.* function f(x),

> f(ne?™ — > f(x + n) = 0. (1)
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This means that, for any test (i.e., compactly supported and indefinitely differentiak
function s(x), the scalar product between the Ihs of (1) a(ck) vanishes.

The usual operations acting on a complex nun#eée., conjugation and real part, are
denoted by, respectivelg, and N{ z}.

The conventional inner produgftﬁg(x)dx between two complek ? functionsf, g
is denoted f, g), and the associated euclidean norrfi 44, . We also denote by ||, 2,
the localL? norm over an interval.

The usualL” norm is denoted by f |, and equals sy (x)|. For simplicity, we also

denoté|V(v)|.. = sudV(v)| in the case where V is a vector function; no confusion shoul

arise from the two similar notations, since we make a typographic distinction betwe
scalar and vector functions (see below).

Let r be a positive real number. The Sobolev speégis defined as the collection of
functions satisfying’ (1 + »?)"| f(v)|?dv < . In line with this definition of regularity,
we extend| f || - to noninteger values of by equating it to the square root of
I 27| ¥(v)|2dw.

For some estimates we need the Riemann zeta function definéd)as > n * for

n=1
all reals > 1.

Filters are described either by polynomials (transfer function) or by their impul
response, i.e., the coefficients of these polynomials. To make the distinction clear,
convention is to use a lower-case letter for the coefficients, and upper-case for
corresponding polynomial. Knowing that scalar functions are italic, vector functions &
roman, and matrix functions are boldface roman, we thus follow the notation descrit
below:

scalar H(z) = >, h,2"
vectorHz) = >, h,2"
matrix H (z) = >, h,2".

The square root of a positive Hermitian matfixcan be uniquely defined as the positive
Hermitian matrixB such thatB? = A: this square root is denoted byA, as if A were
a scalar.

Most asymptotic expansions are presented wil <)” and “O( - )” terms, which
allows us to give a more compact and understandable form to the results: fiing
o(x") is equivalent to writing lim suf (x)/x"| = 0; in the same spirit, writind(x) =

x—0

O(x") is equivalent to lim suf (x)/x"| < o (not necessarily 0).

x—0

Il. APPROXIMATION BY MULTI-WAVELETS

The theories developed for digital signal processing would never have been poss
without the tool of sampling and its dual, interpolation. The problem of the description



APPROXIMATION ERRORS 223

a continuous signal by a discrete sequence of numbers was first solved for the bandlin
case [41, 50]. In the classical result, a bandlimited funct{thcan be written as a linear
interpolation $f(t) of its equally spaced sampléénT), provided that the sampling
frequency, T~ %, is at least twice the signal’s bandwidth. This interpolation is written a

I+t = D f(nT)sinc(% - n) , (2)

where sinck) = sin(wx)/(m7X).

A. Invariances

The Shannon—Nyquist interpolation exhibits many “good” properties, in particular
far as scale changes and time shifts are concerned. For instance, if we deigtéhisy
X
interpolation space generated by the sinc basis ;e spar{sim{T - n)} restricted

nez
to L2 functions) then for eachin V; we have the following properties:

VreR f,=1(- +7) €Vy (general shift invariance) (3)

Va=1 fa?t) € Vqp (general scale invariance). 4)

On the other hand, there are “bad” features, such as the infinite support of any nontri
function of V4, and more precisely the fact that the interpolation formula (2) is slowl
convergent. This prevents us from giving the Nyquist function a local meaning.
These remarks led to a first generalization of the notion of interpolation through the |
of a certain amount of shift invariance [4, 42]. More specifically, it was recognized th
defining an approximation spasg = spar{ch - n)} N L? whereg is a function
nez
with acceptable frequency and time localization, can be more robust and useful in pract
applications than the space of bandlimited functions. In that case, shift invariance is r
satisfied only for integer increments; thus, the generalization operates by replacing
with the much weaker property

Vr€TZ f,=1f(-+17)€V; (integer shift invariance) (5)

for all f € V4 this property is satisfied by wavelet-like approximation spaces. It can |
further generalized by considerimggenerating functions instead of one: in order to keej

t
the space density constant, we defife = span {‘Pi(-T— - nq)} N L% now, (3)
ne€Z,ji=0...q-1
is replaced with !
VreqTZ f,=1(- +17) €V (g-integer shift invariance (6)

for all f € Vq: this property is satisfied by multi-wavelet-like approximation spaces.
Similarly, the weaker forms of scale invariance led to the concept of multiresolutic
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analysis [35, 36]. In the usual case of interest wheie compactly supported and where
V+ is a wavelet-like space, it has been shown [13] that (4) must be replaced by

VneN f(ay"+) € V¢ (integer scale invariance), (7)

wherea, = 2 is a positive integer (scale factor). Yet, noninteger scale factors (
particular interest is the case<l a; < 2) are allowed, if we give up the shift invariance
property [7]. Among the integer scale-invariant functions such as Daubechies “fath
wavelets [18] (wherea, = 2), B-splines have the noteworthy feature of being intege
scale-invariant fony positive integer scale facta,.

B. Multi-wavelets and Their Vector Formalism

In this paper, we concentrate grinteger shift-invariant approximation spaces, which
are generated by a finite numbagr,of shifted functionsp,. We shall refer to the,(x)’s
as thegenerating functionor generatorsof the representation, or also agnthesis
functions.Note that some authors also use the term “finitely generated shift-invariar
(FSI) space [22]. In order to simplify some further expressions, we shall denote thi
generating functions (also qualified as multi-wavelets here, though they are of the “fatf
kind [36]) by ¢,, wheren spansZ, instead of emphasizing the shift dependence ofghe
1.8, @nying(X) = @n(X — n.q), whereny = 0, ..., — 1 andn, € Z.

We do not distinguish between the cases of single and multiple generators, becaus
mathematics are exactly the same. As a matter of fact, it can be shown [51] t
multi-wavelets behave likeectorwavelets, and this is why it will also prove efficient to
use the following equivalent vector notation: to tags, we associate g-vector (i.e., a
vector of lengthg) ¢(X) = (@g, @1, -, @q—1)"

As in the wavelet case, it is possible to orthonormalized¥shifted vector functions
through matrix filtering. Indeed, if we let

N e F e}

thenA(v) is Hermitian, positive and 1-periodic so that we can de@ie® ™) = VA(v).
Assuming thatA(v) is invertible (which will ensue from our hypotheses), we can defin
the orthonormalized generating functions through their vector formulation [26]

(v) = G(e2™) 5 (v) 9)
b(v) = G(e™) (). (10)
Expressed using this orthonormalized basisour results take a particularly simple form.

C. Approximation Method

The error induced by the approximation process will be evaluated using’therm:
as will be seen later (Section III), this choice makes it possible to obtain an expli
computation of the approximation error.
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We now need to define a linear functional operéfer providing the coefficients of the
linear decomposition (12) of the approximated function, on ¢hs. The form of this
operator is

P f i { f f(T)(ﬁn(_ql-_)d_T_}nEz, (11)

where we assume thdg, are g-integer shift invariant distributions, i.e., once again
Pniq(X T 0) = ¢4(x) foralln € Z. In analogy with Shannon’s sampling theorem (2),
we interpret¥; as a sampling operator, and we have the approximation operator

()= 3 (ot 1)

=3 [1oa{g)alr)or 12

Using the vector formalism for the sampling and synthesis sides, this fundamer
approximation formula can be rewritten as

() = 3 | 1e( - nq)lp(;— na)d 7, (13)

where g(x) = (&0, &1, -+, Pq-1)"

Of course, in order for these definitions to have a meaning (e.g., convergence of
summation in (12), existence of the scalar product in (11)) we must restrict somewhat
choice off, ¢,, andg,. Our hypotheses will be given in subsection II-D.

Now, following the de Boor and others [20, 24, 45], we define the notion of “order

Derinimion 1. The set of synthesis functions & order L iff there existL real
sequences X} .., such that, in the sense of distributions

X =2 Aen(X) (14)

fors=0--L — 1.

In general, (14) is assumed to hold pointwise, a property which is necessary when
considerd.~ error measure; this is not our case, tifenorm beingglobal, so that we can
use a weaker condition: for additional hypotheses on the functiaps so that the
Poisson’s summation formula hold pointwise, see [32].

In the approximation scheme considered here, unlike the minimal approximat

LIt is not true that the pointwise version of (14) is stronger than its distribution version, but this becomes t
once the pointwise convergence is uniform over any closed interval.



226 BLU AND UNSER

scheme, the sampling distributions and the synthesis functions are independent par
ters: this is why we need to define another notion of order, based on both of them.

DeriniTion 2. We say that a set of sampling distribution$,} ., and synthesis
functions {¢.},c» constitute aquasi-biorthonormalset of orderL if and only if the
following two conditions are met:

e the functionse,, are of order;
e the distributionsp,, satisfy the moment conditions

nez

XSpa(x)dx = AP for { 15
| %0 o1 (15)

where theA® are assumed to satisfy (14).

It is easy to understand why this property is called “quasi-biorthonormality of &rder
if the sampling and the interpolating functions were exactly biorthonormal then, unc
technical convergence hypotheses, it would be possible to use the approximation forr
(12) to recover any function—including the monomials (14)—that lies in the span of t
¢,'S. Here, we are primarily interested in the polynomials which can be reconstruct
exactly under the much weaker condition (15).

Note that the_th-order quasi-biorthonormality property puts a rather strong constrai
on the synthesis functions, i.e., the reproduction of the polynomials of dégreé (cf.
(14)). The moment condition (15) on the sampling distributions is much less constrain
and leaves room for many design alternatives.

D. Hypotheses

We shall have to make substantial assumptions on the approximation scheme, whic
turn will provide us with very sharp estimates together with the theoretical equivaler
between quasi-biorthonormality of ordér and approximation error of orddr (see
Theorem 3 below).

Hypotheses on the synthesis functiong/e shall assume that the synthesis function:
@, are inL? and satisfy the Riesz conditiohX [c|? = ||I2 ¢yl = B 2 |c,? for any
n n n

12 sequenced,} ..z, and where 0< A = B < «. Following the proof of [2, 4], one finds
that this requirement is equivalent to the condition

Al,=A(v) =BI, (16)

for almost everyv € R. In this paper, we require slightly more, specifically that this
inequality hold pointwise, i.e., for alb € R: actually, this subtlety is largely theoretical
since in practical case®(v) is always continuous. The important Riesz hypothesis meat
that the functions are linearly independevtienever 1 coefficients sequences are con-
sidered.However, this does not rule out the possibility that nérsequences make the
linear combination cancel for every valuexofBesides, a close examination of our proofs
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indicates that it might be sufficient to restrict the lower Riesz inequality to the invertibili
of A(0), at least for our theoretical results (Section IlI).

In order to be able to derive some valuable equivalences in our theorems, we
another, more exotic assumption, which limits the amount of linear dependence of
basis functions. Letll be the vector space of all possible coefficients such that
> M@, = 0inthe sense of distributions. Then our hypothesis is that the dimensi@in of
n

is finite. In practice, this encompasses most interesting situations, susthicidinear
independence (i.e., dintl. = 0) or compactly supported generating functions which satisf
the Riesz condition (proof in Appendix A).

Finally, we assume that when thg, are of orderL then the integrals/ |x —
n|¥l¢,(x)|dx are finite for everyn = 0,...,q — 1 and fork = 0, ..., L. This
guarantees that the Fourier transforms of the synthesis functiohstemes continuously
differentiable with bounded derivatives.

Hypothesis on the sampling distributionsOn the sampling side, we only assume tha
the @,’'s have aboundedFourier transform: this in particular allows us to consider
distributions such as the Dirac mass.

Hypothesis on the functions to approximaté-or (12) to generate a function that
belongs td_?, we need to restrict the choice b§o that the sequenceéff(f),} ez is in
I2. We reduce the set of admissible functions to those which aw¢§with r > % for
it can be shown (see Appendix C) that this constraint ensures the convergence
> |¥+(f),/% Note that this requirement is slightly stronger than continuity, since it implie

n
thatf is Holder continuous with exponemt— %

ll. L 2 APPROXIMATION ERROR

Independently of the properties of the sampling/synthesis functions, we are intere:
in evaluating the quantity

&= || f— 2:f]|La. 17)
As in the wavelet case, it is possible to expresslttieorder property of the synthesis
functions equivalently in the Fourier domain of the vector functions.

Lemma 1. The three following properties are equivalent:

(i) The synthesis functions, are of order L.
(ii) There exists a unique polynomial g-vectBr (.e., with vectors of size q as
coefficient} of degree less than or equal to+ 1 such that

P(u)‘?;;( v+ g) =qd, + O(+") (18)

for all integers n.
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(iii) There exists a unique coefficient sequefigg where k=0, . . ., gL — 1 such that
the function defined by

qL—1

Y= 2 by (29)

k=0

R n
satisfies the Strang—Fix condition;s<v + a) = s, + O(v") for all integers n.

The proof is given in Appendix B.

This result can be compared to what is known in the approximation theory literatt
[23, 32, 42], where a form of this lemma is given; our form is slightly more general in th
it does not assume that the coefficienf§ of (14) have a polynomial character (one
speaks of “polynomial preservation” [32, 39], notgalynomial reconstruction however,
the finite dimension hypothesis oft implies (see Appendix B) that thel® are actually
polynomial; other hypotheses [37] also lead to the same conclusion. Our lemma goes ¢
a little further: it provides the length of the minimum linear combination (see also [37
of synthesis functions for building the functianand also shows the uniqueness of this
minimallinear combination. Finally, note that the generating functions considered here
not necessarily compactly supported: their Fourier transforms mulsttimees differen-
tiable.

Using the minimal polynomial B§ of Lemma 1, we can construct many equivalent
quasi-biorthonormal sets of ordersuch thaﬁa(v) = P(v) + O(v") (cf. proof of Lemma
1). As a consequence of the uniqueness of this minimal polynomial, a more precise re
namely the equivalence betwekth-order quasi-biorthonormality and this equation car
be stated.

Lemma 2. The two following properties are equivalent:

(i) The multi-wavelets,, and ¢,, constitute a quasi-biorthonormal set of order L.
(i) The Fourier transform of the vector functions satisfy

= n
s1o( v+ o) = a5, + 06 (20)
for all integers n.

A. Approximation Results

In the following, we state that the approximation erépcan be written as a main term
plus a perturbation. The dominating component can be computed exactly by integratio
| f(v)|? against the kernel

2

1 o 1
Ew) = 5la- em'em)P+ 5 2

21
q q n#0 ( )

s
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The additional correctiorg( f, T), can take positive or negative values and its magnitud
depends on the (Sobolev-)regularity exponent of the function to be approximated
becomes negligible when the sampling stejs small relative to the intrinsic smoothness
scale off.

Note that condition (ii) of Lemma 2 appears in a canonical way in (21), which sugge
that the kernelE(v) is thus intimately related to the quasi-biorthonormality of the
sampling/synthesis scheme. In the orthonormalized basis (proi¢igdis invertible),
this kernel takes the much simpler form

2 2 ~ 1 =
E@)=1—aﬁH¢UﬂMW}+aﬂ¢@W2 (22)
— 1= Lo e — a0 23
= QMWW quw b~ (23)

The following theorem relate&(v) to the approximation errog; and is the most
important result of our paper.

Theorem 1. For all f € W5 with r > % the approximation error is given by

A 12
&= |f— 9 f|.= [j| f(V)|2E(TV)dV] +e(f, T), (24)

where the correction term(é, T) = o(T") is bounded as

le(f, T)| = KT 7). (25)
with
qr
K=2_ J(@n]E].. (26)

In addition, the term €f, T) in (24) exhibits a double aliasing characté¢in f and in ¢)
and cancels whenever one of the conditions

n 2

f(v)?(v 4 q—) —0 or d)(v + :)t((T)(v) —2b(1) =0 (27)

holds for all frequency and all non-zero integers n.

The proof is given in Appendix C.

There is one related result in the literature in [22, Eq. (4.2)] that applies to tl
orthogonal projection onto a principal (i.g.= 1) shift-invariant space. In this special
case,d, = ¢, which implies thatE(v) = 1 — |$(v)|? this is precisely the form of the
kernel appearing in [22, Thm. 2.20], which gives the minimum error for the appro
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imation of a bandlimited function. However, these authors did not push their ert
analysis further because their motivation was different from ours. They were int
ested primarily in finding an accurate link between the order of the expansion er
and the Fourier transform of the generating function. Our present error formula
sharper and also more complete. Not only does it apply to multiple generators, bt
also covers a much wider class of approximation operators for which the sampl
and synthesis functions need not be the dual of each other; such approxima
schemes find numerous applications in finite element analysis and digital sig
processing.

Our result can also be interpreted as a sampling theorem. For the particular(cdse
= sinc(x) and ¢(x) = 8(x), we recover Shannon’s sampling theorem [41]. Howevel
Theorem 1 is more elaborate for it provides an estimate of the error when the functi
are not bandlimited. Another extension is to consider the approximation problem in
case of multiple analysis or generating functions: from the second part of the theorem,
can deduce that one possible condition for the minimal expansion error to cancel is

11
f be bandlimited with frequency support - —] , and that the synthesis functiogg

21 2T
be bandiimited with { _Ik+1 k k k+1
e bandlimited with frequency support (respectlve[y) 29 0 fq] U [quq]
fork = 0, ...,q — 1. Also note that the latter condition is sufficient for the second errc

term to vanish ifg, and ¢, have the same frequency support. These observations ¢
especially relevant for digital signal processing, where the bandlimited hypothesis pl
a central role in the theory.

From now on, however, we will leave these sampling issues aside and use Theore
in connection with thd_th-order biorthonormality property. Instead, we will exploit the
fact that forf sufficiently regular, the leading term of the error when the samplingBtep
is small, is given by the order dg(v») in the neighborhood of#» = 0, providing the
asymptotic development af; nearT = 0 (see Theorem 4). We believe that such ar
asymptotic Fourier analysis is new; the first order of the development is known for so
projection operators but it is typically obtained via a pointwise analysis in the sigr
domain [45].

In addition to asymptotics and other valuable upper bounds on the error, (24) also of
a deeper insight into the theoretical relation betwie#norder quasi-biorthonormality and
Lth power of the approximation error (through the formulation (21@f)). This double
character should make Theorem 1 appealing to approximation theorists as well a
researchers working in more applied fields.

Averaged approximation error.Let us now examine the problem caused by the lac
of shift invariance in our approximation space. For this purpose, we choose to apprt
mate the shifted versiof|,(t) = f(t — u) of the functionf. The resulting error is a
qT-periodic function of the shift increment, i.e., e = € . Moreover, since the first
term in (24) is shift-invariant, the influence of the phase factaan only appear in the
second error component, which is therefore a direct reflection of the shift variance of
approximation space.

As the initial phase of the sampler is somewhat arbitrary, we choose to evaluate
averaged form of the error
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2_ a1 qu 2
ne = 7j erdu=—— I f, — 2.l -du, (28)
f qT f CIT . T L

which takes the periodicity into account. A remarkable fact is that this quantity can
computedexactlyand reduces to the first term in (24) (the second error term cancels
the average). Thus if we assume that the phase of the sampler is random and unifo
distributed, the term/ | f(»)|?E(Tv)dv provides us with the expected value of the
approximation error.

THEOREM 2. The average approximation error of the sampling/synthesis scheme
given by

= [ e, (29)

provided the Sobolev exponent of the function f is strictly greater %han

Proof. In the Fourier domain, the shift chan§e~ f, is equivalent to the multipli-
cation off by the phase terra~ 2™, which explains why the first term of (24) does not
depend oru. If we consider the form of the ternes given in Appendix C by (62), its
integrand is multiplied by a phase teen? ™("¥a" which does not depend an Due to
the absolute convergence of both the summations and the integrals, we can interchanc
order of these operations. Finally, we note that the average 8f "D over [0, qT]
cancels fom # 0. m

This is a rather powerful result given that we started with an error formula in Theore
1 that had the flavor of an upper bound. Thanks to Theorem 2, we now have
interpretable measung that is easy to compute exactly and gives a correct estimate of t
error for many practical applications.

B. The Strang—Fix Equivalence for Multiple Generators

We will now use Theorem 1 to make the connection with the Strang—Fix theory
approximation [42]. In the case of a single generator, there is a very direct equivale
between the ability ob to reproduce polynomials of degree= L — 1 (or the so-called
Strang—Fix conditions in the Fourier domain) and the rate of decay of the minimt
expansion error [10, 42] (initially least squares solution, later extended to the lother
measures [31]). In [42], Strang and Fix conjectured that such an equivalence would
hold for multiple generators but their initial claim was put into question by the constru
tion of a (rather involved) counterexample by Jia [30], discussed below. Several autt
worked around the problem for> 1 by adding constraints and introducing sophisticate
notions of controlled approximation [16, 25, 32].

In our case, the situation appears to be more favorable and there is no major diffic
in extending the Strang-Fix equivalence for= 1 without adding to our initial
assumptions.
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Theorem 3. We assume the boundednesspgfand of T [x — n|*|¢,(x)|, and also

n
require that [ |o, < o and [ [x — n[*"/g,] < . With these hypotheses we have the
equivalence

Ve WS, &= 0T S {@uhnez and{d.}n» are ordet quasi-biorthonormal. (30)

The proof of this theorem is given in Appendix D. Note that the method is rath
straightforward due to the particular form (21) B{v): the difficulty is essentially
technical (one cannot bluntly differentiate an infinite sum of functions).

There are three points that distinguish this result from what has been reported bef
First, Theorem 3 is a constructive result (for a related construction, see also [33]) 1
specifies a whole class of linegrinteger shift-invariant approximation procedures (nof
only the minimal one) inV; that provide anO(T") error decay rate. Second (minimal
error case), though our hypotheses are weaker in other aspects, the use of the Riesz
hypothesis is more restrictive than the condition of a controlled approximation initial
proposed by Strang and Fix [42], and implies it. Finally, Theorem 3 clarifies the discuss
around the Strang—Fix equivalence. Because of Lemma 1, Theorem 3 shows the exist
of a special functiony(x)—a finite linear combination of basis functions—such that the
error between the function to be approximated and the optimal expansiongdsiteger
shifts of §s is of the same order as the global minimal expansion error (using the full ba
set). It is the existence of such a function that has been a major point of contention in
literature [30, 32]. Note that de Boaat al. have shown recently that this problem
disappears if one drops the restriction of finite linear combinations [22].

In a counterexample to Strang—Fix conjecture, Jia [30] considers functions (smoot
box splines) of two variables and builds a setjof 4 generating functions such that the
expansion error is of order two, while no finité linear combination of the synthesis
functions satisfies the Strang—Fix conditions. In fact, such a linear combination exists,
is infinite as is explicitly written in [30]. As can be checked readily, Jia’s multi-wavelet
satisfy neither the Riesz condition nor dith<< e, and thus they contradict the hypotheses
of our equivalence theorem. This suggests that these conditions are essential for
equivalence (30) to hold.

In [23], it appears that a more general characterization (for compactly suppor
functions only) has been worked out: however, from the reading of the paper it is not cl
what kind of hypotheses are implied by a “compactly supported generating set” [23],
particular in terms of linear independence of the basis functions.

C. Asymptotic Equivalents

We will now exploit the simple form of Theorem 1 to derive the asymptotic form of th
error as the sampling stdpbecomes sufficiently small with reference to a “natural” time
scale off.

Theorem 4. If f € W5 and Hv) is 2r — 1 times differentiable with bounde2tth
derivative, then we have the following development:
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2 - E(Zk)(o) K12 T2k 2r
[f— 9. )%= (2m)™2K)1 | £%2.T* + O(T?). (31)
k=0 ’

In particular, the first nonvanishing order for multi-wavelets satisfying the Lth-orde
quasi-biorthonormality condition is given by

. ot _TL|f(L)||L2[E‘ L {: tA( n)} 2 ]1/2 OTL+1 -
|f— T||Lz—m : it o(v)'e V+a . + O(T"). (32)

Proof. We developE in Taylor series around 0 and bound itgl2term: sinceE(v)
is symmetric, all the odd powers cancel; the expansion (31) is therefore a straightforw
consequence of (24). From Lemma 2, we know thé#t-order quasi-biorthonormal
multi-wavelets must satisfy (20). Thus, all terms in (21) including the first on©&wé"),
which implies all derivatives up to ordet.2n (31) to vanish. The final form far = L +
1 is then equivalent to (32).m

Note that for the case of a single generator, we recover formula (17) of [45], whi

involves the infinite sumy | (n)[%. Similarly, if we consider the definition of quasi-
n#0

interpolation given in [48] (i.e., the sampling functions are Dirac mags€s) = 8(x —
n)), then again, we find Eq. (65) of [48] which, in this case, involves the unrestricted sl
> @™ (n)|%. We can also go further and obtain the next terms of the development withe

n

great difficulty. The main point is that Theorem 1 allows for an asymptbfierror
analysis simpler and more powerful than what has been obtained before by using Ta
series expansions in the time domain.

In the general (multi-wavelet) case, we can constdaify) = &) (v) + O(v"*h): this
is equivalent to fixing the firdt + 1 moments ofp to appropriate values provided gy
then the first order of the asymptotic error equals the first order adfmptotic minimum
error (least squares solution) that would be obtained with a dual set of basis functions
fact, the form (23) ofE(v) implies that this condition is necessary and sufficient for the
approximation to be asymptotically optimal. In particular, it is now possible to consid
compactly supported sampling functions associated with any kind of synthesis functi
This new freedom in the choice &, takes its full sense when we remember that, ir
general, the dual functions of a set of synthesis functions are not compactly supported,
often not so well behaved in the frequency domain. This fundamental remark has ¢
been stated in [46] with slightly stronger hypotheses (nangely has to be a quasi-
interpolant of order at least + 1, which implies additional constraints cr:p(n) forn #
0). Thus, our present contribution is to weaken the requirements on the analysis funct
and to extend the result to multiple generators.

Of course if we fix a greater number of momentipgfthroughd;(v) = d;(v) + O@-*N)
then we can force? to agree with the minimum expansion error up to order22N — 1.

D. Upper Bounds

Theorem 1 is also useful for deriving upper bounds for the approximation error.
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THeorem 5. If the multi-wavelets are quasi-biorthonormal of order L, then the
approximation error for f¢ W5 with r = L is bounded as

[ = 9fflo= CTHf YllLe + KT 7z, (33)
where K is given by26), and

S
VIE.

~ (2mt 0 (34)

Proof. We use Theorem 1 and estim&iév) by its Taylor series expansion. Using the
Lth-order quasi-biorthonormality property, we deduce tBét) is bounded by %/
(2L)N|EV)]|.., which allows us to isolatgf (||, -. From the proof of Theorem 3, we also
know thatE‘®")(v) is bounded so that the consta®tis finite. m

This type of result has to be compared with the more traditional error bounds of |
simpler form:e; = C'TH| (V]| = In the case of an extended formula, the bound can b
sharper because the leading const@ntends to be smaller. However, the result in
Theorem 5 is just an example of what can be obtained as upper bound. For example,
the same type of argument as in the proof of Theorem 5, we can find a bound simila
the one given in [46, Thm. 1]. In this particular setting wigh= 1, the sampling and
synthesis functions both satisfy the Riesz condition, plus an additional “quasi-projectic
requirementiz(v)(v) = 1 + O(+?%). Using (21), we can findy, a, such thaE(v) =
a3(2mv)?- + a3(2wv)?; then the application of Theorem 1 yields

1= 2flle= aoTH f V2 + @, T2 £ @2 + KT £ |,

wherer = 2L is the Sobolev exponent 6f Inspection of the leading constaay reveals
that it is slightly smaller than the consta@j in [46]. The second constaa is exactly
C, in [46]. The third term is not present in [46], but can be easily absorbed into the sec
by settingr = 2L.

To conclude the discussion on upper bounds, we consider the case of the least sq
approximation withq = 1. We haveE(v) = 2 |[o(v + K[Y/A(v), where A(v)

k#0
= X |d(v + K/*is bounded by the Riesz constants. Thus, we can obtain the followi
k

estimate of the consta@ in Theorem 5:

sup = (|¢])* (v + k)
v k#0

C = amreLA

The corresponding bound (33) is then quite comparable to the ineqeatityC T V) -

+ C2T24| £21))| 2, which is given in [48] and uses the same definition of the con&ant
These examples are only meant to show that it is rather straightforward to find sh

upper bounds with the help of our theorem. Of course when the basis functions are kn
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a priori, it is probably better to comparg(v) exactly and obtain the most accurate
computation of the approximation error.

IV. APPLICATION TO REFINABLE GENERATORS

The concept of a multiresolution analysis (MRA) [35, 36] has proven to be the key f
the construction of a whole variety of wavelet bases. These include orthogonal [6, 18,
35], semi-orthogonal [3, 12, 47], and biorthonormal wavelets [14, 49], as well as the mi
recent multi-wavelets [1, 15, 27]. MRA provides a simple geometrical interpretation of t
decomposition process in terms of projections onto a sequence of nested subspace
their complements.

In this part, we will consider the case of a dyadic multiresolution analysis With2!,
wherej € Z represents the scale index. Consequently, we define a MRA as follows:

(i) A collection of embedded spaces {0}- C V.- C V, C V, C ---L2
t :
(i) Vr = spar{qpn(f)} with T = 2.

nez
(iii) There exists an integeq such thate, (X + q) = @,(X) for all x real, andn

integer.
(iv) lim Clos(Vy) = L2
T—0
The only addition to our previous assumptions is the nestedness property (i). Other 1
that the functions spacé4; are the same as in Section II-B, except that the generators ¢
now calledscaling functionsAlso note that the completeness condition (iv) is automat
ically satisfied as long as the generating functions have at least a first order of appr
mation.

The signal approximations that we consider do not involve wavelets explicitly b
rather scaling functions at a given scaléthis is an important methodological difference
from [44], where the opposite is done). However, it is clear that a signal approximati
at scaleT = 2! can also be expressed as a truncated wavelet expansion in which all fi
scale coefficients have been set to zero. Thus, a detailed characterization of the apj
imation error as a function of scale is important for the comparison of wavelet bases
the prediction of their coding performance.

The important point for this paper is that the multiresolution property (i) implies that tt
generating functions follow a two-scale linear relation

¢(x) = 2 hp(2x — ka), (35)

k

whereH is aq X g matrix filter. In fact, (35) provides the vector definition of the scaling
multi-wavelet.

In order to compute the asymptotic approximation constants, we shall examine the «
of wavelets and multi-wavelets separately: they do not exhibit the same degree
complexity. In the present section, we are interested only in the minimtimalue ofe;,
which corresponds to the orthogonal projectiorf @fito V4, which we denoté?(f: this
least squares approximation can be obtained from (12)dits ... If, instead, we were
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to use functions that are not exact duals of each other, we know from the results of

1 - 2
preceding section that we need to include the additional tée||r¢n — o[ to the kernel

E(v). However, we also know that the order of this correction can be made as high as
want by choosingdp,, appropriately. This type of consideration may be quite relevant fc
the design of initialization algorithms, especially in the multi-wavelet case.

A. Wavelet Constants
Forq = 1, the refinement filter isi(e ™) = X h,e ™ with H(1) = 2, and it is

n
not difficult to derive the following two-scale relation fé&(v) = > [p(v + n)*
n

AW = 3 [ Il 5) + e 57 | )

This equation can be put in matrix form and solvedactlyif H has a finite impulse
response [43]. We shall thus assume that we have access to the valjey. of addition,
we know that the functiorp is of orderL iff (z + 1)" dividesH(Z) (the analog of this
property will be shown in the multi-wavelet subsection: see Lemma 3).

For refinable functions, we can obtain not only the first asymptotic error equivalent
a function of the generating filter coefficients, but also the followihg2 1 coefficients
of the development in powers df. This is stated in the next theorem:

THEOREM 6. If ¢ is of order L then for all f¢ W3- the least squares approximation
error in V; has the asymptotic development

2L—-1
a
If—Pff.= A= 1) | f®E.T* + O(T*), (37)

k=L

where the constants are the first4L coefficients of the MacLaurin development

2
> apX = 4AG) +0o(v™). (38)

k=L

v+1 S
o1 A( ) |H(_e—|1-rv)|

Proof. We apply Theorem 4. Since we consider the minimufrerror, we haveE(v)
=1 — |@(v)|?/A(v). Using (36) and the two-scale relation in the Fourier donig(in)
= (1/2)H(e " '"™")@(v/ 2), we find, after some manipulations,

RO ¢(Z>2 A" e

TA 1T A(v) * 4A()

+ O(v™).

2
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Here, we have taken into account the fact tHgt-e ') = O(»'). Substituting (38),
we can then solve for the first4coefficients of the asymptotic developmentff) and,
hence, ofe?. =

This result adds higher order terms to the asymptotic form of the error given in [4

z+ 1\"
Moreover, if we letH(z) = <—> Q(2) with Q(1) = 2, we obtain a closed form

2
|Q(=1)] \/

formula for the first-order consta, of [45]:
Co = 2ot (X [eP(mPve= o r - (39)
n#0

The right-hand side improves upon the infinite sum formula that has been repor
previously. In [45], the calculation of the infinite sum formula was made possible throu
the use of an induction formula for the derivatives in the center of (39), which were sho
to be proportional tap(n/2).

B. Multi-wavelet Constants
In this case, the situation is more intricate, evea(i) remains rather simple. We start
1 _ v
by writing the two-scale relation (35) in the Fourier domapir) = 5 H(e"”q”)§o<§) t

follows that 2 is an eigenvalue ¢f(1). As in the wavelet case, it is then not difficult to
show thatA(v) is the solution of the equation

A(v) = ! [H(e '“”)A( )H(e‘”’”)t-i- H(—e‘””)A(%l)m} . (40)

Here again wherr is FIR, this relation can be solved in the time domain to yield the
expression of the polynomial matr&. We shall from now on assume that this matrix is
known.

As a first step, we must find out how theh-order property manifests itself on the
generating filteH.

Lemma 3. The two following properties are equivalent:
(i) the multi-waveletsp, are of order L;
(ii) there exists a unique polynomialv) of degree less than or equal to+ 1 such
that A(0) # 0 and satisfying together
H(—e"™)'A(») = O(+") (41)

and

H(e ™A (v) = 2A<%) + 00, (42)
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Proof. The main ingredients are the lower Riesz condition and the two-scale diffe
ence equation.
Let us first prove that (i (ii). From Lemma 1 we know that there exists a unique

n
polynomial A(v) of degree lesser or equal to— 1 such tham(v)‘§o<v + a) = o,
+ O(++). Of course,A(0) # 0 sinceA(0) is invertible. Applying the vector two-scale
relation with 2 instead ofv, we find

S _ n
° %A(Zv)‘H(e’z'”q”)Q:(v + —) = g5, + O(v") if nis even;

2q
_ n
° A(Zv)tH(—e*z'”q”)&><v + fq) = O(v") if nis odd.
Due to a uniqueness df, (42) follows immediately from the first equation above. For the

second equation, we use the same technique as Lemma 1 to prove the uniqueness
polynomial P. We temporarily pose P( = H(—e #™)'A(2v) so that the equation

n
above read®(v ‘&:(u + E) = O(v") for n odd. If we lety = 0 then right multiplying

ny\' _
by &a(z—q) and summing over odd yields P(O)‘A(%) = 0. Due to the invertibility of
P(v
A(%), this implies that P(0)= 0. We then take the equation again foiodd with¥
instead of Pg), andL — 1 instead oL, which yields P(0) = 0. Iteration of this argument
L times leads to the result P\ = O(»"), which is (41).

For the converse implication (i5> (i), we simply observe that (i) impIieA(v)‘?p(v

o) = A(a)els + 5] + ot nisevenandGrg(s + ) < o
tg) = AMG)es ) (v) if nis even an (V)@V+?q = O(v") if n

— n
is odd. By induction, this proves that(v)t&a(v + a) = a§, + O(v") for all n. Since

A(0) # 0, the constard cannot cancel. Applying Lemma 1, we thus find that the scalin
functions are of ordelc. The uniqueness of suchAafollows directly from Lemma 1. m

The same result (but making the hypotheses of linear independence and com
support), expressed in a different way, can be found in [27, Thm. 1] and [15, Thm. 2.
See also [37] for relaxed hypotheses on the synthesis functions.

Condition (ii) of Lemma 3 is equivalent to tHeth divisibility of H(z) atz = —1 in
the usual case of wavelets whelf{1) = 2. In the vector (or multi-wavelet) case,
however, the condition cannot be restricted to the values (or here the kerhehtdfalf
the sampling frequency (41) and must be completed by (42).

From now on, we also assume that the minimum expansion error is of loydehnich
implies that the scaling functions are of order hence the existence of suchAa by
solving the linear system of Eqgs. (41) and (42) we have access to its value. Consequ
we can compute the two constamts and A, which are implicit in (41) and (42):

8= lim [WA(V) - 2[\(%)]1/4‘ (43)

A, = lim H(—e ™)'A(v)p" (44)

v—0
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It will be of interest to give the exact equivalent of the Fourier transform of the dual vect
function of ¢ up to the ordet, in the neighborhood of 0. In order to simplify slightly the
writing of the expression, let us post, = H(1) andH, = H(—1). Likewise, we shall
denote byA, andA; the values ofA(v) atv = 0 andv = % respectively.

Lemma 4. We have the asymptotic development
A(qr) *o(v) = A(v) — Q-+ O(++Y), (45)

where

1

l 1
QZZAal[Iq_FHO] (HoAcAo + HIALA)) (46)

Proof. In fact, since the expansion error is of orderE(v) = O(»*") and this, in
particular, means that if thg, are dual to thep,, then by inspection of (21) we have

= n
q”o(v)‘c,‘o(v + a) = s, + O("). It follows that A is the ordelL — 1 development of

the dual function ofp, so that we need only to find the missing ordler

We thus defineQ) by (45). This is, of course, equivalent &(v) = A(qv)A(v) —
AoQvt + O(v-*1). We can now use the Fourier two-scale relation on the left side of th
equation, and with the use of (40), (43), and (44), and finally after some (tediot
rearrangements, we obtain the value(hfthis validates (46).

Note that, as proven in [17H, has spectral radius 2 so tHgt— (1/2-*1H, is never
singular. =

With these constants, we can now derive the asymptotic value of the approxima
error in the multi-wavelet case.

THeorRem 7. If the scaling multi-wavelets are of order L, then for allef W5 the
asymptotic form of the least squares approximation error jis/

~ (INAQAP + 11VAQ41) Y

[f— Pfll.= P [ FO)l-T" + o(TY), (47)
\r‘
where the vectors Qand Q, have been defined by
Qo= Ao — HLQ + 2751 (48)
Q.= A, — Hi. (49)

Proof. Once again, we use Theorem 4. The result will first be proven for orthonorr

1 .
multi-wavelets. We start fronkE(v) = 1 — a||d>||2, which can be rewritten using the

1~/ -
two-scale equatioE(v) = 1 — 4—q¢<g> H‘ch(lz/) if we denote byH the expression

H(e '™"). Let us also denote by the other expressiod(—e ') (these intermediary
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notations are meant only to simplify the visual aspect of the expressions). We thus h
(orthonormality)HH' + UU' = 41,. One can verify that this implies the identity

lq— , HH

L o + [ lWHZ
16 uu +|:q—Z ]

N

t
Multiplying this equation on both sides by (|ef@<g> and (right)¢<g> . we obtain the

14
following recursion equation betwedf(v) and E(§> :

2} . (50)

-l =1- ¢ [3(2)] + o [0b0E + [bo) - 20(})

We then compute the asymptotic equivalent of each element of this equation:

1 -
e E(v) =1 - a||<1>(v)||2 = ar’t + o(r*), wherea is the positive constant providing

the first asymptotic order: it is the goal of this theorem to formulate it explicitly.
e Using Lemma 4 and the definition (44) af, we findU'$(v) = (A; — HIQ)v" +
o(vh).

e Using Lemma 4 and the definition (43) af, we find H'b(v) — 2@;(%) = (A,
+ [275 1, — H + o(h).

Replacing the values of these asymptotic equivalents in (50), we find the result
orthonormal multi-wavelets mentioned earlier.

For nonorthonormal scaling functions, whekemay be different from ,, we remark
that in (50),H(e"'™) has to be replaced b@(e* ™) *H(e '™)G(e ™), and¢ by
G(e?™9) " 1¢, whereG(e*™) = VA(v). Equation (50) is thus replaced with

E(v) = E 2 H \/WU%D(V) H \/7 H (v) - 20 ))
(51)

whered(v) = A(qv)*¢(») is the dual function ofy(»), whose asymptotic development,
up to the ordet near zero, is given by Lemma 4. The generalized result of Theorem
is thus a consequence of the introduction of this square root into the scalar prosiuct.

This result is in fact the exact extension of (39) to the multi-wavelet case, as can
readily checked when replacing matrices and vectors by the corresponding sca
Specifically, we see that in the wavelet case, the vector/scajata@Qcels, while @
reduces ta\,, the equivalent oH(—e'™) in the neighborhood of = 0.

In contrast with the wavelet case, we haveaasyaccess to higher order asymptotic
terms. This is because the multi-wavelet order property (41) and (42) is much weaker t
the corresponding divisibility constraint by ( z)- in the wavelet case. However, if one
wishes to find higher order terms for the asymptotic error, it is always possible
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determine the development of the dual functioripatcursively, similar to what has been
done in Lemma 4. One can verify that this leads to a triangular system of vector equatic
whose diagonal matrix coefficients are all invertible, and which can thus be solved
induction; Q is then the first input to the induction. Finally, this development can b
substituted in Eqg. (51) in order to obtain the desired asymptotic equivalents.

V. CONCLUSION

We have stated a powerful quantitative result concerning the approximatitrf of
functions by the linear decomposition scheme given in Section Il. We expect this form
to be of interest both for applied researchers (e.g., as a basic error estimation toc
geometric image processing), and for approximation theorists. In particular, our result
been used successfully to prove in a very natural way the Strang—Fix equivalence
multiple generators [42], while requiring very weak constraints. In addition, we cou
derive asymptotic formulae in the case where the approximation spaces belong 1
multiresolution analysis: this application is of great interest to digital signal processit
We are also currently working on the explicit computation of asymptotic expansions |
some representations of wide interest such as splines and Daubechies’ wavelets [8]

APPENDIX A: ON THE FINITE DIMENSION OF

We prove here that, if the,, are compactly supported and satisfy the Riesz conditior
then dimJl < . By definition,{A },c7 € M iff X A @, = 0 in the sense of distributions.

In vector notation, this is equivalent Alp(x — ng) = 0, whereA,, = (Ang Mgt - -

Anq+q,3)‘. Right multiplying bye(x — ko)' and integrating ovex € R the resulting finite sum,
we obtain

E bkann = 0, (52)

whereb, = [ ¢(X)e(x + ng)'dx is a finite sequencén| = K < «. Notice that

B(v) = Xb,&™ = EA(") in the sense of distributions, so that, due to the lower Ries

inequalit)n/, the finite degree polynomial dBt¢)) is not trivial. If we build A(v)
= S AE™, then (52) implieB(v)A(y) = z"b(%) + Z2'R(2), where Q and
R a‘rrltlagz)t)l(l%omials of degres 2K — 1, andz = eZ”TV.~
Using the matrix inversion formul@B = detB), whereB is a finite polynomial matrix,
we thus have déB(v)A(v) = z’NB(v)Qe) + Z'B(v)R(2). Consequently, if we let
detB(v)) = S dZ, thenX d_,A, = 0; the coefficients of the induction equation being
k n

now scalar, the finiteness of dirft immediately follows.
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APPENDIX B: PROOF OF LEMMA 1

The most difficult part is to prove the implication & (ii). For this purpose, we shall
first study.it and show that the coefficients of the polynomial expansions can be writt
in a simple form, involving a set of quasi-biorthonormal analysis functions. Finally, w
will write the quasi-biorthonormality condition in the Fourier domain.

Characteristics ofil. We first prove that any coefficient sequence= { .} ez
belonging talt, i.e., satisfying> u,¢, = 0, is such that there exists another coefficien

sequencew’ belonging tol such thatw, = w4 — py for all n. The finite dimension
of Jl and the invertibility ofA(0) both play a crucial role. Consider the linear operator
acting on elements oft throughAu,, = wn.q — 1. Clearly, due to the-integer shift
invariance A is in JL. The kernel of the endomorphistnis reduced to the coefficient
sequences that agperiodic. In vector notation, this means that, for the kernel to b
nontrivial, it is necessary that there exist a constant vettsuch that

A'Y @(x—ng) = 0. (53)

n
This is equivalent tm‘¢<a) = 0 for alln = Z (using Poisson’s formula). If we right

n t
multiply by &)(a> and sum oven, this yieldsA'A(0) = 0, so thatA = 0, due to the lower

Riesz condition. Hence, the kernel Afreduces to 0. As a consequence, the endomo
phismA is one-to-one, andl = AJ, thus proving our first claim.

Determination of A®®. Consider now theL equalities (14), which can also be
expressed in vector notation: there existets of vectors A®®} ., fors =0, ...,L —
1 such that

2 Ae(x = ng) =x° (54)

in the sense of distributions. If we defié as the linear operator acting on polynomials
throughA'P(x) = P(x + q) — P(x) then we have® AA®'e(x — ng = A%, which

is a polynomial of degree strictly less thanBy iterating the operator, we findis* *A ()
€ L. It is now important to notice that we can choos€ such thatAS**A® = 0. To
show this, letAS**A® = M, where M € .Il. We know thatA is one-to-one onlt, as is
AS*1 and as a consequence, we can finddViil such thatAS**M’ = M; now, A’ =
A® — M’ satisfies the same monomial reconstruction property (54 @stogether with
ASTIA'®) = 0. We can thus substituté’® to A,

Assuming that the\® are chosen so thats"*A® = 0, we expand X = q)° — x°.
Replacing the monomials by thek-expansions (54), we obtain for easlan expression
of the formX Kle(x — ng) = 0, so that K| is in /(. On the other hand, we haye™ 'K,

n

= 0. SinceA is invertible ont, we find K, = 0. Explicitly writing the value of K, we
thus find the following recursion foA (:
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S

A= 3 (3o

k=0

Let us now choose a compactly supported vector functior) B(ich that/ x*F(x)dx =
A® fors=0,...,L — 1. This choice is always possible: it corresponds to imposin
the value of the first — 1 derivatives of Fv) at » = 0. The induction equation fok
shows that in fact we have, as a general expresdigh= [ x°F(x — ng)dx. This means
that the analysis functions associated with F andghérm a quasi-biorthonormal set of
orderL.

Equivalent Fourier condition. Taking the Fourier transform (in the sense of distribu-
tions) of the multi-wavelet equation that reproduggsand using Poisson’s formula (this
is valid since, by hypothesis, Q('¢(x) € L* for any polynomial vector Q of degree less
than or equal td. — 1), we find

n

; 3 a@( - q)wﬁo(w = 55()

n\ . n\'
for s = 0,...,L — 1. Equivalently, we can writeﬁ(S)(v + a) F<V+a> o(v)
= 08,0°(v) for all nintegers, alls=0,...,L — 1, and allv real. Finally, this is
— n
equivalent to saying tha(dsldvs)[F(v)t(:D(V + a)] = (8,8, for all integersn and
v=0

s=0,...,L— 1. As we can see, this condition makes use only(@)®nd of theL —

1 derivatives of Fat zero, which are otherwise directly relatedAfp by definition. A
consequence is that if suffices to restricqwhich is entire) to its Taylor development
up to the ordet. — 1 and this provides the vector polynomial P of (18). This equatiol
has been stated witho(+"~%)” since we have characterized only the filst— 1
derivatives; however, since, satisfies|p")., < « we automatically have(+* 1) =
O(+‘). This completes the proof of (18): (ii) implies (i) by reversing our set o
equivalent assertions.

The uniqueness of the polynomial follows from the invertibilityAf0) once again: if
the polynomial were not unique, it would be possible to find a polynmia) &(P(v) —

P'(v) such thatQ(v)‘@v(V + g) = O(M foralln. In particular@@(%) = 0 for all

n: as shown earlier, this implies Q(6) 0. In that case, we can divide Q lyand use the
same argument, making the degree of Q decrease. Finally, the only possible Q is tri
which proves P= P’ and thus the uniqueness.

The equivalence between (ii) and (iii) is straightforward and results from the fact tt
it is always possible to find a polynomial vector B such tha?8(%") = P(v) + O(+"):
the wavelet defined through its Fourier transfajite) = B(e® ™9")'¢(v) thus satisfies the
Strang—Fix conditions.
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APPENDIX C: PROOF OF THEOREM 1

We shall first show that under the hypotheses of the papef),, is in 12. Part of the
argument will be used again to prove Theorem 1.

A. I? Convergence of the Samples

Let us define

U(v) =;r§,f<v+£r)¢<vT+2> (55)
l~J(v)=q]:|_§1A°<v+qur><:p>(vT+2>. (56)

1
We prove that these expressions are meaningful and that tqh1eqneriodic vector

functions belong ta. (1), wherel = [— Of course, if this is the case, then

2 27
using the well-known theorem about the development of periodic functions in Four
series, we have the alternative definition of U and U

U =3 | [ me(7 - na)e

n

] gZmnatv a.e. (57)

— =

0w =3 | [ 12(7 - na)a

n

:| 2i g Ty a.e. (58)

—m

We start with Uand define the functional sequence
- 3 i+
Un(v) = 7 > )T ) (59)

whereN is a positive integer; our goal is to prove thay i$ a Cauchy sequence, that is
to say,

lim sug|Uy — Oyl = 0.

N— N'>N

By Fischer—Riesz theorem, this property will automatically imply the convergence, of |
toward anL?(1) function U,

We thus choos®&’ > N and assume thdte W5 withr > 0.5 and||(,°o||oo =K < o,
Fromf, we define a set of bandpass functidpshrough
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1, ) 1

N CIf(v ifo=|yv —==—=<=—=

fuw) = & S (60)
10 elsewhere

for k € N; of course, we have the partition equatighf, = f. Replacing with this sum
k=0
in (59), we can exchange the (finite—infinite) summations yielding

Oy (v) — Oy(v) = qlT D ?k<v + qlT)é(vT + E) .

k=0 N<|n|=N’' 4

Because of their support, not all tfigcontribute to the sum of the right-hand side. For
our purpose, it is enough to say that only thiesich thak > 2N will be involved; using
Minkowsky's inequality and the upper bound fii#|, we find

N N K
[Un — UnllLzg) = qT > e

k>2N

Due to the definition (60) of thi'’s, |2mrv| " is upper bounded b@ on the support

of f, so that|fll. = <%> | f]|l.. Using Cauchy—Schwartz inequality for discrete
sequences, we find that

qT

r
E Ifdl 2= (?> E k2| £ -,
k>2N k>2N

which tends to zero a tends to infinity, whence \Jsatisfies the Cauchy property. This

ensures the convergence of the sum of the squared samples and proves<tha(L).
Of course, we have the same result for U: this will be used in the next subsection.

B. Expression o€ in Fourier Variables

Expanding the square noref, we obtain three terms? = | f|[22 — 2(f, 2.f) +
|94 f|%.. Let us concentrate on the third. First, we manipulate (13) by substit@ﬁn)g
= [ g(x)e 2™*dx, which yields2,f(t) = T f U(»)'(»T)e* dv. As can be seen
from this formula, 2f and TW(:D(VT) are Fourier transforms of each other. A
consequence is that thei? norms are identical|2f |, > = | TO(»)'@(¢vT)|| 2. Finally,

1 -
because of th((TT periodicity of Uwe find

5 , [var -
2+ fl[i-=qT U(@)'A(qrT)U(v)dv

1/ 29T

_ : E f ?(T)f(v + (:T)MA(qu)é (vT)dv,
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whereA has been defined by (8). In the same spirit, we obtain

(f,9.f) = qT? f”ﬂ O()'U(v)dv

—12qT

*E f f(v)f >§B<vT+ )l (vT)d.

From these formulae, we identify two terms worthwhile to separate and ¥frite €5 +
2
€5, Where

eizj |t (v)PE(vT)dv (61)

= Eff(v)f(v+>§o<uT+ >[A(QVT)<p(vT)—2<p(vT)]dv (62)

n#O

E( - ) being defined by (21). Rewriting (62) using the orthonormalized basis functio
further simplifies the formula. The second term exhibitdaauble form of aliasing; it

— n\-» n
vanishes whenevél(v)f<v qT>d><vT+ >(d)(vT) - 2¢(VT)) cancels independently
of v and ofn # 0.

C. Evaluation ofe;

Due to the aliasing character &f, we can benefit from decomposihinto its bandpass
componentsf, defined by (60): we necessarily ha\e«ék = [ |fJ?E(»T)dv. Using
Minkowski’s inequality we find

- 2 €, = €= €, t+ E €fe (63)

k>0 k>0

Our first task is thus to estimate the sum f As noticed earlier, due to (60), the

k -
frequency|v| is lower bounded byﬁ_ whenk > 0, on the support of,. In particular,

this implies that

Qmn’

€=M (k)"

[ f &), for k> 0,

where the consta is defined asV/||E||... Thus, the Cauchy—Schwartz inequality on the
discrete sums yields
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qT

S e=myz@( L) 110 - 1611

k>0

The second task is to boure in order to replace it witke, in (63). Using the integral
value fore; and the definition (61) o;, then using Minkowski's inequality once again,
we find

qm\"
- ad =m(L)1ro -t

Finally, we combine these estimates,

g
& — e =2MZ(2r) T [0 — &l

= Ka(f, )T

= KTz,

where we have boundedt £(2r) Y2 by 2 to get the result of Theorem 1. Note that the
middle inequality with

1/2

1 -
alf, T) = e [J |27v|?| f(v)\zdv] (64)
(AT [v|=1/ 29T

gives a sharper result becausgf, T) = 1 vanishes a3 goes to zero. Unfortunately, it
is dependent ofy however, this proves that — €; = o(T"). Also, it is possible to show
that sharper bounds ef can be obtained directly from (63) (i.e., usigg instead ofe,);

in that respect, Theorem 1 is essentially useful for studying the asymptotic behawjor of

APPENDIX D: PROOF OF THEOREM 3

Implication lhs=> rhs. ¢ = O(T") implies that the first term of (24) i©(T"). Due
to the positivity of the integrand, and more precisely due to (21), this implies th

I 1#()|2a(Tv)dv is O(T?Y), wherea(v) is a template forlq — &(Tv)'(Tw)]? and
= n\ |2
‘CD(TV)%(TV + a)
¢ can be differentiatedl2times and that all these derivatives are bounded: this proper
is thus also true for(v). We then show by induction that(v) = O(»*"): sincea is

bounded and continuous, we can apply Lebesgue’s dominated convergence theore
show that limf | T (v)?a(Tv)dv = a(0) [ | |2, which proves thaa(0) = 0; sincea(v) is

T—0
symmetric inv, and sincea is at least twice differentiabley(v)»~ 2 is bounded, so that

for n # 0. In addition, we note that our hypotheses imply r‘faatnd
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we can use the same reasoning as above &pT 2 this time yielding
R a’(o R

lim [ [vf(v)|?a(Ty)(Ty) 2dv = é )f |vf|2 This induction can be repeatedl mes so

T—0

that we finda(v) = O(v?"). If we replacea(r) with its templates, this is exactly
condition (ii) of Lemma 2, which implies the quasi-biorthonormality of ortlefor the
functions ¢, and @,,.

Implication rhs=> lhs. Let u be an arbitrary unit vector, angx) = U'e(x) a scalar
function. A consequence of our hypotheses is that3pp — ng*u(x — ng)| < « and

I XM u(x)|dx < o, fork = 0, ..., 4, independent of the unitary vector u.

From u(x), we define the functions,(x) = [ £T(&)(¢ + x)“u(¢ + x)d¢ for k =
0, ..., 4, which have the following properties;, € L* N L”, and consequently
Vi € L2, 3 v(ng)| < o and finally 9, = (1/(27)%)|a®)2.

Let us show that there exist constan®J,_, .. such that for every.? function
gy

2
dv = CJgl. (65)

0( v+ 1)
q

5 [ towr

For this, we first consider the case of indefinitely differentiable, compactly support
functionsg, which are known to be dense lirf. In that case, it can easily be seen (using
Poisson’s summation formula far,(x) = [ g(x + &) g(§)dé) that

f 1a(v)|? E \7k<v + g)dv =q Z g2(nQ)vi(na),

which proves that (65) is satisfied, if we gt v (ng)| = C, < «; note thatC, can be

chosen independent of the unit vector u. In particular, (65) is still true if we consider or
a finite summation on the |hs, since each term is positive. We can thus extend by der
this result to the whole class &f functionsg and, finally, prove (65).

Let us now consider the finite sum

2

. (66)

am =3 [swe(v+T)

0<|n|=N q

whereN is an integeray is 2L times differentiable and itslzh derivative is a finite
(depending o and not onN) sum (due to Leibnitz’ rule) of terms of the form

S (v o)en0ree (v g,

0<|n=N
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wherea + B + y + & = 2L. Remembering that all the derivatives gfare bounded
up to the order R and using Cauchy—Schwartz inequality, we can thus claim th;
I f(v)|2v*-a@Y(»T)dv is upper bounded by a constamt| f ]22; moreover this
constant does not depend dw because of (65). Taking into account the quasi:
biorthonormality hypothesis of the right-hand side of (30) (which provi{g$0) = 0 for
als=0,..., 2 — 1), Taylor's theorem yields the inequalify| f(v)|2aN(vT)dv =
C'T?" whereC' is a finite constant, independent Nf If we let N tend to infinity, this
term remaing(T?") and on another side, its kernel tends to the second term of (21), t
first term of (21) beingd(¥?") by hypothesis. This proves that = O(T").
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