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ABSTRACT-

This paper proposes a regular third-of-an-octave filter bank
for high fidelity audio coding. The originality here is twofold:

e first, the filter bank is an iterated orthonormal ratio-
nal filter banks for which the generating filters have
been designed so that its outputs closely approximate
a wavelet transform. This is different from the known
coding algorithms which all use an integer filter bank,
and most often a uniform one

e second, the masking procedure itself is modelized with
the help of a wavelet transform unlike the classical
procedure in which a short time spectrum is com-
puted and which gives rise to unwanted preecho ef-
fects. The masking procedure is then made equiva-
lent to a quantization procedure.

A simple non-optimized algorithm has been worked out in
order to show the benefits of such a structure, especially in
terms of preecho (which is perceptually inaudible), and the
disadvantages, especially as far as delay is concerned.

1. INTRODUCTION

Among the various algorithms which aim at compressing
high fidelity audio sounds, the most efficient [7,4,5,11] make
use of one of the psychoacoustic characteristics of the ecar:
the frequency masking. One of them has been adopted
in the normalization as part of the MPEG recommenda-
tions [10].

However, all these algorithms make use of a masking
procedure which is perfectly adapted to stationary signals,
but induce unwanted preecho effects when applied to highly
non-stationary inputs, such as percussive sounds. Indeed,
these algorithms are mainly differenciated from each other
by the kind of analysis-synthesis filter bank involved, whereas
the masking procedure is always based on a short time
fourier spectrum, whose window can be adapted to follow
the non-stationarities.

Yet, the analysis of the early stage of sound processing
in the internal ear suggests that a wavelet transform is more
closely adapted to human perception than a uniform trans-
form, at least for frequencies higher than 500 Hz. The goal
with such a transform would thus be to decompose an audio
sound into critical bands, which imposes a scale factor of
roughly 6/5 in the discrete wavelet transform.

This paper shows the first example of real implemen-
tation of a wavelet transform with a fractional scale fac-
tor in a coding algorithm. With this goal in sight, it has
been necessary to design {2] a two-band perfect reconstruc-
tion rational filter bank [1] whose iterations lead to a se-
lective third-of-octave filter bank. This application is part
of a larger more theoretical work on iterated rational filter
banks, whose purpose was to extend the well-known results
from the dyadic case (octave iterated filter banks which im-
plement a discrete wavelet transform for scale factor 2 [8,9])
to the case of fractional samplers. The results have taken
the form of a PhD thesis [3], held recently.

2. ITERATED RATIONAL FILTER BANKS

A filter bank with fractional rate changes is constituted of
branches of the form given in figure 1
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Figure 1: rational branch

where p and ¢ are integers. Such an operator ensures a rate
change of ¢/p, and for ¢ > p, G being lowpass, its iterations
generate limit (under conditions explored in {1]) {unctions
@n which are not integer translates one from another [1],
unlike the classical “dyadic” situation for which ¢ = 2 and
p = 1. Theidea of iterating a rational branch was originally
emitted in [6] but these authors then concluded that the
iterations did not converge for FIR filters, since they were
expecting only one single shifted function.

As a consequence of the existence of limit functions, an
iterated analysis rational filter bank such as the one de-
picted in figure 2 (note that here G is supposed to be low-
pass and H high-pass) could be re-interpreted as a discrete
time-scale transform [1]. Due to the lack of shift-invariance
of the limit functions, this transform can never be exactly
a wavelet transform —at least for FIR generating filters—.
However a result of [1] much more developed in [3] indicated
that the error between the two transforms can be made very
small for an adequate choice of the generating filter.

1t is shown in [3] how to effectively compute the shift
error associated to the limit functions: this error is closely
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Figure 2: iterated analysis rational filter bank

linked to the selectivity of the iterated filter bank, and also,
to some extent, to the selectivity of the generating filter
itself.

Finally, an efficient design algorithm for FIR orthogo-
nal filter banks has been described in [2,3] which opens the
possibility to implement a transform with reasonable char-
acteristics. From now to the end of this paper, it will be
assumed p = 6, ¢ = 5 (which corresponds to a critical band
analysis, slightly finer than the third of octave analysis) and
that the iterations generate a discrete wavelet transform up
to an (square norm) error smaller than 48 dB.

3. MASKING EFFECT

In this section we will show that, for stationary input sig-
nals, the usual computation of the masking effect can be
made equal to the computation of the power of a wavelet
transform.

3.1. Masking formulation

This psychoacoustic effect is dealt with details in [12]. The
initial experiment questioned the audibility of a pure tone
in the presence of a narrow band noise: a threshold curve
could thus be drawn, giving the intensity under which a
pure tone is not heared, is masked.

We shall make some assumptions which are frequently
admitted in the perceptual coders

o the masking curve is proportional to the intensity of
the masking noise

e the masking curve has a constant shape when fre-
quency is given in Bark scale (not in Herz), that is
to say if B(fo, f) is the masking curve induced by a
narrow band noise at frequency fo, then

B(fo, f) = B(u(f) = u(fo)) (1)

where u(f) is the relation between Bark scale and
Herz scale

e the masking curve of a complex sound is a weighted
(with the specific intensities) sum of the elementary
curves

and we shall add another one which can be verified to be
roughly correct for frequencies higher than f. = 500 Hz [12]:
the transfer equation between Herz (variable f) and Bark
(variable u) scales is logarithmic (up to an additive con-
stant)

u=logg (f/f2) @)

Thus, the masking curve Mz(f) of a stationary signal
z(t) is given by the following equation

M (f) = H/D(fo)B(fo,f)dfo (3)

where D(fo) is the power spectral density of = at frequency
fo and 6 a constant. usually taken as 107°%, in order to
account for the masking of a pure tone by another pure
tone (and not a narrow band noise).

3.2. Mask wavelet

We shall now show that (3) takes the form of the average
power of a wavelet transform for a particular wavelet u. Let

m(u,t) = / z(T)p ((%)u (r— t)) dr

An easy computation which makes use of (1) and (2) leads
to

) =a(3)" <m0 > 4)

where o is a constant, and provided we choose the wavelet
so that its fourier transform i obeys

| ((3))] = 5ta) (5)
Of course, this formulation is true only for frequencies higher
than 500 Hz.

It is indeed of great importance to replace the compu-
tation of a fourier spectrum by a time-frequency transform,
since the latter is naturally extended to non-stationary sig-
nals. In that process, the only thing to take care of is the
phase of the fourier transform of the wavelet, which is not
accounted for in (5).

3.3. Masking procedure

The usual way to use the masking curve in coding algo-
rithms is to consider that this curve gives a noise level for
every frequency and that two signals whose difference is
less than that noise is not audible: the masking curve is
used so that it provides a linear quantization step. It is
thus necessary to have an estimation of the spectrum of the
signal. The wavelet formulation of the masking curve and
some other psychoacoustic reasons {critical band, 1.e third-
of-octave analysis of the auditory system) suggests that we
decompose the signal in critical bands

y(u,t) = / z(T)Y ((%)u (r - t)) dr

where, now, the analvsis wavelet ¥ has good frequency
separation properties, unlike the mask wavelet u. Conse-
quently, our reformulation of the masking reduces to com-
paring < y(u,t)? > and < m(u,t)? >.

As far as we know, the auditory system is much more
sensitive to pure tones than to noises. A particular treat-
ment will be thus needed, since a third-of-octave analysis
is otherwise not precise enough for the detection of pure
sounds. If, for stationary signals, we want to be coherent
with what is done in more frequency selective coders [7]



it can be shown that the proportionality constant linking
V< m(u,t)? > and the quantization step for y(u, ) is dif-
ferent for tone or non-tone signals. In the implementation
that now follows, this constant has been computed taking
into account the values given in [7].

4. CODING ALGORITHM

We have devised an architecture and a simple method for
the coding of 32 kHz audio sounds: this is by no means an
optimized algorithm —the author did not have the hard-
ware necessary to find the best values for all the parameters—
, and is just meant to show the feasability of the approach.
Besides, the extension to a sampling rate of 44,1 or 48 kHz
is straightforward.

As has been shown above, it will be necessary to imple-
ment two discrete wavelet transforms with fractional scale
factor, here g—. The choice was to retain the iterated struc-
ture described in [1] and studied in details in [3].

4.1. Implementation of the wavelet transforms

Instead of building two independent filter banks, it has been
preferred to base the two wavelet transforms on the same
iterated low-pass branch as shown in figure 3. This has
a slight implication on the masking effect as it is imple-
mented: the masking of low-frequencies by the high fre-
quencies is underestimated.

19 iterations
21 iterations

—

Figure 3: Iterated structure used for audio coding

The orthonormal filter design algorithm used has been
published in [2] and provided a perfect reconstruction pair
G,H of respective length 204 and 44: their frequency re-
sponse is given in figure 4. The third filter which leads to the
mask wavelet is not constrained by perfect reconstruction,
and was thus easily designed (filter length = 40) so that
its logarithmic slope toward low frequencies (corresponding
to the masking of high frequencies by low frequencies) con-
stant at 10 dB per Bark. In order to determine the phase
of ji, M has been “synchronized” with H , that is to say
the highest sample of the impulse response of H coincides
with the one of M.
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Figure 4: Low and high-pass filters G, H

4.2. Quantization

The samples of the masked (m;) and non-masked (y;) out-
puts at iteration j are put into frames of length 20. This size
has been chosen in order to ensure a preecho period less than
4 milliseconds for the first critical band (iteration j = 1).
This value is consistent with what is otherwise known about
the temporal masking in auditory experiments.

The average power of m; is computed by < m;[n]® >=
L5, my[20n + k. Through the multiplication of a
“mask constant” §;[n], this power gives a quantization step
for the series of samples (y;{20n + k])k=—s.10. The whole
trick is thus concentrated in the computation of the mask
constant. From the value given in [7], it can be shown [3]
(for stationary signals) that if g is tonal then §;[n] = 107°
and on the contrary, if the spectrum of y; is flat, then

8;ln] = 2

67

In order to determine the presence of tonality, we have
simply used a linear prediction model which can be sketched
as follows: find the best parameter a;[n], such that the aver-
age power of the signal y; filtered by P(2) = 27! —2a;[n]+ 2
is minimized over the 20 samples corresponding to frame n.
If this residual power is less than, say half the power of y;
then the band is tonal, otherwise it is not. This is indeed
a very rustic procedure for which much optimization can
be done: as it was claimed sooner, the algorithm presented
here is just meant to show the feasability of the wavelet
(and iterated rational filter bank) approach.

All this being done, we end up with three kinds of data

to encode: the quantized values of y; at the nominal rate of
5It

each critical band (i.e

=7 times the sampling frequency);
the masked powers < m;[rn]® > that we choose to quantize
non linearly (according to data given in {12]) over 8 bits,
and transmitted at the nominal rate of the critical band,
divided by 20; the tone parameters a;[n] when necessary,
quantized linearly over 8 bits, and transmitted up to the
twentieth of the nominal critical band rate.
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4.3. Absolute hearing threshold

Especially for high frequencies, it is useful to take the abso-
lute hearing threshold into account for the computation of
the quantization step. When the masking value is smaller
than this threshold, the latter is then preferred. One must
however take into consideration the fact that this proce-
dure makes the whole process nonlinear, unlike the masking
procedure alone. This might have unwanted consequences
when one wants to modify the listening sound level...

4.4. Coding

This part has not really been implemented: the only thing
that is done is to compute the statistical entropy of each
data to transmit (y;,< m;[r]* > and a;[n]) for every coded
sound, in order to get an idea of the necessary transmit
rate. Apart from the three kinds of data to transmit, we
have felt the need to transmit two more bits every 20 sam-
ples frame in order to indicate the presence (or absence) of
“tonality”, and to indicate if the quantized values in the
frame are all zeros (in which case, of course, these values
are not transmitted and the frame reduces to 2 bits), which
is a very elementary run length coding method.

It must be added that the final uniform transform shown
in figure 3 is not really implemented and that we have only
estimated its rate: it is however very low-pass ([0 ~ 500 Hz])
as compared to the whole bandwidth considered (here [0 —
16 kHz]) and that its contribution to the final rate must
be, either 16 kbps if we decide to quantize its samples over
16 bits, or 8 kbps if we choose a selective enough 5-band
transform for which a nonlinear 8 bits per pixel quantization
is achievable. Of course, no further entropy reduction is
taken into account in this basic estimation.

4.5. Synthesis

To reconstruct the signal from the coded samples, an iter-
ated rational synthesis filter bank is applied to the inverse
quantized samples. This is exactly a mirror structure of the
one shown in figure 2 for which the low and high-pass filters
are, respectively, G(z™') and H(z™!) (orthonormal filters).

4.6. Characteristics

Due to the length of the low-pass filter, the delay is very
important: 200 ms. However, this structure does not imply
any audible preecho, unlike classical algorithms. This is
not surprising for high frequencies since in that case the
computed value is less than 4 ms; this is however more
unexpected for low frequencies where the computed value
is close to 100 ms: such a result must be understood as a
consequence of the wavelet-like analysis of the sound by the
internal ear.

5. CONCLUSION

We have presented both a new frequency masking model
and structure to implement it, in order to compress high
fidelity sounds. This dynamical model has proven efficient
as far as preecho is concerned: as a matter of fact, preecho is
not audible. Its worst feature is, for the time being, a high

delay: this is because we made the choice of very selective
filters, but this constraint might be to strong. We did not
give rate values, mainly because of an initially bad absolute
hearing threshold, lately modified, which has prevented the

‘coding algorithm to be transparent for all tested sounds:

the obtained rates where then between 70 and 110 kbps for
very good quality sounds.

We think indeed that this algorithm is just an example
of what can be done with a wavelet transform for both
the analysis-synthesis part and the masking part, and we
wanted to stress its advantages. The drawbacks can with
no doubt be minimized with further work.
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