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Iterated Filter Banks with Rational Rate Changes
Connection with Discrete Wavelet Transforms

Thierry Blu

Abstract—Some properties of two-band filter banks with ra-
tional rate changes (‘‘rational filter banks’?) are first reviewed.
Focusing then on iterated rational filter banks, compactly sup-
ported limit functions are obtained, in the same manner as pre-
viously done for dyadic schemes, allowing a characterization of
such filter banks. These functions are carefully studied and the
properties they share with the dyadic case are highlighted. They
are experimentally observed to verify a ‘‘shift property”
(strictly verified in the dyadic case) up to an error which can
be made arbitrarily small when their regularity increases. In
this case, the high-pass outputs of an iterated filter bank can
be very close to samples of a discrete wavelet transform with
the same rational dilation factor. Straightforward extension of
the formalism of muitiresolution analysis is also made. Finally,
it is shown that if one is ready to put up with the loss of the
shift property, rational iterated filter banks can be used in the
same manner as if they were dyadic filter banks, with the ad-
vantage that rational dilation factors can be chosen closer to 1.

1. INTRODUCTION

ILTER banks have been in use in signal processing

(mostly for coding purposes) since the mid-1970’s us-
ing the property that ‘‘quadrature mirror filters (QMF)’’
[6] achieved aliasing cancelation. On the other hand, the
mid-1980’s saw the wide development of constant-Q
analysis [9], [12] in the field of the analysis of nonsta-
tionary processes, in conjunction with studies on wavelet
transforms. Finally, both fields were unified when it was
shown [16] that the outputs of a two-band iterated dyadic
filter bank (the bank is built from halfband filters subsam-
pled by 2; iterated on the lowpass one) are samples of a
continuous wavelet transform. The multiresolution anal-
ysis [16], [18] gave an entirely new perspective on the
tree structure of iterated filter banks, by associating the
reconstruction procedure to a dual biorthogonal multi-
resolution analysis [4]. Essentially, the breakthrough in
the wavelet domain brought new ideas into the filter bank
domain. The communication between both fields led, for
example, to the design of fast wavelet transform using the
simple structure of iterated filter banks [10], [21], [24];
as a converse influence, the regularity of the associated
wavelets became a potentially important property for filter
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design. This last point has been deeply investigated from
the mathematical point of view [7], [8], [20].

It seems that in spite of the advantage of developing
any function into an orthonormal wavelet series, the it-
erated filter bank schemes were used for analysis purposes
only through the fast algorithm for the computation of the
wavelet transform. A reason for this is that they imply
octave-band decomposition, which is often much too
coarse for analyzing signals such as high quality audio or
speech. This has a number of consequences: for using the
fast algorithm based on the two-band iterated filter bank,
it is necessary to design as many filters as the number of
“‘voices’” which is required per octave (an octave is de-
composed into subbands, which are named ‘‘voices’’ in
[21D).

Another, more direct way to solve this problem would
be to use rational iterated filter banks (Fig. 1); here the
signal is separated in a much more dense set of frequency
bands. At first sight, one could reasonably hope that this
scheme provides a wavelet analysis of the input signal,
like in the dyadic case. In more detail, it appears that
strictly speaking, this is not the case. It is still possible to
define a kind of multiresolution analysis, but this one is
no longer built from dilated and shifted versions of a sin-
gle function ¢; instead, an infinite set of dilated ‘‘al-
most’’-shifted bricks (in a sense which will be defined
laser) are used to build this rational multiresolution anal-
ysis. In the dyadic case, these functions ¢, (7), are shifted
versions ¢ (¢ — n), a connection which does not hold in
the rational FIR case (in the IIR case, see [1], [14]).

This paper works out these discrete rational architec-
tures in order to precisely characterize the associated an-
alog time-frequency analysis, its properties, and focus on
its differences with the wavelet analysis. It will also be
illustrated that the difference between the more general
rational multiresolution analysis and the classical dyadic
one can be made as small as desired by enforcing some
regularity constraints to the basic filters. However, the
paper only intends to give an introduction to these new
functions. In particular, short or accessible proofs will be
given, but due to the lack of space, not every question
will be tackled, even if the dyadic case shows how to an-
swer them.

Previous work on the general rational filter bank archi-
tectures can be found in [2], [5], [11], [14], [19], [26].
Among these, the work of Kovacevié and Vetterli [14]
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Fig. 1. Iterated analysis rational filter bank.

has most deeply influenced us. In particular, they gave a
method for designing perfect reconstruction rational filter
banks, and were the first to think about iterating it, as it
is often done in the dyadic case.

Various methods are available in order to find the syn-
thesis FIR filter bank allowing the perfect reconstruction
of a signal processed by an analysis two-band rational fil-
ter bank. There are either analytical [11], [26], or numer-
ical methods [19]. We use the one in [11] and write down
in Section II, the corresponding equation in the same
polynomial matrix form as can be done in the dyadic case;
this equation is later used in Section V. Section III dis-
cusses the iteration of such rational filter banks, providing
the basic tools that are used later on. In the same section,
the associated arithmetic complexity of such a tree struc-
ture is given. Section IV deals with the main subject of
the paper, which is the existence of basis functions char-
acterizing the generalized multiresolution analysis. They
are obtained through a limit process, and shown to obey
a generalized two-scale difference equation; this equation
is indeed very similar to the one studied by Daubechies
and Lagarias [8] in the dyadic case. The properties of
these limit functions allow unsolved questions stated by
Kovadevié¢ and Vetterli in their work on iterated rational
filter banks to be explained. The fact that Cohen and Dau-
bechies [3] proved that a multiresolution analysis cannot
be built with rational dilation factors together with FIR
low-pass filters, may explain why the former authors fi-
nally admitted that the iteration of a synthesis filter bank
cannot generate a limit function. Actually, several differ-
ent limit functions are obtained, depending in a complex
manner on the chosen initialization. This is the only im-
portant difference with the dyadic case. This difference is
due to the absence of a shift property, which can however
be made very small by an appropriate choice of regular
filters.

Section V shows that a rational scheme is equivalent to
some continuous wavelet-like analysis, which is explic-
itly stated. Moreover, we illustrate that all the properties
of the dyadic architecture (wavelet transform and wavelet
series) have a straightforward equivalent in the rational
case. It is hoped that since the shift error can be made as
small as possible, the simpler expressions of the dyadic
case will be reasonable approximations of the general ra-
tional case.

To be fair, we must emphasize that the gain in fre-
quency resolution brought by the rational analysis might
by some aspects be counterbalanced by a greater com-
plexity, especially as far as filter design is concerned. The
reduction of the shift error, for example, is linked to the
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regularity of the limit functions, and the need for a given
order of differentiation requires longer filters in the ra-
tional case than in the dyadic one; typically, if a filter of
degree at least N is needed in the dyadic case to achieve
N — 1 bounded derivatives, a filter of degree at least N(p
— 1) is required in the rational case for the same purpose.

Notations

We use the following notations throughout the paper.

e To a sequence x[n] corresponds a series X(z)
(z-transform) defined by X(z) = ka[k]z_k.

® The greatest integer less than or equal to x is denoted
by |x|.

¢ The matrices are denoted A = [4, ;] where k, [ are
the row and column index, respectively.

II. RaTioNAL FILTER BANKS

The rational filter bank is shown in its general form in
Fig. 2. Here, the input signal X is analyzed by N branches
each one of the form shown in Fig. 3; the rate of any
output Y; is a fraction g;/p; of the incoming rate. The as-
sumptions of [14] are gcd(g;, p;) = 1, since any possible
common divisor can be canceled by an appropriate change
of the filter, and £} ¢;/p; = 1, so that the global output
rate equals the input rate. This rate conservation lies be-
tween two cases. The first one V' ¢;/p; < 1, for which
perfect reconstruction cannot be reached since a certain
amount of information is lost in the analysis process. The
second one L' ¢;/p; > 1 for which, in general, perfect
reconstruction can be reached, but with several different
synthesis processes, since now the analysis generates re-
dundant outputs.

In order to undertake a ‘‘rational analysis’ as ex-
plained in the Introduction, it is clear that each branch of
the scheme has to perform a ‘‘rational interpolation’” of a
signal at time samples which are not integer divisors of
the reference sampling rate. We show by an example
(slightly adapted from [23]) that it is indeed the case for
each branch of a rational filter bank. Assume that the
bank-limited signal x(z) can be perfectly reconstructed
from its subsamples x (n7) via Nyquist relation x(r) = L,
x(k7)x(t/T — k) with x (t) = sin (xr) /(w7). Thus, chang-
ing the sampling rate from 7 to p7/q gives

X (B nr> = 2 x(kDx <u> n
q k q

This equation simply states that the input sampled signal
x[n] = x(n7) is first up-sampled by g, then filtered by the
low-pass filter G(z) = E; x (k/ ¢)z*, and finally down-
sampled by p. This is the general form of the ‘‘branch
operator’’ depicted in Fig. 3

yln] = >k3 glnp — kqlx[k]. )

This paper now concentrates on the two-band rational fil-
ter bank, and on its iterations. We recall some properties
of the basic cell, which are direct extensions from what
was stated in previous literature [25], {27].
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Fig. 2. N-band rational filter bank.

q p

Fig. 3. The basic operator of rational filter banks.

A. Composition Property

First note that the composition of two branches is in
general still a branch of the same type, provided that the
down-sampling factor of the first branch be prime with the
up-sampling factor of the second one. This allows the
construction of large rational filter banks by iterating a
unique two-band rational filter bank as we shall proceed
in Section III. Indeed, with the notations of Fig. 4, pro-
vided ged( p, ¢') = 1, the two branches can be contracted
to one, with

p" =pp 3)
q" = 44’ 4)
G" (@) = G'("GEY). 5)

The proof is easily obtained in three steps, using basic
properties of the composition of filters and up- or down-
sampling operators [26].

¢ Since p and q' are coprime, they can be swapped.

* G(z) followed by up-sampling by ¢’ is equivalent to
up-sampling by q’, followed by filtering by G(z7).

¢ Filtering by G’ (z) preceded by down-sampling by p
is equivalent to filtering by G’ (z”) followed by down-
sampling by p.

B. Inversion

We now address the question of reconstructing an input
signal xg, given its two outputs x| and y, through, respec-
tively, the low-pass branch (¢ T G { p) and the high-pass
one ((p — q) 1 Hl p). It turns out that in the two-band
case, the reconstruction structure is simply the mirror of
the analysis structure, involving in general different filters
G and H as shown in Fig. 5. The proof of this property
stems from [13], [14] where it is shown how to transform
an analysis rational filter bank as in Fig. 2 into a uniform
filter bank; it can thus be inverted. In our simple two-band
case where p is coprime with ¢ and p — ¢, the composi-
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Fig. 4. Composition property.

Fig. 5. Analysis-synthesis.

tion of the inverse transformation [13], [14] with the in-
verse uniform filter bank results in a mirror structure of
the analysis rational filter bank.

The reconstruction filters can thus be computed by a
simple matrix inversion, as in the integer case. In [13],
[14], the analysis matrix is obtained after the decompo-
sition of the output signal into polyphase components .
Here, we use an alternative method which amounts to the
decomposition of the output as well as the input of a given
branch into polyphase components [11], [26]. For every
signed integer n, we define

G, @) = Ek] gln + kpqlz™ (6)
X,(z) = gx[n + kp)z7* @)
Y,(2) = ; yln + kqlz™* (8)

as, respectively, the pq, p, and g polyphase components
of G(z), X(z), and Y(z). This is a definition of the poly-
phase components which is slightly different than usual,
since n is not limited to [0 - - - pg — 1], [0 - - - p — 1],
and [0 - - - g — 1], respectively. However, it allows the
derivation of simpler formulas by eliminating the need for
the function ‘‘integer part’’ or ‘‘modulo.’’ In terms of the
polyphase components, the low-pass branch (2) reads

p—1
Yokl = 25 20 g —koqlti — Ky 1K1
ko=0 ki

for ng between 0 and g — 1 9)

and, in terms of z-transforms
p—1
Ynu (Z) = k0§0 Gnop —kog (Z)Xko (Z)

(10)

This equation provides the g polyphase components of
Y(z) as a sum of filtered versions of the p polyphase com-
ponents of the input X(z). It can be written in matrix form.
The transfer matrix is built from the p g polyphase com-
ponents of G. Interverting p and q in (2) provides a similar
formula for a synthesis branch. For the high-pass branch,

for ny between 0 and g — 1.
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g is changed to p — ¢, and we define

H,) = 2 hin + kp(p = k™ (1
as the p(p — q) polyphase component of H(z).

With this notation, the global analysis-synthesis oper-
ation reduces to a product of two matrices. In case of a
(noncausal) perfect reconstruction system this product
should be identity

o . [Gip - 1]
(G- 1] [He(p— -] <[Hkp & ]> =1d
“ L, M -kp-g
r r (12)

where the first two submatrices (from the left) are rectan-
gular of respective dimensions p X gandp X (p — ¢),
and the other two have corresponding transpose dimen-
sions. Each matrix T is thus of dimension p X p. Finally,
one can say that perfect FIR reconstruction requires the
same condition as in the integer case, that is to say det(I")
= Cz"; if this is not true, IIR synthesis filters are neces-
sary.

III. ITERATED RATIONAL FILTER BANKS

We now consider the iteration on the low-pass filter
G(z) of a 2-band rational filter bank such as the one in
Fig. 1, as is usual in the dyadic case. After the jth itera-
tion, the architecture is equivalent to a (j + 1)-band ra-
tional filter bank as in Fig. 2, which is efficiently com-
puted via this tree structure. The relative simplicity of a
two-band filter band leads to simple understanding of that
particular (j + 1)-band filter bank. Moreover, iterating
on the sole low-pass filter involves an approximate ‘‘con-
stant-Q”’ decomposition, which will be shown in Section
V to be similar to a wavelet decomposition [16], [17] with
p/q as scale factor.

A. Iteration

After j iterations, the global operation remains linear
and, using the composition relation, we find that

3] = 2 glnp’ — kqIxo[K] (13)
where the involved filters G; are defined by recurrences
on their z-transform

G+ = Gi@")G;(2"
G = G" HGE® ™ - Gz (19

for j greater than or equal to 1, G, being equal to 1. These
formulas are simple and are immediate extensions of the
dyadic case. But there is one qualitative feature that is
important for what follows; when ¢ = 1, a delay of 1 at
stage j means a delay of p for the input signal but, if g
# 1 it would correspond to a delay of (p/g)” for x,. This
would not be a problem with a perfect interpolation, in
which case the outputs could easily be considered as sam-
ples of a wavelet transform. However, the actual inter-

(14)
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polation, being made from finite length FIR filters, is not
perfect, and involves different filters depending on the
precise phase of the interpolated sample. Since a shift of
g’ for the output corresponds to a shift of p for the input,
this tends to indicate that g/ wavelets have to be intro-
duced. This intuition will be confirmed in Section IV-F
where we show that after iteration j, ¢ different estimates
for the limit functions are generated. This explains why
the outputs of a rational filter bank cannot generally be
seen as sampled versions of a discrete wavelet transform.
Notice that this problem does not arise in the dyadic case
where g = 1.

B. Complexity

The advantage of critically sampled iterated filter banks
is that the throughput at the output of the bank is the same
one as the input sampling rate. Letting the low- and high-
pass filters G, H be of length L and [, respectively, the
output of the low-pass branch has a throughput equal to
q/p, while the output of the high-pass branch has a
throughput equal to (p — g)/p. The number of multipli-
cations plus additions is approximately L/p and [ /p for
the low- and the high-pass, respectively. If we sufficiently
iterate the two-band scheme, we get

L+1 .
——q mults + adds per input sample.
p -

(16)
At first sight, there is no change between the dyadic case
(p =2, g = 1) and the rational case wherep — ¢ = 1.
It could even seem more interesting, if one tries to mimick
an octave band decomposition by a rational scheme, to
use p = 2q — 1 (whence p/q = 2) which leads to a
division by almost g of the complexity, as compared to
the dyadic case!

In fact, L implicitly depends on g and [ on p — g since
the filters are designed in the up-sampled domain. These
lengths must be multiplied by ¢ and p — g (respectively)
in order to retain the same performance in terms of filter
design as in the dyadic case; this breaks the paradox
evoked above. As a consequence, the rational case is in
general much more difficult to design since longer low-
pass filters are required to meet the same selectivity (width
of the transition band, attenuation) as in the dyadic case.
Whenever p — g = 1, an effect of the finer frequency
resolution is the increase of the complexity approximately
by a factor g over the dyadic case.

IV. LimiT FUNCTIONS

The connection between iterated filter banks and dis-
crete wavelet transforms has constituted a strong catalyst
in both fields of nonstationary sampled signals analysis
and mathematical analysis. In particular, it pointed out
the importance of the time behavior of the functions which
can be generated by the infinite iteration of a synthesis
low-pass branch. By construction, these functions verify
what was to be named a two-scale difference equation [8].
Although they were supposed to be interpolating func-
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tions, they could behave in a pathological way; for ex-
ample, they could be continuous but not differentiable
‘‘almost everywhere.’” This problem called for accurate
regularity estimates obtained from the filter coefficients
(81, [20].

This section follows the same path in the rational case
as was taken in the dyadic one. More specifically, we are
interested in the possible convergence of the impulse re-
sponse of the iterated low-pass synthesis filter towards a
function in the rational case. When this convergence oc-
curs, we characterize as precisely as we can the properties
of this limit such as its support, its smoothness, and oth-
ers. Due to the peculiarity of the rational case, which have
already been outlined (absence of shift property), this
study requires the use of FIR filters in the general (non-
causal form

L

G@@) = 2 glklz™* (17)
k=M
1

H(z) = k:Z hklz ™~ (18)

These filters will be indifferently analysis or synthesis
filters, corresponding either to Fig. 7 or Fig. 8 (this will
be clear from the context). This fuzziness is necessary,
since we generate limit functions at the synthesis side of
Fig. 8, using the notations of Fig. 6; these functions are
used to interprete the analysis side of the situation in Fig.
7, using the notations of Fig. 1. We first briefly review
the dyadic case [20].

A. Dyadic Case

Consider the synthesis side of Fig. 8 in the dyadic case
g = 1 and p = 2. When the inputs of the high-pass filters
are set to zero and the one of the low-pass filter is set to
z”°, the scheme simplifies to the iterations of Fig. 6. For
s = 0, the output of the system is the impulse response
gj.oln] = g;[n] of the jth iterated low-pass filter. Under
certain conditions, we can define a function ¢ (¢) such that
g;[n] approaches ¢ (n/2’) as j tends to infinity.

The general result is that the condition G(1) = 2 en-
sures the existence of a distribution ¢ such that for any
compactly supported C* function f(r), 1/2/ I,
g;[k1f(k/2’) converges to § ¢(r)f(z) dt when j tends to
infinity. This function (or distribution) meets the follow-
ing two-scale difference equation [8], [20]:

o) = Lglkle Qr = k). (19
Several other properties are associated to this function.

® o (?) has bounded support [M, L].

¢ If the input Xj is delayed, say X,(z) = z~° then the
limit function is in fact the shifted function ¢ (t — s) (shift
property).

® Consider now the iteration on the analysis side of
Fig. 7 or Fig. 1 with the same filter G(z); ¢ (¢) still de-
notes the limit function generated by the same filter at the
synthesis side of Fig. 8. Assume that the input x,[#n] can
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Fig. 6. Iteration of the low-pass filter with G, ,(2) = z7°.
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Fig. 7. Simplified iterated analysis-synthesis scheme.

Fig. 8. Simplified iterated analysis-synthesis scheme, reversed structure
of Fig. 7.

be written as the nth sample of some analog function x (¢)
weighted by the limit function ¢ () under the form
§ x()¢(n — ) dr. Then it has been shown [16] that the
outputs of the analysis iterated filter bank of Fig. 7 are
given by

I

x;[n} S x(Dep(n — 270 dt (20)

Sx(mp(n 270 dr

where Y (t) = L, h[k]¢ (2t — k). In other words, the high-
pass filter outputs are samples of a wavelet transform for
scales 271,272 - -+ 27,

The latter property naturally states the question of the
links between properties of ‘‘good’’ transforms [hence of
‘‘good’” functions ¢ (#)], and properties of the low-pass
filter G(z). One of these desired properties is the regular-
ity of the function, i.e., its continuity, derivability, and
so on. It can be proven that pointwise convergence re-
quires G(1) = 2 and G(—1) = 0, a condition which is
not sufficient. More generally, 1/2V(1 + z"H"G(z) gen-
erates a function which is N times more regular than the
one associated to G(z); that function is CV if the latter is
C° [20]. The next subsections discuss the extension of
these properties to the rational case.

yiln] = @

B. A Definition of Convergence

We want to give a meaning to the *‘convergence of g, [n]
to ¢ (1)’ when j tends to infinity. Two different definitions
are useful for this purpose. We say that

® g;[n] converges weakly to ¢ (¢) if and only if, for all
C® function f with bounded support

qY qV
lim <—> Zg,-[k]f(k <—>> = §<p(l)f(t) dr (22)
jme \P/ K P

* g;[n] converges pointwise (or strongly) to ¢ (¢) if and
only if, there exists a constant C such that for all e > 0,
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there exists an integer J implying

|1kl — ()] < ¢

) 23)
where |k — (p/q@’t| < C.

for all j = J then i

Of course, the strong convergence implies the weak
one. The first definition is a kind of convergence ‘in the
sense of distributions’” which needs not be pointwise, but
rather emphasizes on the mean value of a limit.

An example in the dyadic case exemplifies the potential
of this definition. Let G(2) = (z > + 1)2/2, and consider
the discrete sequence x;[n] = g;[n]. The low-pass filter
G (z) does not verify G(—1) = 0 and thus fails to generate
a pointwise limit. In detail, since G(z) is even g;[2n + 1]
= 0, while the even terms g;[2n] converge to a nontrivial
function.

However, the generating polynomial is simply the di-
lated version by 2 of (z ™! + 1)2 /2, whose dyadic schemes
converge pointwise to the B-spline of order 2 (piecewise
linear). By using weak convergence instead of pointwise
convergence, this trouble disappears, and both schemes
converge. We can expect to face the same problems in the
rational case.

Moreover, if we only concentrate on the analysis side,
it has been outlined in the previous section [see (20), (21)]
that the limit function and its shifted/dilated versions are
involved as a kernel in the inner product with the input
signal. This tends to show that the weak convergence is
a more adequate way to characterize the iteration scheme,
at least on the analysis side.

Whenever it is sufficient to prove our results, we thus
assume only weak convergence. In some cases, however,
we must resort to the stronger pointwise convergence.
This is in particular the case for the biorthonormality re-
lations (Section V).

C. A Two-Scale Equation

We now study the infinite iteration of rational schemes,
and show that they generate limit functions as in the
dyadic case. After describing the iteration process, we
show that a simple normalization at z = 1 is not sufficient
to ensure convergence, even in a weak sense, to a nontriv-
ial function. An example of strong convergence will be
however given in Section IV-E. When there is at least
weak convergence, then these functions obey a two-scale
equation, which differs from the dyadic one by the loss of
the shift property.

1) Iteration: Once again, consider the low-pass itera-
tions of the synthesis side of Fig. 8, which is now a purely
rational filter bank scheme. Iterating this scheme with null
inputs at the filters H corresponds to iterating j times the
low-pass synthesis filter, with input Gy ;(z) = z7° (see
Fig. 6). The corresponding outputs are sequences g; ,[n]
where the delay s is a parameter. They obey the following
equations, deduced from (13)-(15)

g.s[nl = glng’ — sp’] (24)
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g1l = 2 glng — kplg;, ;1K (25)
= 2 gl glkq — sp] (26)
givsslnl = 20 gilnl g K]. @

Let us choose s = 0 for a while, and wonder whether the
sequence g; o [n] converges either in the weak or the strong
sense to a nontrivial low-pass function ¢, (7). The answer
is yes; but there are additional constraints to the simple
normalization condition arising in the dyadic case. Re-
member that in that case, G(1) = 2 is enough to enforce
weak convergence of the dyadic schemes, for any nonzero
polynomial.

2) Nonconvergence Example: A simple example
shows the difference between rational and dyadic schemes
about convergence. Let us choose the low-pass filter to be
a simple delay G(z) = z7".

® Dyadic Case: The iterations provide Gj(z) =
z7%’*!. This leads, after multiplication of G(z) by 2 for
normalization, to the distribution (¢ — 1), under weak
convergence.

® Rational Case p = 5, q = 3: The iterations provide
Gi(2) = 373972 Clearly g;.0ln] = 0 everywhere but for
the initial value j = 0. Thus, g; [n] does not converge to
a nontrivial limit. Furthermore, even if we change the
initialization by choosing another value for s, it is easily
seen that, for large j, g; ;[n] = 0 everywhere. This im-
plies that for any s, whatever the normalization, the only
possible limit function vanishes.

Unfortunately, we do not know which minimum nec-
essary and sufficient condition on the polynomial would
lead to a weak converging scheme. Instead, we provide
necessary conditions for the scheme to converge in a
strong sense. Using this necessary condition, we could
always obtain converging schemes. This is the case for
the generating polynomial G(z) = (1 — z7?) /(1 — z7 1),
considered later in Section III-E.

3) Equation: Even if convergence is ensured, there is
still a huge difference between the dyadic and rational
cases: the shift property is lost. Depending on the initial
delay s, the limit function ¢, (¢) is different from ¢y (¢t —
s). Assume that convergence to the limit functions is
weak, then we show below that these functions satisfy a
modified two-scale equation

oD = % glkq — sple: (i—; t>- (28)

Proof: Let f(t) be a C® compactly supported func-
tion. Thanks to (26), we can write

J J
3|3 Fa (s ) e
J J

- <§> Sy l,s[k1f<k (fj) >

(29)
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Assuming the weak convergence of g; ([n] to the set of
functions ¢, (f) and noting that the summation over s’ is
finite, we take the limit of both sides. This implies that

g Z gls'q — sple,(f() di = g g e (Of <§ t> dr

(30)

is true for any C* compactly supported function f. This
means that (28) is true in the sense of distributions. [

Inthe p = 2, g = 1 case, and adding the restrictive
constraint of the shift property ¢,(f) = @o(t — s), this
equation reduces to the classical dyadic two-scale differ-
ence equation [8]. The more general formulation in the
rational case induces new properties. In fact, given a par-
ticular set of solutions verifying (28), we can construct
other sets f;(f) with the help of any distribution A (f) by
the formula

£ = S N(@)e,(ar) da. (3D
As an example, if the functions ¢, () are solutions of the
equation, so are the functions t¢ (¢), and so are the func-
tions zzgos” (), and so on . .. all these functions having
the same supports. In the dyadic case, it was possible to
study the function ¢ directly from its two-scale difference
equation, or from its Fourier equivalent. But in the ra-
tional case, a large set of functions is defined by the equa-
tion. This explains why this kind of study is by no means
sufficient in our case. Furthermore, it can be shown that,
in the purely rational case (¢ = 2 as opposed to the in-
teger case ¢ = 1) with G and FIR filter, the requirement
of the shift property ¢, (f) = ¢, (t —s) in (28) would result
in ¢y (f) = 0 as the only solution of the two-scale differ-
ence equation [3], [13]. The shift property cannot hold in
the purely FIR rational case.

D. Support

Assume that the discrete schemes converge weakly to
limit functions ¢, (7). In a manner parallel to the dyadic
case, these functions have a compact support. A rough
estimate of this support is obtained by noting that, by con-

struction, g;[n] cancels outside [M; - - - L] .where L =
L(p’ —q))/(p—qand M; = M(p’ — q))/(p — q).
while each g; ([n] cancels outside [M;/q’ - - - L;/q’].

Since the resolution at iteration j is g/ /p”, taking the limit
when j tends to infinity leads to the following result:

M L
support (¢;) C [s + , 8 + ] (32)
P —4q pP—9q

In fact, more accurate results can be obtained (see (74)
in the Appendix) showing that the supports of each func-
tion are different. The differences between the supports of
the functions ¢, are illustrated in Section IV-E. It turns
out that, for the sets of functions which exhibit a smaller
shift error, the difference between the length of these sup-
ports also becomes of less concern, since the values of the
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functions outside a common minimum interval, tend to
vanish.

E. An Example: The Rational Equivalent of the Haar
Function

This subsection is devoted to the study of the functions
generated by the filter G(z) = (1 — z7%)/(1 — z7 1. The
recurrence equations characterizing ¢, (f) are

go.sln] = 8[n = s] (33)
g1l = Zglng — kplg; K] (34)
= g.sln] (35)

where n; = | nq/p] . By induction, one can easily check
that g; [n] = 1 over an interval [g;[s], a;[s + 1] — 1],
and is zero elsewhere, where g;[s] are defined in the Ap-
pendix by (75), (76). Clearly, letting j tend to infinity
leads to a set of functions ¢, (r) indicator functions on the
intervals

L =lalg=1+s(p—-—qlalp—-1+s(p -9l
(36)

where «a[s] is defined as in the Appendix by (77). These
intervals are nonoverlapping and their union is the set of
real numbers. The associated functions are the rational
equivalent of the Haar low-pass functions in the dyadic
case. For example in the case p = 3 and ¢ = 2, we have
Iy = [0, 1.622[, I, = [1.622, 2.433[, I, = [2.433, 3.65]
and so on. It should be noted that the function ¢_, (¥) van-
ishes and that I, is empty. Of course these intervals have
every different sizes, within the limit given in Section
IV-D. This is a great difference with the classical integer
case.

F. Properties

1) A Necessary Condition for Convergence: When do
the iteration of rational schemes such as the one in Fig. 6
converge strongly? We prove that a necessary condition
for this to be achieved is

z_P -

1
T divides G(z) and G(1) = p.

@37

Proof: Let t be a real number and choose C = max
(IM|, IL|,p(p — @))/(p — q). Then consider a sequence
n; such that [n; — t(p/q)’| < C and such that n; = »
(mod p). Then g; ;[n;] tends to ¢, () when j tends to in-
finity by assumption. Since G is FIR, the sum in (25) has
a finite number of terms; moreover it only involves inte-
gers k such that |k — t(p/q)’| < C due to the particular
choice for C. So letting j increase we must have L, g[rvq
— kp] = 1 for all » between 0 and p — 1. This can also
be written L, g[n — kp] = 1 for all integer n and this is
equivalent to (37). O

Note, that this relation shows a strong parallelism with
the dyadic case where the corresponding condition is (z
+ 1) divides G(z) and G(1) = 2. In other words, the
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general rule is that the filter G(z) should cancel at the
aliasing frequencies 2« /p, 4w /p, -+, 2(p — D= /p
and should not vanish at frequency 0. This confirms its
low-pass characteristic. This simple requirement is now
shown to be closely related to the differentiability of the
limit functions.

2) Derivative of the Limit Function: Suppose that the
FIR filter G(z) converges weakly to some limit functions
¢, (1). We show below that, provided that G* (z) is linked
with G(z) by the following relation:

Gz)

Y
=1z [ G°@ (38)

Z*‘I —
then the derivative of ¢, (¢) could be obtained as a simple
combination of the limit functions associated to G*(z)

o () = @) — @i (). (39

Proof: Considering the function ¢, () as a distribu-
tion, it is possible to differentiate it. If ¢ (¢) is a C* com-
pactly supported function, we have | ¢!y = —§ o,¢'.

Thus,
J J
~ lim <9) > g )y (n <€)> (40)
jmo \p/ p

S oY =
The fact that G is FIR shows that T, | g ;[n]| < (p/q)%
for some integer . We now carry out a Taylor expansion
of the C* function ¥ until the order « around the point
n(q/p)’. It can be shown that the terms of order greater
than 1 as well as the remainder of the expansion, do not
contribute to the limit. This allows the change of { ' () by
(p/@)’ ¥ + (g/p)) — Y (] in the sum, which results

in
J J
S el¥ = lim <2> w, [y (n <5’>> @1)
jmw \p/ n p
with 42)
j,s - &j,s -1
il = (] - g.n — 1] w

(q/p)

It is possible to check that w; ;[n] follows p /g-adic iter-
ations as shown in Fig. 6, with G°(2) as a low-pass filter.
Since g; ,[n] converges, so do w; ;[r]. By considering j
= 0, it is easily seen that w; ([n] = g/ [n] — g/ +1[n],
which straightforwardly proves the weak convergence of
the schemes based on G* and leads to (39). J

For comparison purposes, we have in the dyadic case,
G@) = (z7' + 1)G*(2) /2 which is simply (38) forp =
2and ¢ = 1; we also have ¢'(¥) = ¢*(f) — ¢t — 1)
which is merely (39) with the addition of the shift prop-
erty. Interestingly, (39) shows that the regularity (either
Hélder or Sobolev [20]) of the set of functions ¢, (f) is
exactly raised by 1 as compared to the regularity of the
set of functions ¢ (¢). Thus, the nonpolynomial factor
RI) = (z7? — 1)/(z7? — 1) plays the role of a differ-
entiation operator. This is to be compared to 1 + 2 Vin
the dyadic case.
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It is not the purpose of this paper to answer all ques-
tions about the regularity of functions ¢, since this will
be done in another paper still in preparation [22]. How-
ever, one can say that in the rational case there exist two
ways of building a more regular set of functions from an
initial polynomial G(z)

e Either multiply the polynomial G(z) by the fraction
R(z). This is possible only if G(z) is divisible by (z77 —
1)/(z™" — 1). In this case, the regularity is exactly raised
by 1, and the generated functions are simply deduced from
the initial ones with the help of (39).

e Or multiply the polynomial by z™” — 1)/(z™") —
1). This is always possible. In this case, the Holder reg-
ularity exponent [20] is raised by more than 1 (but close
to 1 anyway) [22]. However, the generated functions can-
not easily be deduced from the initial ones.

3) Shift Error: As already shown in Section IV-E, FIR
polynomials generate a set of functions without shift in-
variance. This shift error, although easy to see when plot-
ting the functions, is much more difficult to estimate. A
possible definition is the maximum error between any two
limit functions brought back to the same interval

€ = sup .‘ps(t + 5 - ‘lps’(t + S’)l.

5.5t

44

Unfortunately, a fair estimate of this shift error, would
require the computation of a number of functions which
grows exponentially with the number of iterations. This
is numerically intensive due to the low rate of conver-
gence of each iterate to its limit function. The only prac-
tical result we could obtain in this direction is a lower
bound; this is of course not very useful by nature. Be-
cause these estimates are unlikely to be very reliable, we
are reluctant to give experimental values for the shift error
of a given scheme. However, a major experimental result
is that, provided that the generating polynomial contains
enough factors of the type (z77 — 1)/(2‘] — 1), all the
computed limit functions show a very small shift error;
this error is even smaller than the accuracy of the esti-
mation for the limit functions. This is not coincidental,
and we recently obtained a theoretical estimate confirm-
ing this trend [22]; we shall however not make use of it
in this paper. We develop these observations below.

An example illustrating the loss of shift property in ra-
tional schemes (here p = 3 and ¢ = 2) is obtained for the
following (nonnormalized) low-pass polynomial

-3 _ 3
z———l> 2z = 1.

' -1 4

Gi@ = (
Ten limit curves with varying initialization polynomial z™*
are displayed in Fig. 9. A first remark is that the conver-
gence is slower than in the dyadic case; the curves were
obtained after 14 iterations, whereas the same precision
would have been obtained after only eight iterations in the
dyadic case. In fact, the difference between the limit func-
tions and their jth iterates tends to zero as (gq/p)’—for
sufficiently smooth functions—when j tends to infinity
[22]. This explains why for a given precision 1/R, we
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Fig. 9. ¢, (t + s) fors =0 -+ - 9 where G(z) = (z'* — 1/z7" - 1)}
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Fig. 10. ¢, (t + s) fors = 0 - - - 9 where G(z) = (z7* — /27" = 1)°
z7' = 1.

need approximately j = log (R)/log ( p/q) iterations in
the rational case. This results stands for one function, but
the computation of a maximum shift error between any
two limit functions is another task. From (24) we can di-
rectly see that at iteration j, a set of ¢ different function
estimates has to be taken into account. It is generally im-
possible to compute all these functions. This would mean
the computation of all the coefficients of the polynomial
G;(2) that is to say L(p’ — q’)/(p — q) coefficients.
This number is equivalent to

log (p)
log (p/q)

as R tends to infinity. In the example of Fig. 9 (14 itera-
tions), a straightforward evaluation of (44) would need
the computation of more than 3.3 x 107 coefficients - - -

However, we have noticed that generating polynomials
with a larger number of factors (z 77 — 1)/(2_' — 1) led
to limit functions showing a dramatically decreased shift
error. This is well depicted by Fig. 10 as compared to
Fig. 9. The corresponding low-pass (non-normalized)
polynomial is here

(46)

-3

-1\’
G (2) = (ﬁ) G @) (47)
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Once again, we have plotted only ten functions, but the
other ones we computed showed the same behavior. The
shift error between the ten iterates in this example was
smaller (approximately 0.002) than the error between the
iterates and their respective limit functions (approxi-
mately 0.003), which makes accurate experimental shift
estimates difficult to obtain.

Since the required factors are closely related to the reg-
ularity of the limit functions (see Section IV-F), this sug-
gests that more regular limit functions should show a
smaller shift error.

V. TiME-FREQUENCY TRANSFORM INTERPRETATION

The dyadic filter banks are not only simple tree archi-
tectures, allowing easy implementation for coding pur-
poses, they also provide a discrete version of wavelet
transforms, and a simple interpretation in terms of mul-
tiresolution analysis [16], [18]. This is changed in the
p/q case due to the absence of shift property. However,
we have seen in Section IV-F that constraining the poly-
nomial G(z) to include factors of the type (z 7 — 1) /(z”'
— 1) increases the regularity and decreases the shift error
between the various limit functions. Taking this fact into
account, we outline here that the same properties can be
found in the p /g-adic iterated filter banks as in the dyadic
case, up to an ‘‘error’’ which can be made arbitrarily small
by an ad hoc choice of the generating polynomial.

This is undertaken by interpreting the outputs of the
filter bank depicted in Fig. 7 in terms of the limit func-
tions generated by iterating the synthesis part of Fig. 8.
Since this interpretation involves some time-reversal of
the limit functions, we use a compact notation for this:
given an arbitrary set f; (¢) of functions, we build a new
time-reversed set f 7 which we define by f; (1) = f_,(—1).
Otherwise, from now on, the notations for the output of
the iterated analysis filter bank are given in Fig. 1.

A. A Wavelet Transform?

Assume now, that one can find an analog signal x(z)
such that the input x,[n] of the iterated analysis rational
two-band filter bank can be considered as its nth weighted
sample as follows xy[n] = { x(f) ¢, (¢t ) dt. Then, an easy
induction [taking advantage of the two-scale equation
(28)] proves that the outputs of the analysis scheme of
Fig. 7 are provided by

e () )
o () )

where {,, (1) are the time-reversed of the ‘‘mother’’ func-
tions ¥, (¢) (terminology of [18])

x;[n] = (48)

y;lnl (49)

V(1) = ; hlk(p — q) — npley <§ t>- (50)

These formulas are the exact equivalent of the discrete
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wavelet transform in the dyadic case. We obtain a discrete
wavelet transform for the low-pass iteration if we for-
mally substitute ¢ (r — n) for ¢,(f) in (48). In the same
way, for the high-pass iteration (49) a shift error is asso-
ciated with the functions y,(f). More precisely we can

define
T Y P |
-9 pP—4q

(5D

In cases that we are studying later, this error can be min-
imized. This suggests that it is possible to compute a dis-
crete wavelet transform DWT; , [x] of signal x(z) for the
scale parameters (p/qg)~ and the discretized time unit

(p/9’q/(p — 9
i
DWT; ,[x] = Sx(t)¢g<<g> t—n |
q 14

n = sup ¢5<t+s
14

5,81

> dt  (52)

by means of schemes as depicted in Fig. 7.

1) Loss of the Shift Property for the High-Pass
Functions: The natural shift unit of the limit function
©,(2) is 1 since the supports of these functions are shifted
between themselves by the same amount (see Section
IV-D). This is not the case for the high-pass functions v
whose natural shift unit is ¢/(p — g). This is a conse-
quence of (32) from which the support of the functions v
can be obtained. This justifies the definition of the high-
pass shift error (51). With this modification, does ¥ (f) =
Yot — sq/(p — @) strictly hold in the case where the
low- and high-pass filters are FIR? This would ensure that
the outputs y; [n] of the filter banks be equal to DWT; , [x].
This is unfortunately not possible, at least in the most in-
teresting case when the convergence of the rational
schemes is strong (the proof, too long, will be given in
[22]). We must thus evaluate the shift error (51); the out-
puts y;[n] can be then made as close as desired to
DWT; , [x] if it is possible to minimize this shift error.

2) Shift Error: The shift error of the functions y,(#)
can be estimated in connection with the shift error of the
functions ¢, (¢). With respect to this problem, there is an
important difference between the cases p — ¢ = 1 and p
—q # 1.

e If p — q = 1, (49) shows that |J,(t + sq) — ¥, (¢
+ 5'q)| =< € I |h(k]|, according to the definition of the
shift error € given in Section IV-F. Thus, decreasing the
low-pass shift error also decreases the high-pass shift er-
ror.

® ifp — g # 1, define p — g new functions a, (¢) for
s =0+ (p—q—1)as follows:

o <t ) . q>

= %h[k(p = q) — soPleo <§t - k)- (53)

Then, one can characterize a shift error among subsets of
the functions y,. Namely, for each sy and s = 57 (mod p
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-9

%0 — a <r—s 4 >‘
pP—4q

< e X |hlk(p = 9 = sopll. (54)
This shows that inside each subset of functions whose in-
dexes are congruent modulo p — g, the shift error is also
directly related to the low-pass shift error. However, the
shift error between different subsets depends not only on
the low-pass filter, but also on the high-pass one, as is
clearly seen from (53). Even if the shift error were can-
celed for the low-pass functions ¢, this would not be the
case in general for the high-pass functions y, but possi-
bly for an adequate choice of H(z). However, we have
not yet investigated the issue of how H(z) should be cho-
sen in order to make this shift error between subsets as
small as possible. We were mostly interested in the case
p — q = 1 because of its finer frequency resolution.

B. Biorthonormality and Perfect Reconstruction

For any couple f, g € L?, define the L* scalar product
by

(f. &) = Sf(t)g(t) dr. (35)

With respect to this scalar product, the functions ¢, (#) do
not in general represent an orthonormal set, that is to say
(o, ¢» # 8[s — s']. However, the synthesis filters
p/qG(z) and p / qH (z) generate functions ¢, and ¥, which
are biorthonormal to the analysis functions, as shown be-
low. Since we work under critical sampling involving a
square polyphase matrix as stated in part 1, one can swap
both matrices in (12) and get I'T' = Id, which leads to

§ln —n'] = Ekl glnp — kqlglkq — n'p) (56)

8ln = n') = 2 hlnp = k(p ~ QWhlk(p ~ @ — n'p]
57

0= 2glnp — kqlhlk(p — @ = n'pl  (58)

0= ; hinp — k(p — @lilkq — n'pl.  (59)

Equation (56) can be iterated in order to involve g;[n] and
&;[n], and if we assume the strong convergence for both
sets of functions, we get 8[n — n'] = (¢, , ¢,>. The
system of equations (56)-(59) can finally be seen as
equivalent to the following biorthonormality constraints:

8[n —n'l = <o, & (60)
8ln — n'] = by, ¥ (61)
0= <o, ¥u (62)
0= (bys @ud (63)

which is true for every couple of integers n, n’. This re-
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markable result is the same one as previously obtained in
the dyadic case. The analysis and synthesis functions form
a biorthonormal set, when perfect reconstruction is
achievable. An immediate consequence of the equation is
that (61) can be extended to

B pj . pj' pj , . .y
o (§0) o (5 )= om -t =
(64)

which can be described as interscale biorthonormality.

Note that, in the p /g case, biorthogonality (defined by
(@n, > = C(n)d[n — n'] with C # 0) is somewhat
different from biorthonormality (which requires C = 1).
Unlike the dyadic case, biorthonormality is a stronger
property than biorthogonality, since the scalar product
{@n, ¢n) does not equate ¢, _,, @o). This makes bior-
thogonality more difficult to approach, but it may be fruit-
ful to progress in this direction. A simple example of the
orthogonal set (biorthogonal, with the same analysis and
synthesis functions) is the ‘‘generalized Haar’’ scheme
exhibited in Section IV-E, but we are not studying bior-
thogonality further is this paper.

1) Pseudo-Wavelet Series: Reconstruction can then be
seen from another point of view. Given a sequence x4 [n],
we build the analog signals

J J
&@=§%@M@Gﬂ> (65)

J J
n®=§%xM%Gw> (66)

where x; [n], y;[n] are still the low-pass and high-pass out-:

puts of the analysis filter bank (Fig. 7) after j iterations.
Thus, y;(f) contains the information of x,[n] at scale j,
while x;(¢) contains the information at scales j and higher.
Due to biorthonormality [and in particular (64)], we have
the reconstruction relation
N

%o() = xy(@) + 2y 67)
which provides a development of the input signal into a
‘‘pseudo-wavelet’’ series plus a remainder (the low-pass
term, xy(¢) of the series). Formula (67) is in fact the an-
alog equivalent of the discrete reconstruction procedure
based on iterating the synthesis rational filter bank (Fig.
7). This presentation makes a natural introduction to a
‘‘multiresolution’’ point of view of the rational filter bank
schemes.

C. Multiresolution Analysis

Still in the two-channel case, we extend the definition
of multiresolution analysis (better known in the dyadic
case [16]-[18]) to the rational case. We define the spaces

V. = span {<p; <<l—)> t>} n I
q seZ

(68)
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Due to the time reverse definition of ¢, these functions
obey a two-scale equation (28) based on G(z™"), hence

the spaces V', are embedded
-CcV,cVvycVv, C--- I (69)

One can observe that the spaces V,, include higher reso-
lution functions as n increases. Defining the spaces

W = span zxp; <<3> rﬂ N (70
q seZ

it is clear from (50) that W, C V.. The perfect recon-
struction relation is thus equivalent to the direct sum
equation on the sets

Wy e Vi=Vi.

(71

By induction, this equation means that the larger space
V¢ can be decomposed into a direct sum of given decreas-
ing resolution spaces W, plus the smaller space V_y,
containing lower resolution functions

Vi =W, e W, - -0 Wye Vi (72

This last equation is equivalent to (67). Under conditions
we have not yet investigated (for the dyadic case see [4]),
if the decomposition is continued to infinity, it should be
possible to develop any square integrable function into a
‘‘pseudo-wavelet”” series. In any case, this decomposi-
tion of L? is not always true. A simple example is readily
obtained with the filter G(z) = p/q(z"9 — 1)/(2_l - 1).
The limit functions are dirac impulses directly linked to
the derivative of the generalized Haar functions (Section
IV-E). These functions are not in L2, thus V; = 0 for all
j and finally, their union fails to give L*.

A dual multiresolution analysis V, and W, is associated
to the synthesis functions ¥, and . Interscale biortho-
normality (64) leads to

W, L W,

forall n # n'. (73)

Both analyses are in general distinct, but an important
particular case arises when they are not. This leads to or-
thonormal functions obeying a two-scale equation. The
functions are the same ones at the synthesis and analysis
sides, and the pseudo-wavelet series (67) is an orthonor-
mal development.

VI. CONCLUSION

This paper focused on the properties of iterated two-
band rational filter banks. We showed that, despite the
strong parallelism between the dyadic and the rational
case, many differences between both situations were due
to the absence of shift property.

The first apparent difference was that there is no more
a single limit function characterizing the infinite iteration
of such schemes. There is instead an infinity of them.
However, many properties are simple extensions of the
dyadic case, such as derivation and compact support.

The loss of shift property also forbids the high-pass
outputs to strictly behave like sampled wavelet transforms
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in the case of FIR analysing filters. However, the situa-
tion is not as dark as it seems at first sight. A suitable
choice for the filters can actually reduce the *‘shift error’’
between the various limit functions generated by the low-
pass filter. Furthermore, the shift error between the as-
sociated high-pass functions in the most interesting case
P — ¢q = 1 also decrease accordingly, so that we can ‘‘al-
most’’ obtain a wavelet transform.

The important point is that, wherever we can accom-
modate for a small error, we can work with rational filter
banks in the same way as with dyadic filter banks, with
the advantage of a finer frequency resolution. A future
work under writing [22] proves most results that are only
illustrated in the present paper, concerning mainly the
links between regularity and shift error. However, much
remains to be done on iterated rational filter banks, be-
ginning with the study of orthonormal functions, or filter
design.

The precise characterization of rational filter banks out-
lined in this paper might be helpful, especially in order to
analyze or code efficiently speech or audio signals (which
require a more precise analysis than the classical octave
band analysis). We expect in particular the shift error to
be an important parameter for the design of such filter
banks, together with more classical frequency domain
ones like transition band, or attenuation.

APPENDIX
SUPPORT—MORE ACCURATE VALUES

A closer examination of the degree of z* ;.5 (2) shows
that

support (¢,) C [alg — 1 + M + s(p — q)],
allL + s(p — ]l (74)

where the real sequence « [s] is defined as follows: fixing
the integer s, consider the integer sequence a;[s] defined
by recursion over j by

agls] =0 (75)
s + pa;[s]

. ls] = L«’—J (76)

q

then

p i

a[s] = lim <—> a; s} a7
o= \q

Proof: Assume that g;  [n] converges (weakly is suf-
ficient) toward ¢, (¢). In fact, there exists two sequences
a;[s] < b;ls] such that g; . [n] = O for all n outside the
interval [a;, b;]. From (25). it appears that

M aalsl L
=+l = T <20 By ()
q9 4 bilsl 4 ¢
and the sequences thus satisfy the following recursions:
apls] = s
g — 1+ M+ pals]
aj+1[S] = [ q
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and

bols] = s

L + pb.[s] 79
by 1ls] = {——’J

Of course, if it happens that g;[s] becomes greater than
b;[s] then g; ([n] vanishes (can only happen if L < g —
1). Equations (75) and (76) show that

gGlsl =s+olg—1+M+s(p—q] (80)

(81

This indicates that it is sufficient to study the sequence Q.
We need to know if (g/ p)jaj [s] converges towards a fi-
nite value. In fact, if r;[s] is the remainder of the Euclid-
ean division of s + pa;[s] by g, it can be seen that it is
the case and that the convergence is geometric

bilsl =s + o[L + s(p — I

-Jj
. (P 5 q
als] = lim <—> als] = —— — 2 ri[s] —¥—.
[ joe \g 7 P—q ) J p_/+l

(82)

Moreover, since r;[s] lies between 0 and ¢ — 1, we have
the inequality

=< . (83)

P —4q
That is to say, the functions (or distributions) ¢, (f) have
compact support

lalg =1+ M+ s(p— gl all +s(p—l] (84)

|

The lower bound of the interval lies between s + M /(p
—qg)ands + (M + g — 1)/(p — q), whereas the upper
bound lies between s + (L — g + 1)/(p — g) and s +
L/(p — g). This is the reason why, for the sake of sim-
plicity we say that ¢, () is supported by the interval [s +
M/(p — q), s + L/(p — ¢)]. However, the support is
strictly included in this interval. Note, finally, that in the
integer case (¢ = 1) our result reduces to the classical
one [8].
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