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ABSTRACT ization [10,[11] and low-rank regularizeis [12]. For a com-

Estimating the displacements between two images is often a@l€te review of the state-of-the-art seel[13) [14,[15,[16, 17]
dressed using a small displacement assumption, which lea@§d. more recently, [1, 18]. _ _

to what is known as the optical flow equation. We study the [N this paper, we are interested in the quality of approx-
quality of the underlying approximation for the recently de imation underlying optical flow algorithms. Specificallyew
veloped Local All-Pass (LAP) optical flow algorithm, which evaluate this quality for a new algorlt.hm that quels displa

is based on another approach—displacements result from fi0€nts as local all-pass (LAP) filtering operationl[19]. The
tering. While the simplest version of LAP computes onlycontribution of this paper is to analyze how the LAP algo-
first-order differences, we show that the order of LAP apJithm makes it possible to achieve a higher order of approxi-
proximation is quadratic, unlike standard optical flow equaMation than the algorithms based on the optical flow equation
tion based algorithms for which this approximation is onlyWithout requiring to compute higher order derivatives.

linear. More generally, the order of approximation of the ~ Note that this algorithm is not related spatio-temporal
LAP algorithm is twice larger than the differentiation orde filtering algorithms[[20, 21] which rely on the time variatio
involved. The key step in the derivation is the use of Pad®f the spatio-temporal Fourier phase afexjuence of images

approximants. only spatial filters are involved in the LAP algorithm, andit
. . . between two images only that the displacement field is to be
Index Terms— Optical flow, all-pass filtering, approxi- octimated
mation, Padé approximant. '
1. INTRODUCTION 2. APPROXIMATION ORDER

The 2D optical flow problem consists in estimating spacelsual optical flow algorithms are based on an approximation
varying displacement vectorsz, y) = (u(x, ), uy (z,y))" of th(_e dls_plager_nent by thg vector fiel¢r). Using such an ap-
that relate two known imagels (r) and Iy (r); i.e., under the ~proximation is important in order to separatg) from f(r)

ideal brightness consistency hypothesis [1] and so, to derive efficient algorithms. The standard apfroac
consists in deriving an optical flow equatian [6] which usu-
Ir(r) = Li(r —u(r)) ally amounts to approximating (r — u(r)) using a first order

Taylor expansion; i.e. for small values ofr) and assuming

wherer = (z, y)" are spatial coordinates. This is a challeng-y, ¢ ¢ image is at least twice boundedly differentiable:
ing problem that finds applications in a wide range of fields

like computer vision, medical imaging![2, 3], biology [4,,5] Li(r—u() = L(r) — u@) VI (1) + O(Hu(r)||2)
and image compression. The dominant algorithms use ideas I o T ]
that were initially proposed in the 1980s: first, linearisin ~ I(r) & L (r) = u(r) VI (r)

the effect of small displacements to obtain the “optical flow . _
equation”. Then, using this equation as a data term in aHere and throughout this paper, the notatjgn) = O(g(x))

regularization functional to be minimized (Horn-Schunpk a means that there exists a constant (independerjtaich that
proach [6]), or as a set of constraints to be fitted blockwise
using few parameters (Lucas-Kanade’s approach [7]).

The type of objective function that has to be minimized
in the Horn-Schunck approach has been the source of co
stant developments: robust penalty terfris [8,19],regular-

/()] < const x [g()].

Hence, a first order approximation results in an error that is
rdhadratic inu(r). Although it is possible to use higher or-
der Taylor approximation$s [24], the attempts in this dii@tt
This work was supported by Huawei. have not been conclusive so far.
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Fig. 1. Synthetic experiment warping imade to imagels using a slowly varying displacement field of maximal ampulgu
15 pixels. The shown LAP result[19] achieves a median accucdi€y010 pixels (mean:0.102 pixels) in 6 seconds. For
comparison, the improved implementation of Horn-Schurg&rithm [18] achieves a median accuracydd04 pixels (mean:
0.868 pixels) in 47 seconds; LDOF[[22] achieves a median accurac®.@f1 pixels (mean:1.310 pixels) in 30 seconds;
and MPOF [[2B] achieves a median accuracy)@?23 pixels (mean:0.964 pixels) in 279 seconds. To facilitate the visual
comparisons, we have used a color code to indicate direc(top-right color wheel) and amplitudes, redundantly with
arrows.

Using Fourier variablesf((w) denoting the Fourier wherep(r) is an arbitrary real filter (with a Fourier transform).

transform off, (1)), I (r — u(r)) can be expressed as However, instead of looking for the ideal all-pass filtere th
1 R P idea developed in the LAP is to approximate the filtér)
Ii(r—u(r)) = w3 /Il(w)e_]“(r) Yl “dw (1) onto a basis of few filters. Then slowly varying flowr)

o . can be estimated by approximating the all-pass filter inlloca
and the Taylor approximation can be seen to derive from th@indows. The working principle of the LAP algorithm is that
first order Taylor development of the exponential the all-pass filtering relation between the two images can be

e w _ g _ ju) @ + O(lu(r) w]?) expressed linearly as a function(f):

A recent approach to optical flow estimation devel- I(r) = h(r) x I1(r) <  p(—r1)* I(r) = p(r) * I (r).
oped by us([[19], the local all-pass algorithm, uses a ra-
tional approximation (not a polynomial approximation) of Then, a simple mean square minimization (fast, non-itezti
the exponential—a Padé approximation. This new algorithnprovides the parameters represeniifig, from which, a non-
achieves a high accuracy and spatial consistency whichsnakgnear accurate formula provides an estimate of the figw.
it outperform the state-of-the-art optical flow algorithims Now, the question we want to answer is: if we are able to
synthetic experiments. In real-life experiments, the &lgm  choose the best all-pass filte(r) in this constrained frame-

is still very competitive, although not the best—at least, 0 \ork, what is the order of the approximation Bf(r — u(r))
some experiments. In addition this algorithm is quite fast ( h(r) = I1(r)?

few seconds for standabkd 2 x 512 images).

3. LOCAL ALL-PASS ALGORITHM 4. PADE APPROXIMATION OF THE COMPLEX
EXPONENTIAL
The LAP algorithm departs from the observation that, when
u(r) is constant across the imagh(r — u) is exactly the  Tq find the approximation order of the LAP algorithm, it is
result of the convolution of an all-pass filtei(r — u), and  yseful to consider Padé approximants of the complex expo-
I;(r). Hence, the idea is to approximate this ideal filter usinthential function with equal numerator and denominator de-
an all-pass filteri(r). It turns out that all-pass filters can greesl[25]. These approximants can be obtained from the con-
always be expressed in the Fourier domain as the ratio  tinyed fraction ok [26, p. 70], but we will follow a different
H(w) _ plw) @ approach. . -
p(—w) Let us define the sequence of complex functiang;),




defined through the recursion

eo(x) =% =1,

en(z) = j/ en1(6)(&@8) —1)d¢, forn > 1. 3)
0

Proposition 1 The functionse,(z) satisfy the following

properties

—en(—1)e’7;

x)* = en(x);

iii. Polynomial order:|e,, (z)| < 27" |z|>" 1.

i. Sign changez,(x) =

ii. Complex conjugations,,(—

iv. Taylor: e, (z) ~ j(—1)" (5;1

Property iii also implies that,, (z) is O (z2" ).

3T asx — 0

Proof — Propertiesi andii: it is easy to show (using a
change of variables — —¢ in the integral) that,, (—z)e/®
ande,(—z)* satisfy the same recursion equationsg$z).
Hence, sinceo(—z)e/® = —go(x) andeg(—2)* = go(x),
we infer by induction om thati andii are true for all integer
n > 0.

Propertyiii: Thanks to the symmetriy, we can restrict

the proof tor > 0. Using the recursion equatidd (3), we have

the following inequality

len(z)| < max len—1(

gt [l

:c2 Srfé
< G max |eno1 ()
Sinceeg(x)| < z, we infer that|e, (z)] < 27"2?"*! by
induction onn.

Propertyiv: by Taylor, we have’® — 1 ~ jz asxz — 0.
The recursion is verified by substitution a@f,_;(z) ~
an_122"~tinto (3) and using the identity

x 2n+1
2n+1 _ _ 2m—1(p ¢y Q¢ = _tn-1? .
anx /0 an—1&€ (x—¢&)d¢ 2n@n 1)

Lemma 1 There exists a sequende, (x), of real polynomi-
als of degree: such that

en(z) = Py(—jz)e’® — P, (jx). (4)

Proof — We will prove by induction om thate,,(x) can be
expressed as, (x)e’® + b, (z), wherea,,(r) andb,(x) are
polynomials of degree. This property is satisfied for = 0

with ag(z) = 1 andby(z) = —1. So, let us assume that it is

satisfied for some integer > 0. We will prove that it will be
satisfied fom + 1 as well.
By using [3) we find that

st () = /Ia ()@= 1) de

/ E,(6)e’@9 de  (by parts)
= —Fy(z)e’

whereE,, () is the primitive ofe,, () that vanishes at, and
whereF,, () is the primitive of £, (z)e ~/* that vanishes dt.

So, if we assume that, (z) = a,(z)e’* + b, (z) where
ar(z) andb, (x) are polynomials of degree, then its prim-
itive is of the formE,,(z) = a,(2)e’® + B,41(x), where
an(z) is a polynomial of degrees and 3,,11(x) a poly-
nomial of degreex + 1. Then, F,,(x) is the primitive of
an(z) + Bni1(z)e™7® that vanishes ab. This function is
of the form a,  1(z) + b,y1(x)e™7* wherea,1(z) and
bn+1(z) are polynomials of degree + 1. This shows that
en1 is of the forma,, ;1 (z)e’® + by, 1 ().

Then, thanks to the symmetries stated in Propodiiion 1, we
obtainb,, (z) = —a,(—x) (from propertyi) and thata,, () is
areal polynomial of the variablge (from propertyii); hence,
we can choose to define, (—jz) = a,(x). |

Note: the polynomial sequenck,(x) can be shown to sat-
isfy the recursion ODE:-P)) + P/ = P,_. Itis the only
polynomial solution to this equation that satisfies theiahit

condition P,(0) = 2P/ (0) (for n > 1). For instance, we
have
Pi(z)=2+u=,
(E2
Py(z) =6+3z+ >
3
Py(z) =20+ 10z + 227 + =, etc.

6

As can be observed, the coefficients of these polynomials are
strictly positive, a property that can be proven by induttio

Proposition 2 The polynomialsP, (z) defined in Lemmil 1
do not have pure imaginary roots; or, equivalently, if we de-
finev, = inf,cr | P, (jx)|, then

v, > 0, for all positive integefn.
Proof — Let us show that, if for some, there exists a real
xo such thatP, (jxzo) = 0 then we reach a contradiction. We
can assume that, # 0 because the coefficients &%, (z) are
strictly positive (cf. earlier remark).

First, sinceP, (z) is a real polynomial and, # 0, both
jxo and—jxq are roots ofP, (x), which means thaP, (x)
can be factorized g2? +23) P! _,(x), whereP!_, is a poly-
nomial of degree: — 2.

Then, from Propositioh]1 (Property applied tos,, (z)
of @), we know thatP, (—jz)e’* — P,(jz) = O(x®"T1)
which implies thatP! _,(—jz)e’ — P! ,(jz) = O(z*"T1).
This is actually impossible, because expressions of tha for

e(x) = P(z)e’” + Q(x) (®)

whereP(z) andQ(x) are arbitrary (complex or real) polyno-
mials of degreen € N cannot beO(2?"*+5). To see this, let
us perform the following differential operator on the fupat
e(x) which we assume to b@(z?"+5): ¢’ (x) — je'(z) =
el? {e7I%e/( } Expressing: () according to[(b) we find



that comprised of up to the first order derivatives),2ofsix basis

jo fa—ge (o (pr . ST ANy filters, comprised of up to the second order derivatives).

N {e c (I)} (P7(@)+jP (@) e +Q" () ~jQ'(x). Now, we need to introduce a Fourier-based notion of reg-
O(x2m+3) polynomials of degreer — 1 ularity: a functionf(r) overR? is said to bem timesL!-

The rhs is of the form{{5) withn changed inton — 1 and is  Fourier differentiable iff both its Fourier transforjfifw) and
now O (z2(m~1)+5), so that we can repeat the same differen-|w/||" f(w) are absolutely integrable. This notion implies—

tial operator until we obtain polynomialB(z) andQ(x) of  butis not equivalent—that the partial derivati ;af(,ﬁ),i for
degreeD; i.e., constants. Hence, we reach a point where we < i < k < m exist and are continuous. Then we have the

find that there exist constantsandg such thape’® + ¢ =  following theorem.

O(x5) which is obviously impossible, since the best order. h id | , d the local all il
we can get for an expression of the fopi® + ¢ is O (z)— Theorem 2 Consider a location, and the local all-pass fil-

ter h,, (r) defined according t@) with

rgached Whep = —q. Hence, an expression of the forim (5)

\t/)vggp();)%rl?TlalsP(x) andQ@(z) of degreen = n—2 cannot Pro (W) = Pn(_ju(rO)Tw)eféa'szHZ. @)
This contradiction shows that our hypothesis on the exisThen, if Ii(r) is (2n + 1)-times L'-Fourier differentiable

tence of pure imaginary roots &, (x) was wrong. m  (slightly stronger tharC>"+!(R?)), we have

Theorem 1 A Pack approximation of orde2n of the com- Li(r —u(ro)) — hey (r) # L (r) = O([lu(ro) IP") 5

plex exponential function is given by the rational fraction

_ _ i.e., this approximation is of orden.
P,(jz)/P,(—jx) and we have that

2041 Proof — We use the inverse Fourier transform form{la (1) to
get I1(r —u(rg)) — hyo(rv) * I1(r) =

/ Li(w) (e 0@ _h, (@)™ @ daw.

ejm_ Pn(_]I) < |I )
Pn(—jz) 2n,

This shows that this rational approximationedf is O (z*"*+1). 42
Proof — We use[(%) to get By Theoreni L, we know that
o Palir) _ _en(@) =900 @ _ . (w)] < const x [u(rg) w|>*
Pu(—jz)  Pu(—jz) < comst x [|u(ro)[|*" || ew]|*"F!
Then, the theorem results from the inequalities stated iRyhere the constant is independentof Hence we can easily
Proposition§1l (Properiji) and2. B bound | (r — u(rg)) — hry (r) * [1 (1)

Note: It is important to notice that, here, the polynomial
involved in the rational fraction is only of degree despite
the fact that the approximation order is twice larger. This i < const’ x [[u(rg)

in contrast with polynomial approximations like Tayloris,  \here the last inequality holds because btsFourier differ-
which case the order of the approximation is the degree of thg,iapility assumption o, is equivalent to finiteness of the

< comst x [[u(ro) " [ || (w)] da

H2n+1

approximating polynomial. above integral. -
5. LAP APPROXIMATION ORDER 6. DISCUSSION
We are interested in the order of the approximatiofi¢f — !N our current practice [19], LAP is used with = 1 (only

u(r)) by h(r) * I; (r) whenh(r) is an all-pass filter of the first or_der derivatives involved, _thr(_ee bgsis filters)_noh_2_
form (2). More specifically, like in the LAP algorithm, we (only first and second order derivatives involved, six bfikis
assume that the filtgs(r) involved in [2) is in the span of a ters_). Theorerhl2 shows that updera regulgrity.assumption on
basis of derivatives (up to orde) of a Gaussian function the image, the LAP algorithm is of approximation ordesr
of order4. This is remarkable because standard optical flow
n_ ! ! 2,2 ; : . o
B 0 4y 6 algorithms are based on a simple first-order approximation
p(r) = Z Z Ul Bk pyl—F eXp(_ 202 ) ) ofthe effect of a displacement—the “optical flow equation”.
) N o ~ What we have shown in this paper is that, without increas-
Whe_relo—lls a free positive parameter. The cardinality of t_hlsing the differentiation depth, i.e., computing only firstler
basis is3(n + 1)(n + 2), and it is clear that the all-pass fil- gerivatives, and assuming sufficient regularity of the imag
ter (2) specified by o we can approximate the effect of a displacement more ac-
P(w) = Py(—juw)e 27 Il curately: the error is a cubic power of the amplitude of the
can be expressed on this basis. Typically, in the LAP algodisplacement, compared to a quadratic power for the optical
rithm, the value chosen fot is either1 (three basis filters, flow equation.

=0 k=0
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