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Complete Parameterization of Piecewise-Polynomial
Interpolation Kernels

Thierry Blu, Member, IEEEPhilippe ThévengaMember, IEEEand Michael Unseiellow, IEEE

Abstract—Every now and then, a new design of an interpolation it altogether were we able to achieve significant gains in perfor-
kernel shows up in the literature. While interesting results have mance [6]. The corresponding generalized interpolation model
emerged, the traditional design methodology proves laborious and is
is riddled with very large systems of linear equations that must be
solved analytically. In this paper, we propose to ease this burden N .
by providing an explicit formula that will generate every possible (z) = Z crp(x/h —k) @)
piecewise-polynomial kernel given its degree, its support, its regu-

larity, and its order of approximation. This formula contains a set where the functionp is not necessarily interpolating anymore.

of coefficients that can be chosen freely and do not interfere with Th fficient det ined f th .
the four main design parameters; it is thus easy to tune the design e coefficients:, are determined from the samplesusing a

to achieve any additional constraints that the designer may care digital filtering technique [7], [8], which ensures that fits the

kez

for. sample values exactly;, = s(hk) = fr(hk).

Index Terms—Compactly supported kernels, order of approx- | he traditional design of functions;,. imposes the interpo-
imation, piecewise polynomial approximation, sampling, spline lation constraint from the start on, and thereafter builds on it.
functions, uniform samples. Here instead, we propose to let the designer proceed by first

imposing the four other characteristics: degfégsupportiv,
regularity R, and ordet.. The main contribution of this paper is

to be able to express in a finite-dimension vector spacedhe
I NTERPOLATION is a standard operation in image prop|eteclass of piecewise polynomials that satisfy these four char-
cessing. It is usually described by the following equation: acteristics. We also identify the subclass of symmetric piecewise
polynomials. The designer may then freely select among them,
fu(z) = Z skPint(z/h — k) ( or may perhaps throw in additional constraints for good mea-

kez sure, like the interpolation constraint if he so chooses.

where f,, is a continuous function reconstructed from discrete Before proceeding further, let us define the relevant design

sampless, = s(hk); h is the sampling step, angl,, is the in- Parameters. _ , , , ,
terpolation function. If quality is a key issue—better than com- 1) Degree: The maximal degree of a piecewise-polynomial

monplace linear interpolation—then the selection of an apprytnction is, in some sense, an index of the complexity of what

priate ;.. becomes very important. For practical reasons, tHf&" be achieved with the function. In particular, a raise in the

function is often chosen to be piecewise-polynomial of mo§l€9ree N results in more parameters—in this case, coeffi-
erate degree and support, with uniform knots. cients—to play with. To formulate our results, we shall extend

Over the years, a large body of work has been devoted to ﬁﬁg range of possibl& to negative values in the following way:

design of interpolators that tend to be sinc-like while offeringfe Dirac distributiory is considered a piecewise polynomial

i e : - . degree—1, while its nth derivativeé (") is a piecewise
more practical benefits; in particular, a finite support. Beside theOI nomial of degree-(n + 1). This will be required by our
requirement thap;,; be interpolating (i.e.pint (k) = 6x), the poly 9 ' q y

. TN extension of piecewise polynomials, which is coherent with the
a;pects tha_t have bee.n e_mpha5|zeq a.re. 1) its degrég the property that, iff is piecewise polynomial of degre¥, then
width W of its support; 3) its regularity?; and, to some extent, T . .

4) its order of approximatioik. This search for adequate inter—(d/dx)f(x> IS plecewise polynomial Of. degreé/ — .1)'
' 2) Support: Without loss of generality, we consider that the

polators is still active today; recent contributions include those . ) o i L
of Schaum [1], Appledom [2], German [3], Dodgson [4], OF%upport ofy is contained WIthIr‘{O,W]. Outside t_h_ls interval,

o . : we have thapp = 0. The value ofi¥/ is the most critical param-
Meijering [5]. Unfortunately, it appears that the improvement

S . . . i
of each new proposal have been less and less substantial.(ﬂ%[ to Qeterml_ne the comquatlonaI_co_st O.f interpolatiorp In
dimensions, this cost grows lik&?. Distributions may have a

cently, we showed that one reason for this saturation of design

is that the interpolation constraint is too strong; only by reIaxin&S‘:ﬁglrjtti%?]ngﬁgtir;tzir(i)\?ag:/eeg”g'n’ Wil = 0, e.g., the Dirac

3) Regularity: In general, a functiorf is said to be of regu-
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signer a criterion to help him reject solutions, by want of bettémpose the symmetry property. Finally, we help the designer to
design criteria. In the context of image processing, less-tharavigate the design parameters by providing him with a map
maximal regularity is often sufficient, because only the imaghat gives the explicit constraints that W, R, andL must sat-
and its gradient need be continuously defined. Reclaiming dsfy for ¢ to exist at all, and that counts how many degrees of
grees of freedom by reducing the requirement on the regularitgedom result from any given choice of design parameters.
of ¢ from R .« t0 R < R, can be put to good use toward a The organization of this paper is as follows. In Section I,
better design. we introduce the reader to the notations and concepts that will
To formulate our results, we shall extend to negative values used throughout the paper. In Section lll, we identify the
the range to whictk belongs: a piecewise-polynomial functionfour most important characteristics of an interpolation kernel
u is said to be of regularity- 1 if it is bounded; a Dirac distribu- and relate them to properties in the Fourier domain. We develop
tion 6 is said to be of regularity-2, while itsnth derivatives(™  the other theoretical aspects of this paper in Section IV, which
is of regularity— (n + 2). As for the degree (see above), this exthe reader may skip at first reading, except for the statement of
tension is motivated by the properties of piecewise-polynomialir main result in Section IV-C. Then, we present in Section V
functions. some examples of design where we show how to rederive some
4) Order: One aspect often overlooked in the traditional deknown kernels, and present some new ones as well.
sign of a functiony is its order of approximatioih, which is an
essential index of its intrinsic quality [9], [10]. It is defined by Il. DEFINITIONS
the rate of decrease of the error between the original function . .
s and the reconstructed functigiy when the sampling step . A shorthand not_at|on for th? . relation
vanishes limsup,_,o |f(z)/2™] = 0is f(z) = o(z™). Similarly, the
relation limsup,._,, | f(z)/2™|<oo indicates that the value
at the origin is nonnecessarily vanishing; we summarize this
by f(z) = O(a™).
When there is no ambiguity, we will also writef, short for
7 f@)da.

The Fourier transform of (z) is

lIs — fullLe o< h™ as h — 0.

From approximation theory, we know that the ordecan be
determined fromp only, no matter what the sampled functio
s may be [11]—provided it is regular enough. The order of ap-
proximation is particularly relevant to image processing because R oo ]

the frequency content of most images is essentially low-pass, F{fHw) = flw) = / flx)e " dz.
which is equivalent to say that the sampling steig small rel- -

atively to the image content. Thus, the continuous imAgee-  The “Schwartz class” of functionS [12] is the set of infinitely

constructed from the samples will be closer to the originat  gifferentiable functions that decrease faster than™, Vn € N,
when the order of approximatiahassociated t@ is high than  gnqg their derivatives as well: e_@:m? cs.

when itis low. The importance of the order has been confirmedyy pistributions: Instead of considering only plain func-

by all our experiments [6]. tions, we also consider generalized functions known as

It should be noted that these four characteristics ar@all tempered distributions [12]. This extension is essential in the
clusive in particular, if f is piecewise-polynomial of degré€, \york we are presenting here. Unlike a function which is defined
then we may more generally consider tias piecewise-poly- nointwise, a tempered distribution is defined through its scalar
nomial of degreeV’ > N/ if f is supported if0, W], thenitis product(u, 1) with every functiony of S. There are two main
more generally supported {f, W’ with W’ > W if fisC”,  aqgvantages of tempered distributions that have special rele-
then itisC* forall R’ < R; and if its order of approximation vance to this paper: 1) they are infinitely differentiable since, by
is L, then we may also say that itis for whateverl.’ < L. definition, ((d™ /dz™)u, ¢) = (=1)"(u, (A" /dz"™)), V¢ € S;

In this paper, we state and prove several theorems leadingfy 2) their Fourier transform is a distribution as well that
explicit time-domain formulee that express every possible pieGe-defined by(a, 1) = <U71/A1>7V7/) € S. The power function
wise-polynomial kernep of a given degre@V, supportV’, reg-  znsjgn (), the Dirac mass, or its nth-derivatives(™), and the
ularity R, and orderL. The first important result (Theorem 1)ational functionz—" are examples of tempered distributions
decomposes into two terms: a B-spling”~! that carries the that are not square integrable. When a distribution turns out to
totality of the desired order of approximation, and a distribyse 3 function, we will emphasize this fact by saying that it is
tion u that controls by how much one mustgradethe other 3 true function.
three relevant properties of the B-spline (minimal degree, min-pefinition 1: A polynomial simple element (PSE) of degree
imal support, maximal regularity) so as to meet the design cfj-c 7, ¢"(z), is the distribution
teria. The nextimportant result (Theorem 2) shows how to build

the complete family of distributions that have a specific degree, z"sign(z) for n integer > 0
o . : n _ 2(n) ger 2

support, and regularity, irrespective of the order of approxima- " (z) s () oL

tion. The distributionu is a member of this family. The com- (z) for n integer <O0.

bm?d results x u IS expressed n Theorem 3 which acts as [ Fourier transform in the sense of distributions is
recipe for constructing interpolation kernels; those are fully de-

termined by a set of free coefficien{sy. ;, b i, cx,1 }. We also n B 1 3
include Corollary 3, for those practitioners who would like to w) = (jw)n+t’ ®)
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Fig. 2. Some causal B-splines. Solid line: piecewise constant; dashed line: piecewise linear; dotted line: piecewise quadratic; mixed |secpiEcew

This function will play an important role in this paper. whose equivalent Fourier relation (¢ — e*j“)”f(w). Note

2) PSE Properties:From Definition 1, a polynomial simple that the degree of a polynomial is reduced by one under the
element is a power function for< n and a Dirac mass (or oneapplication of the finite-difference operator.
of its derivatives) fom < —1. We thus have the power property Definition 3: The causal B-spline of degree > 0 is ob-
tained by thgn + 1)-times application of the finite-difference

I (a) = Cr (z) Vm,nintegers > 0. (4) operatorA on the PSE™
N_ote also that the derivative of a PSE is the PSE of lower degree B (x) = A" ()
given by L g
d! L pr(w) = (‘—) : (6)
_gn _ gn—l (5) Jw
dax!

Fig. 1 shows the “constant,” linear, quadratic, and cubic PSE. 3) B-Spline PropertiesB-splines have numerous in-
Definition 2: The causal finite-difference operatdr asso- teresting properties such as positivity, symmetry, compact
ciates the functiom\ f(x) = f(z) — f(z — 1) to the function support, and maximal order of approximation [13], [14]. For

f(z). Thenth-order finite difference of (x) is

A (@)=Y (~0*(}) fla—k)

k=0

example, differentiating a B-spline or taking finite differences
is equivalent in the following senséd’/dz!)p" = Algn—i.
Another fundamental property 8™ * g7 = gm*t7*L We
show in Fig. 2 some B-splines of moderate degree.
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Definition 4: A functionis piecewise-polynomial (PP) of de- TABLE |
greeN and regularityR if and only if it is R-times continuously VALUE OF SOME COEFFICIENTS Ay 1
differentiable, and if its restriction to each inted/al, n+1[,,cz

is a polynomial of degree (at mosY). By extension, we say that k\l 0o 1 2 3 4 )
a distributionis piecewise-polynomial of degre¥ and regu-
larity R if and only if it is therth derivative of a piecewise-poly- 1 1 % % i % %
nomialfunctionof degreeN + r and regularityR + r, for some 9 1 {1 4L 5 1w 7
integer differentiation depth. For example, the PSE of Defini- 12 6 180 10
tion 1 is a PP distribution of degreeand regularityn — 1), but 3 1 3 1 1 2 469
it is a true function only for positive degrees. Another example 248 20
is the causa_l _B-splin_e of degrea_e_z 0 which is of regularity 4 1 2 16—7 % % %
(n— 1_) ; z_;\dd|t|0nally, it has the finite _suppo[|07_n + 1_]. 5 ] 5 25 35 1069 28
Definition 5: The order of approximation is defined as the 2 6 6 144 32
exponentL such that the difference between any sufficiently 6 1 3 2 ¢ 3013 781
regular functionf € L? and its orthogonal projectiofy, onto 4 240 48

Vi, = span, ¢z {¢((z/h) —n)} tends to 0 withhL; i.e., || f —
fullLe < const x h*. For this property to hold, itis necessary tqarity R, we need Condition (7) to enforce thempact support

assume not only that € L2, but also that itd.th derivative be- property. A hint is to express (8) in Fourier variables
longs toL2. This definition cannot be directly extended to dis-

tributions because these are not necessarily square-integrable. X 1 N-
However, the equivalence between the order of approximation P(w) = (160)4]”1 Z
and the Strang-Fix conditions [11] will allow us to do so: see ’ !

Sectio_n_ I_”'B for detai_ls. o which ensures that(w) be bounded neas = 0.

Definition 6: We will say that a PP distribution belongs to 1) Application: This is an example of how to use Lemma 1.
{N,W, R, L} if and only if it is of degreeN, supportV, reg- \ye |l exhibit a collection of PP functions of degregsupport
ularity R, and orderL. For instance, the B-spline of degre% and regularity—1... (n — 2) that will prove useful in the
n, 3" (z), belongs to{n,n + 1,n — 1,n + 1}.

R—1 )
(jw)' Pi(e™3*) (10)
=0

sequel.
First, we define the coefficients; ; from the Mac-Laurin
[ll. FOURIER CHARACTERIZATION OF PP KERNELS development oflog(1 — #))*
A. Degree, Support, and Regularity o
The following lemma shows that any PP distribution in (—log(l —t)* = Z/\thHl +o(t" 1), (11)
{N,W, R,0} can be expressed as a finite sum of shifted PSE’s 1=0
of degree<N and regularity>R. Conversely, every such RN
expression is a PP distribution that belongs{f6, W, R, 0}, =thAL (1)
under a simple condition which is best expressed in FourWhenk — 1, this development is well-known and yieldls, =

variables.
Lemma 1: p(z) is a PP distribution of degre€, supportV,
and regularityR if and only if there exis N — R) polynomials

1/(I + 1). For higher values ok, the A, ;'s can be computed
using the formula

Pi(z) = 317, praz® of degree at most/ satisfying . boog !
Nt | AR = (AP(®) = ( - 1) (mod ¢*+1)
> (W) Ae) = 0N ™ =
1=0 which proves in particular that they are strictly positive. The first

few values of these coefficients are shown in Table I.

h that
sue a Proposition 1: For1 < k < n, the function
N—-R-1 W
p(r) = pras™ (= k). (8) 1 . iy .
; kZ:O Vi () = Morm R @) = D M AR ()
TR 1=0

Moreover, t_he parameters ; are unique. . o (jw)* — (1 — e~ i) APk (1 — =iv)
There exists no nontrivial PP function for whidh— R —1 < =Y (w) =
0; thus, the existence condition is

(12)

Men— ka1 (jw)m

is compactly supported if9, »] and its integral is unity. More
precisely, we have that belongs to{n,n,n — k — 1,0}.
Proof: We observe that the Fourier transform (12hgif
s the form (10) withV = n,R = n — k — 1, Py(2) =
~(1/ Mn—rr1) (L= 2) AT (1= 2), Pi(2) = (1/An-kt1),
2We consider only uniform knots in this paper. andP,(z) = 0 for all values ofl different from 0 andk. If we

N>R+1. ()]

The proof of this lemma is given in Appendix A. As (8) only,
Lo : : take
ensures thap is piecewise polynomial of degre€ and regu-
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Fig. 3. Some functions;!. Top left: all functions of support 1. Top right: all functions of support 2. Bottom left: all functions of support 3. Bottom right: all
functions of support 4.

sett =1 -2z =1-e¢7% andifw €] — 7, [, then we have tween anLth-order of approximation and the following condi-

jw = —log(1 —t). Thus, tions [11]:
N—-R-1 ' 50 0
; (jw)' Pi(e™7*) { 252217?4- w) = O(w") Vnez*. (13)

= Po(1 — 1)+ (= log(1 — 1)) Pi(1 ~ 1) j | y
ZHRARR () 4 (= log(1 — £))* Another equivalent form of (13) is ([15], Prpposmon 4.4; see
= k (14) at the bottom of the page) wheRF~! is the set of all
Ak, n—k41 polynomials of degre&l I — 1, and where a.e. meaa$most
="+ O(t"*?)  because of (11) everywhereln the rest of this paper, we will use Condition (14)
as the most useful formulation of the approximation order.
whichisO(w™*1) sinceO(w) = O(t). Finally, the polynomials
P, satisfy (7). This proves two things: first, since the degree
of the polynomialsP; is at mostrn, Lemma 1 tells us that the
functions~}* are compactly supported {0, n]; second, since A. Decomposition With Respect to the Order of Approximation

(" /(jw)"*) = 1 4 O(w), we have thaf 7t = 1. B The theorem that follows simplifies the design by dividing
Some of these functions are plotted in Fig. 3. We obseryge task in two independent parts: first, find a function that
that they are positive; indeed, we can prove more generally thgy satisfies the ordet. constraint, and second, find a dis-

IV. DECOMPOSITION OFPOLYNOMIAL KERNELS

Ve (@) > 0foralln > 1,1 < k < n, andz €]0,n|. tribution that satisfies a reduced version of the constraints for
. the three other parameters, with no regard to its own order of
B. Order of Approximation approximation. It turns out that the first function is a B-spline

Wheny(x) is compactly supported, the theory of approximawith degree(L — 1). The role of the remaining distribution is
tion tells us that the decrease rate of the approximation errotdsallow for a potential raise of degree, extension of support, or
necessarily integer and finite [11], [15], [16]. More specificallychange of regularity, without decreasing the order of approxi-
we will see (Theorem 1) that the support@imust be at least mation. Table Il shows the corresponding properties in the case
of lengthL, for || f — fx||1.> to decrease at least witH-. wherep is PP.

To check the approximation order bf, as given in Defini- Theorem 1:Let ¢(x) be any approximation kernel (not
tion 5, Strang and Fix established in 1973 the equivalence lmecessarily piecewise-polynomial). Thenjs of orderL and

VAe Pl 304 eR:Y .7 Al — k)p(z — k) = Cq ace.
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TABLE 1l and, ifL — R > 2, then
PROPERTIESTHAT APPLY TOp = BL=1 x u

N—-LW-L
2 — Lo
H ¢ pL! u u(l) = Z Z Pr,1¢ (‘7“ - k)

=0 k=0
Degree | N L—-1 N-L ~ ~~
Support | W L W —L V(@)

-1 W-—L
Regularity | R L—-2 R-L l
+ > Y prasl@—k)
Order || L L 0. with [u#0

I=R—L+1 k=0

supportW if and only if there exists a distribution (with Licy  Limy er¥@H)
J u # 0) supported in an interval of lengff¥ — L) such that where thep;, ;—hencey and thec;, ;—are unique. We observe
that the second double sum (Dirac sums) on the right-hand
o =p"1xu. (15) side is supported if0, W — L], which is also the support
of w. Hence,v is, in both cases, supported jo, W — L].
Additionally, ¢ is piecewise-polynomial of degre¥ and reg- BY construction,y is a PP function of regularity given by
ularity R if and only if u is of degreg N — L) and regularity max(—1,R — L) and of degregN — L). We immediately

(R—L). get (17) if we convolve this expression with"~! and take
There exists no nontrivial PP function for whighi — L < 0 into account tha™~! « 6@ = (d'/daz")s"~!1 = AlpE—1-l,
or N — I < —1: thus, the existence conditions are Finally, the coefficientsc; o are related tof ¢ through the
condition [ + 3, o  cro = [u # 0.
W>L and N>L—1. (16) Conversely, the function defined by (17) can obviously be

expressed ag = X~ x u, whereu belongs to{ N — L, W —

The factorization (15) was first presented in [17] in a fork: . — L0} and satisfieg u 3 0. Thus, by Theorem Iy is in
malism that is, we believe, unfamiliar to a signal processing alV, W, R, L}. =
dience® We rediscovered this result independently [10], [18]:
for the sake of completeness, we give a direct proof in A .
pendix B. The corollary that ensues is new and further decoﬁggulanty
poses the distribution into two parts: a true functiont, and an Thanks to the result of Section IV-A, we can proceed without
irreducible distributional part. It turns outin the present case thggard to the order of approximation since the only function
the last distribution is necessarily a weighted sum of derivativé#at is unspecified so far has none: itisc {n,w,r,0}, with
of the Dirac mass. Except for normalization, the correspondifig= N — L,w = W — L, andr = max(—1,R — L). The
set of weights:;, ; is free of constraints: It is the first in a seried@sk of the present section is then to characterize every possible
of three similar sets of coefficients to which the designer ma3jecewise polynomial of an arbitrary deg¥e support¥’, and
give arbitrary values, without fear of interference with W, R, regularity R. For this, we state Theorem 2, which yields the de-

3. Decomposition With Respect to Degree, Support, and

or L. sired decomposition, the proof of which is given in Appendix C.
Corollary 1: A true functiony belongs to{ N, W, R, L} if '_I'heorem 2:Lety _be in{N,W, R,0}. Then, there exists a
and only if it can be expressed as unique set of coefficients;, ; andby, ; such that
N—R—1N-l
L—R-2W-—L k—1 N—k
_ o Y(z) = agg (B xy ()
p(r) =B x ) @)+ Y. D AT T @ — k) l; — ( )
=0 k=0 N-R-1W-N+I-1

(17) + > D V@ —k) (18)
=0 k=0

where 1 is a PP function that belongs tN — L, W — wherey, y_ is defined by (12). Conversely, any functigrihat

L, max(-1, ,}:%__L L), 0}, and where the coefﬁmentsk,l. salisty  akes the expression (18) belongs{t&, max(W, N), R,0}.
[ # = 10F ci.o. Moreover; and thery, ; are unique : - - o

k=0 ©k,0- ' K, @ré unique. Consequently, i’ > N, it is equivalent to say thap is in

Proof: We already know by Theorem 1 thatitis equwalen{N W, R, 0} and that) can be expressed as (18).

to say thatp is in {N, W, R, L} and thatp = # %« u, where "~ 1,4 functions,? that appear in this theorem have been shown
wisin{N — L,W — L, R— L0} and [ u # 0. The character- {, pe in {n,n,n — k — 1,0} in Proposition 1, but we fur-
ization (8) of PP distributions shows that/if— 2 < 2,then  ther need their convolution with B-splines. A straightforward
Fourier computation using (6) and (12) shows that

N-L W-L
u(z) = pres' (@ — k) 1
l:R—ZL—‘,-l kz:() ﬂ’m % ’Y}:;l - - Am+1<n—k+m+1
\ — p Ak n—k+1

() n—k
3To be precise, [17] deals with the more general case of exponential splines - Z )\k71Ak+l+m+lg”+m+l (29)
which emerge from a generalization of the Strang-Fix conditions. =0
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Fig. 4. Some convolution§™ x ;. Top left: all functions of support 2. Top right: all functions of support 3. Bottom left: all functions of support 4. Bottom
right: all functions of support 5.

whichisin{n+m+1,n+m+1,n—k+m,m+ 1} asa gether, they describe every possible piecewise-polynomial in-
result of Theorem 1. Fig. 4 illustrates several examples of theteepolation kernel i{ N, W, R, L}. When the designer asks for
functions. Note that, becaus& andy; are both positive™ =  a degree that is strictly larger than the support (Ne.> W),

vr is positive as well. the design coefficient§as;, bi 1, cx, } are not completely free
. N anymore. We note however that the existence of a basis func-
C. Final Decomposition tion ¢ with such a constraint is often impossible because de-

Our main result is a theorem that sews together the piecdgble external constraints (e.g., symmetry, interpolation) may
of the puzzle that we have uncovered in the previous sectioR§.incompatible with such design parameters. To the best of our

Along with (19), it gives the explicit form for an interpolationknowledge, n@ thatwould satisfyvV > W has ever been found
kernel that satisfies the design constraints. useful in the literature. For this reason, from now on we concen-

Theorem 3: Let belong to{ N, W, R, L}. Then, there exists trate on the casé/ < W. .
a unique set of coefficients, ;, bx ; andey,; such that A useful refinement of Theorem 3 allows one to include sym-

metry in addition to th N, W, R, L} constraints.

N-max(R+1,L) N L~ bt N_I-k Corollary 3 Let ¢ belong to{ N, W, R, L} and satisfy the
o(z) = Z Z ar (B *M ) (@) symmetry propertyp(z) = o(W — z). Then, there exists a
=1 k=0

unique functionp, in {N, W, R, L} such that

N— R+1,L) W — — . .
max(B+1,L) W-N+i-1 « the parametersy, ;, by, andcy ; in (20) satisfy

+ Z bkvlﬂN_l(.T — k)
fpw ar; =0 ifk+I1=N—L (mod2)
+ ckJAlﬂL*l*l(w — k). (20) by =0 ifk> W-N+i+1
=0 k=0 ’ 2
. o . W —L+ ¢

Conversely, a functionp that takes the form of Expres- k=0 ifk> — (22)
sion (20) is such that it is a PP function that belongs to
{N,max(W,N),R,L}; i.e,, if W > N,¢ belongs to wheree; = 0|1 if 1 is odd | even;

{N,W, R, L} if and only if it can be expressed as (20). The . , can be expressed as
coefficientsay, 1, bi,;, andcy;, are essentially free, but for the

condition o(x) = po(x) + po(W — ). (23)
N—-max(R+1,L) N—L—1 N-max(R+1,L) W—-N+I—1
Z g, + Z Z br The attractiveness of Theorem 3 (and of Corollary 3) is that
=1 k=0 1=0 k=0 the designer may address at an early stage the aspects of the de-
WL sign that are the most important in the context of image pro-
+ Z cro 70 (21) cessing—particularly, support and order—while he can defer
k=0 to later stages the fulfilling of less important constraints. Es-
which ensures thaf ¢ # 0. pecially relevant is the fact that the coefficiefts, ;, bx. 1, ¢ i}

The two sets of coefficientg, ; andb, ; complement the set are essentially free (except whéh> W), so that they do not
of coefficientscy ; that we encountered in Section IV-A. Alto-interfere with the characteristidsV, W, R, L}.
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TABLE Il N —1), regardless of the other parameters. A direct application
PARTITION OF THE DEGREES OFFREEDOM of Theorem 3 yields
L<R+1 W-N—1

o)=Y brofN(z—k)

(N—R—1){N+R—2L+32)

e,

card{ag} | -

card{bes} | (N - ) (2W — (N + R) ~ 1) which shows that the most regular PP function, given its degree
N, is a spline of same degree. Moreowvglis automatically of
orderL = N + 1 even though we were less ambitious and
+2<L required onlyL = 0. Note however that, whe®v > 2, it is

(N —L+1)(N 1) not possible to impose the interpolation constraint and, at the

same time, to keepV finite [14].

P

o)

card{cg}

Y

|

card{as,}

card{by;} | 3 (N~ L+1)(2W — (L + N))

2

card{cgy} | (L—R-1)(W —-L+1) B. KeyS

T o We shall now rederive the popular “optimal” Keys interpola-
tion kernel [19]. The goal is here to find a kernel that has degree
N = 3, supporti = 4, maximum regularity, and that is inter-
On the one hand, Lemma 1 and Theorem 1 tellusMat  olating. Since the maximum degrée= N — 1 yields splines

R+ 1,W > L,andN > L — 1. Moreover, we assume thalof degreeN = 3 whose interpolator is not of finite length, we
we are in the cas#” > N, for which the parameters..i, br..,  can have at mosk = N — 2 = 1 instead. The interpolation

andckJ,_ are free except for (21). In a more compact form, oW, dition shows that we can expdet— W + 1 = 3 — L free
constraints are parameters. Thus, ff = 3, only one solution is to be expected,
W N L with every parameter constrained. . . .
{ N> E;;((L B 1) R+1) (24) From Table Ill and Theorem 3, we find that this function can
- ' ' be expressed as(z) = bo,0%(z) + co,08%(z) + c1,08*(z —
On the other hand, a direct count based on (20) shows tRat where the coefficients are linked through the interpolation
there are exactly’ = (N — R)(W — L)+ L— R—1 parameters constraintp(2 +n) = 6,

D. Navigating the Map of Constraints

(see Table Ill). Taking (21) into account, this means that there (0=b 3(1 201 20
are (P — 1) degrees of freedom. It turns out that the minimal 008 (D tcoof (1) +erof (0)

requirementP — 1 > 0 is automatically satisfied with (24): if =1/6 =1/2 =0
N > R + 2, we have 1= bo,0 #(2) +co,0 8°(2) +c1,0 7(1)
—— —— ——

=2/3 =1/2 =1/2
P—IZM(W—L)—FL—R—Q 0:b0,0/33(3)+00,0ﬂ2<3)+Cl,0ﬂ2(2>

21 =1/6 =0 =1/2

>W - (R+2)>W-N>0 ) - -

~—— which yieldsby o = 3 andcg o = —1. Thus,

<N
3 2 2
and if N = R + 1, the solutions turn out to be splines (see olw) = 36%(z) = (@) + F(w — 1))-
Example V.A), for which the conditio®” — 1 > 0 is satisfied.  This short, simple, yet complete derivation has to be con-
When designing a symmetric PP function, the number of dgasted with the original solution in [19], where essentially a
grees of freedom are given by those of the functigrdefined Jinear system of eight equations in eight unknowns had to be

in Corollary 3'. solved and where an explicit foray into the Taylor expansion of
1) Interpolation: If the PP function is interpolating and CON-,, was necessary.

tinuous, then thé parameters are related through #e(W —
1, respectively) equationg((W/2) + n) = 6, whenW is . German
odd (even, respectively). Note that, wher> 1, the interpola-

tion condition implies that (21) is automatically satisfied: if we We t.ackle now the interpplation kerne! K4 that was intro-
choosed(x) = 1 in (14), we gelCs = 1 by settings = W/2, duced in [3], where the solution of an explicit system of no less

which shows, by integrating (14) ovfr, 1], that [ ¢ = 1. This than twenty linear equations was required, along with intricate
means that, in the case of interpolatio/n, we only have to enfofE%ylor considerations. The design parameters of this symmetric
the additional conditio® — W > 0 (P — W + 1 > 0, respec- interpolating kernel ar¢V = 4,W =6, R =1, L = 5}.

tively) whenW is odd (even, respectively). From Table Ill, we identify the six free parameters as
{c0,0,¢1.0,¢01,¢1,1,C0,2,c12} that characterize any function
V. EXAMPLES of {N = 4, W = 6,R = 1,L. = 5}; by symmetry con-

, siderations (Corollary 3’), those immediately reduce to only
A. Splines three because we can write the general solutiopl@as =
As afirst example, we look for the PP functiopshat belong ¢ o(8%(z) + B4 (z — 1)) + co 1 (AB3 (z) — AB3(x — 1)) + co 2
to {N,W,N — 1,0}; i.e., that maximize the regulariy? = (A%3%*(z) + A%B%(z — 1)). The interpolation constraint is
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Fig. 5. Symmetric, continuously differentiable, interpolating cubic kernel with support 3.

satisfied if and only if (see the equation at the bottom of thEhe parametes may be adjusted to the needs of the designer:
page) which is easily solved and yields by optimizing the approximation properties @f, we get the
1, 4 3 3 O-MOMS of degree 3, for whiclh = (1/42); by asking that
p(r) = 5([3 (z) + 5%z = 1)) = Z(Aﬁ () ¢, be interpolating, we get = —(1/6) instead [10]. It is also

CABm—1) + i(A2ﬂ2(x) + A28 (5 — 1)), possible, like in [20], to consider the empirical SNR optimiza-

We were thus able to determine in just a few lines a kernel that

tion of a over a collection of signals.
proved particularly tiresome to derive in the original paper [3F- {W, W, W — 2,1} Kernels
Moreover, we end up with a global expression in terms of known o far, we have given examples of known kernels only; it is
functions—to be compared with the piecewise expression. now time to derive new ones, with the specific goal of illus-
trating the use of the functiori8™ «~; that first appeared in The-
D. MOMS orem 2. We propose the design characterized Wy W, W —
From the existence conditions (16), any PP functiothat 2 1} with W > 2, which produces what we call the WWW
has orderl. is such thatV’ > I; thus, the kernels that satisfysymmetric interpolating kernels. It is easy to verify from the
W = L minimize the supportfor a given order of approximatiodymmetry conditions (22) that this family of designs will result
[9]. Those are called MOMS (Maximal Order Minimal Support)n | (W — 1/2)| free coefficients 1, along with a unique free
and are all members of the family characterized{By, N + coefficientbo 1, and no coefficient; ;. On the other hand, the

1,-1,N + 1} (symmetric) interpolation condition removedV + 1/2)| de-
N grees of freedom, thus leaving none of them.
o(z) = Z co A BN (z) Let us give an example. We fi¥’ = 3 and require symmetry.
1=0 After the normalization/ ¢, = 1, we get the one-parameter

wherecg o # 0 as required by (21) (see [10]). This includes théamily of functions
B-spline of degreeV and the interpolating functions discussed
i [0l J potaing Pa(m) = a (8" +43) (@) + (8° < 13) (3 — )
Let us give an example. We fiX = 3 and require symmetry. + (1 —2a)8%(z).

After the normalization/ ¢, = 1, we get the one-parameterrye interpolation condition removes the remaining degree of
family of functions freedom by imposingg = —2. We show this interpolating
va(z) = B*(2) + aA?B (1). kernel in Fig. 5.

~ v ~
~~

(0 = co0(B1)+ B*0)) +co1 (AB*(1) — AB3(0)) +co.2 (AZB2(1) + A?5%(0))
N——— ~ -

=1/24 =1/6 =1/2
0= coo (B4(2) + B4 (1)) +eo1 (AB°(2) — AB(1)) +eo 2 (A?%(2) + A?%(1))
=1/2 —1/3 =0

1=coo(B'(3) + B(2) +co1 (AB°(3) — AB(2)) +co.2 (A*F%(3) + A%6(2))
—_———— ~

~ v ~ v

~~

L =11/12 =-1 =—1
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The WWW kernel has a high degree of regulariyy(the tells us that, on each intervit, k + 1[, o Bt (z) = Ag(x),
highest possible after splines); for examptg,is more regular where A, is a polynomial of degreéN — R — 1). It follows
than the kernel of same support presented in [4]. But since theto(F+D () = 3,V 01 Ay (z — k)B%(x — k), where the sum
order of approximation of a WWW kernel is so low, we expeds finite because>(z) = 0 whenz ¢ [0, W]. If, according to
that it will perform poorly in the context of image processingDefinition 3, we replac@®(z) by the expressiot () —<%(z —
where the order of approximatidnis the single mostimportant 1), then we can findW + 1) polynomialsB;, of degree at most
indicator of the quality of an interpolator. With = 1,aWWW (N — R — 1) such that

kernel should offer about the same level of performance as

w
nearest-neighbor interpolation, no matter which reguldftity- o B (g) = ZBk(x — k)%(x — k)

W — 2isimposed. Note that, for the same supprtthe mem- 0

bers of the MOMS family of interpolators will gaiiv — 1) W N—R-1

orders of approximation for a lesser computational cost, because = Z Z B,i’)(())gl(x — k).
of the reduction in the degree of the polynomials. In other k=0 1=0

words, we may wonder whether WWW is a waste of time.  The second equality is obtained by making a (finite) Taylor ex-
pansion ofB,(z); this expression is further simplified using the
V1. CONCLUSION power property (4). This shows that?+1)(z) is a finite sum
We have presented a methodology that will help the desigr@rPSE’SvCZ(m — k), of degree at mostV — R — 1). More

to roam the complete space of piecewise-polynomial interporpecifically, if we letp,; = BYY ~"~'7"(0) and take the dis-

tion kernels. We have stated and proved new theorems that retfiipitional Fourier transform of this expression, then we get (10)

in an explicit formula for constructing any piecewise-polynowhichis also equivalentto (8). Conversely, a function defined by

mial interpolation kernel with specified degree, support, reg(8) is clearly of degreéV and of regularityi. Thanks to Defini-

larity, and order constraints. The advantages of our parametéi@h 4, the extension from PP functions to PP distributions (i.e.,

zation are the following: R < -2)is straightforward. The coefficientg ; are unique be-
« the four main design parameters are freely specifiegc@use the polynomiald, () are unique—and so are tig's.
within existence conditions: However, a distribution defined by (8) is not necessarily com-

« the final expression is a linear combination of simples- Pactly supported. More precisely, (8) implies that, whelies
itive basis functions, based on B-spling,(x), and on outside[0, W], o(x) = sign(z)Il(z), wherell(x) is the fol-
new functionsy” (z). They are providegxplicitlyin full |0Wing polynomial:

functional form, and through their Fourier transforms as W N-R-1 (z — k)N
well—in contrast with the literature, where interpolation I(z) = Z Z PRUSTN — T
kernels are expressed in a piecewise polynomial form; k=0 1=0 (V=D

« the decomposition ignigueandcompleteimplying that N W N_R-1 o
the free remaining parameters are independent. As a re- =N * S peasV@—k)
sult, a design problem requires the solution of much fewer k=0 1=0

equations than before; o iy NEL .
. s;]mmetry is cared for by considering an adequate subset ~ H(w) = ﬁé(]")(w) < Z (jw)' Pi(e™ )> :
of the free parameters, resulting in a representation that is =0
nonredundant and complete for symmetric kernels. ~ As a resulty is compactly supported ifo, W] if and only if
We have applied this formula to rederive several exampl&§z)—or equivalently, its Fourier transform—vanishes. This
of known kernels and we have shown how to obtain new onégppens if and only if (7) is satisfied, becayge )5 (w) = 0
This parameterization is also well-suited for the specificatidh equivalent tof ™) (0) = 0 forn =0... N.
of design constraints in the frequency domain; this suggests® consequence of the characterization (8) is that it is neces-
using filter design techniques to optimize interpolation kernegary thatV > R + 1 in order for nontrivia{ N, W, R, 0} func-
for specific classes of signals. tions to exist. u
Kernel design is not the only application of our decomposi-
tion theorem; the flexibility of this nonredundant representation VIl. PROOF OFTHEOREM 1

is also potentially useful for a piecewise-polynomial description aAssyme thatp is of order L—we use the characterization

of measured data. An example is the retrieval of the probability4)—and that it is supported withiio, W]. Let us define the
density function that rules the randomness of observed datajiifiction (z) by

that case the positivity of the basis functions is a very desirable d d
roperty that can simplify the fitting problem considerably. x) = — oz —k)=— — o —
property plify gp y. Pla) =) (@ — k) > L=k (25
k>0 k<—1
APPENDIX

PROOF OFLEMMA 1

where the differentiation is taken in the sense of distributions.

The rightmost equality results from (14) for order 1, which is
We first consider PP functions; thug, > —1. Because, equivalenttoy, (d/dz)e(z — k) = 0. Thus, we have

isin {N,W,R,0}, o) isin {N — R — 1,W,—1,0}; in d

other words;(B+1) is a bounded function. Thus, Definition 4 3 P@) =¥(2) — ¥z —1). (26)
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Taking the Fourier transform of both sides yieldgéw) = This shows that it is not possible to haé — L < 0. More-
39(w)eh(w), which proves thap can be expressed as over, if ¢ is PP of degreeV and orderL, thenN — L < —2
implies thatu is made only of (multiple) derivatives of the Dirac
o =p" 1. (27)  distribution whose integral vanigh u = 0), which is impos-
sible. Hence, we must havé — L > —1. [ |

Then, we have the following properties:
a) ¥(x) is compactly supported withijd, W — 1]. VIIl. PROOF OFTHEOREM 2

According to (25), the support af(z) is contained in
both[0, +o00[ and] — oo, W — 1]. Hence, we can say that

support(¢)) C
b) ¢ (z) satisfies the Strang-Fix conditions of ordgr —

Assume thaty satisfies the hypotheses of Theorem 2. Then,
0,W —1]. according to Lemma 1, there ex{s¥V — R) polynomialsP;(z)
of degreeW satisfying (7) such thap can be expressed ac-

To prove this, we differentiate (14). This yleld cording to (10). Denoting byi(z), B; (=), the quotient of (z)
S (d/de) Az —k)p(z—k) -3, A(z—k)(d/da)p(z— modulo(1 — z)V =1 and its remamder respectively, we have

k) = 0. We replace the first term of this equation b
C(aa/daz) (since (dA/dz) is a polynomial of degree

);hatPl 2) = (1 = 2)N=1B(2) + Bj(z), wheredeg(B]) <
—landdeg(B;) < W — N+I1—1. Therefore, we can rewrite

strictly smaller tharf, — 1), and we replacéd/dz)y(z) (10) @s
in the second term by its expression (26). Sinces N-R-1
compactly supported, we easily obtain P(w) = Gyt ; (e79%)
D (Al —k)— A —k+1))¢(x — k) = —Caa. N_R=1 /1 oy V=141 '
kez e g : + > ( ) Bi(e™¥). (28)
=0 J v
Note that the polynomiaB(z) defined above as the fi- BN (w)

nite difference ofA(xz) is of degree exactly one less than
deg(A). Now, if A(z) spans the entire set of polynomials
of degree< L —1, thenB(z) spans the entire set of poly-
nomials of degreec . — 2. This also means that, for any
polynomial B(z) of degree< L — 2, there exists a con- (jw)!
stantCp suchthaty , ., B(x — k)¢(x — k) = Cp. In

addition, we see that i (z) = z, thenB(z) = —1; thus,

We expressBj(z) as Y r, b, ,(1 — 2)¥; we also use the
Fourier expression (12) off W|th the substitutiork — [ and
n — N — k, which yields
)ka+1;le—k(w)

+(1 = e ) AN TR (1 — o)

= A Nok—i41(jw

—Yrez ¥(w — k) = = 3,c7 w(x — k). Integrating this and which is valid forl < [ andk < N — [. Then, the first

equation ovef0, 1] leads tof ¢ = [ ¢ # 0. Thus,s»(z) summation in (28) can be transformed into (see the equation

satisfies the Strang-Fix conditions of orddr — 1); at the bottom of the next page). Because of (28), the left-hand
c) If pisin {N,W,R, L}, theny(z) isin {N — 1,W — side of the above expressionw™+*!), which implies that

LR-1L-1}. the right-hand side i® (w¥ 1) itself. Since the first term of the

It suffices to replacep by (8) in (25) to prove that the right-hand side is obviousl(w™N*1), we can claim that the
degree and regularity af are decreased by 1; the othegecond term, namelg (e =7, is O(w¥ 1) as well. However,
points have already been shown in the previous items. G(z) is a polynomial of degree at mo3t, and we have just
Thanks to these properties, we can reason by induction simown that it should cancéN + 1) times; the only admissible

the order of approximation, setting;, = ¢ ander_1 = . polynomialis thusz(z) = 0, which leaves us with the equality

This induction process yields a set @ + 1) distributions . . |

{¢r—i(x)}o<i<r that enjoy the following properties: Z (jw) Bl(e ) = (jw)N+1
a) pr—i(z) is compactly supported withifd, W — []; =0
b) ¢r_i(x) satisfies Strang-Fix conditions of ordgt — 1) N—R—1N— 1 — omiw
and, ifl = L, thenf(PO 7é 0; X Z Z bk l)‘l N—k—I+1 < > ’s’lNik(w).
¢) pr—i(z) is linked toy(x) through the convolutiorp = I=1 k= jew
B s i —
d) op € IN.W. R L} = gp1 € (N—L,W—1, R—1, L— Finally, if we letay,; = bk_z/\z,kasz, then (28) becomes
1. N—R-1N—
We thus have found a distributian= ¢, with [« # 0, that ¢(w) Z Z Ok, lﬂk 1 “Hw)
has a support of lengtti¥ — L) and such that (15) is satisfied.
Conversely, let us take a distribution = ¢ with [« # NE! —jw
0, and that is supported withii, W — L]. Then, the function Z w)Bi(e™).

defined agp(x) = (BE~1xu)(x) is compactly supported within =0

[0, W] and is of approximation orddr. Moreover, ifu is PP of This is exactly the Fourier transform of (18), if we exprétéz)
degreg N — L) and of regularity R — L), then the convolution adePg(B’) b1z* and if we remember thateg(B;) < W —
with 3-~1 is PP of degre&V and regularityR, as can be easily N +[—1. This proves that any function of degrae supportV’,

checked using the Fourier characterization (10) of PP functiomsd regularityR, can be expressed as (18). Conversely, because
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the support ofy}! is n and that of3™ is (n + 1), the functiony
defined by (18) is necessarily of supparax(N, W). Itis also
obviously of degreeV and regularityR.

Note that this decomposition is unique because of the unicity

of the Euclidean division of’(z) by (1 — z)N~!+1,

IX. PROOF OFTHEOREM 3

Behold!

X. PROOF OFCOROLLARY 3’

We will first prove the result whei, = 0, in which case we B,(z)

do not have the third sum in (20). Obviously, there are funct
wo in {N, W, R, L} for which (23) holds (e.ggo = (1/2)¢).

We show now that, if the conditions (22) are satisfied, then thef22), this implies thaf3o(z) =
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) )+ (B(z7h/(1-27)?) =
1), and we can do the same reasoning
z)? divides(B;(2)/(1—z)?).
2)N=1+2 dividesB)(z),

Thus,(B;(=)/(1 -

0(mod(1 — z)N—1=

again, which shows thét —

By induction, this shows thdt —

ie,B] = 0.

(N — 1) is even Then, (22) tells us thatl — z) di-

vides Bj(z). Using (29), we get thatB;(z)/1 — z) +
ZVY(B(271)/1 — 271) = 0(mod(1 — 2)V =), which

shows thatB;(z) = 0, using the same reasoning as when

(N-=1)is odd.

SinceBj(z) = 0forl = 1...N — R — 1, we are left with

+ (=D)N-HW B (271) = 0, which trivially implies

0% (z) = 0, thanks to (22). Finally we havB, = By, which
must satisfyBo(2) + (=1)N 12" By (271) = 0. Together with

0;

is exactly one such function. This will be done in two steps: first, 2) Step 2: Completenesd/e count the number of free pa-

there isat mostoney,; second, there iat leastoney.

1) Step 1: Unicity: We have to show that the function 0 ¢
be reconstructed only with the coefficients; = b; = 0.
According to Lemma 1o can be expressed as (10). Fap
1, we letP(z) = Bj(z) + (1 — 2)N~'*1B(z) whereB; is
the (unique) remainder of the Euclidean divisionffz) by
(1 — 2z)N~=l+1 We have

N1 u

() = Z T a2l (1—2)k
= ALN—k—I41
W—N4l-1

>

k=0

BZ(Z) bk,lzk.

The equalitypo(z) + po(W —
(-)N-HLW PG =0forl=0...

z) = 0 implies thatP;(z) +
N — R —1.Aconse

guenceisthat,for=1.. N-R—1
Bl(z)+ (-D)N"HLV B =0 (mod(1 — 2)N~H1),
(29)
Two cases arise:
* (N —1)is odd Then, (29) implies thaB3;(1) = 0. In

addition, due to (22), we have thét — 2)? divides B;.

rameters for a symmetrigV, W, R, 0} kernel, and verify that it
arcoincides with the number of parameters implied by (22). Ac-

cording to Lemma 1, a kernel iV, W, R, 0} is characterized
by (N — R) polynomialsP,(z) of degred¥ satisfying (7). Sym-
metry is equivalent td’ (z) = (—=1)V =1V P (27 1).

If we pick [ # 0, then symmetry implies thd®(z) is speci-
fied using| (W + 1/2)| independent coefficients whéiw — [)
is even, and usingl + [ (W/2) | ) independent coefficients when
(N —1) is odd. On the other hand, (22) indicates thgis spec-
ified by (W —N+1+1/2)] +[(N—1+1/2)], which matches
the dimensionality of?;(z) exactly.

If 1 0, then (7) is equivalent to stating that
the remainder of the Euclidean division aoPy(z) by
(1 — 2z)N*+1 is given from the knowledge of the’’s
for I # 0. Denoting by K((z) this remainder, the sym-
metry property on {P/(z)}izo automatically enforces
Ko(z) = (mDNTL2WK (271 (mod(1 — 2)V*1). Thus,
we can letPy(z) = (1/2)(Ko(z) + (=1)V2W Ko(z71)) +
(z — )N*T1K,(2), whereK(z) is some polynomial of degree
(W - N —1)—if W < N, thenK;(z) = 0. The symmetry
property on Py(z) leads to Ki(z) ZW-N-1K (271,
which implies that the number of free parametersRyfz)
is |(W — N + 1/2)]. This number matches the number of
nonzeraby, o in (22), exactly. We can thus say that a symmetric

N-— 1

(jw)'Bi(e 7*) =B

R—
2 e )
=0

—R-1N—-I

Z 2 b

—_]Lu

N—R—-1N-1
Y+ Y ) baGw) (1 — e )k
=1 k=0

(AN —k— 141 ()N k+17N (w)

+ (1 _ e—]w) AN k— l(l _ e—gw)] (1 _ e—]w)k
N—R—1N-I 1 =i k
= (juw)Nt! Z Zbk IALN k141 <7> A (w)
Jw
=1 k=0
—R—1N-—
+B(l)(e—]w Z Zbkl —Jb.) k+lAN k— l(l e—]u)

1=0

~
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{N,W, R,0} kernel requires as many parameters as the refjig] P.Thévenaz, T.Blu, and M. Unser, “Complete parametrization of piece-

resentation characterized by Conditions (22). Because of the  Wise-polynomal i”t?rpo'amf)s acoording to degree, suppart, regulariy.
. . . . . . and order,” inProc. (ICIP’00), vol. Il, Vancouver, BC, Canada, Sept.
linear independence of this representation (see Step 1: unicity), 10_13 2000, pp. 335-338.

we conclude that the representation is complete. [19] R. G. Keys, “Cubic convolution interpolation for digital image
We have proven the corollary fat = 0. If L £ 0, we processing,”IEEE Trans. Acoust., Speech, Signal Processivg).
v Th 1 Th ltina distributi . ' tri ASSP-29, pp. 1153-1160, Dec. 1981.
?‘PPY eorem_ : € resulung distribution, 1S symme_rlc [20] A. Gotchey, J. Vesma, T. Saramaki, and K. Egiazarian, “Digital image
if ¢ Is symmetric. Moreover, we can decompasaccording resampling by modified B-spline functions,”Rroc. Nordic Signal Pro-

L,max(—1, R — L), 0}, and of a sum of derivatives of Diracs.
Sinceu is symmetric, so i), which allows us to apply Theorem __ . ) . .
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