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ABSTRACT

We define a new wavelet transform that is based on a
recently defined family of scaling functions: the frac-
tional B-splines. The interest of this family is that they
interpolate between the integer degrees of polynomial
B-splines and that they allow a fractional order of ap-
proximation.

The orthogonal fractional spline wavelets essentially
behave as a fractional differentiators. This property
seems promising for the analysis of 1/f% noise that can
be whitened by an appropriate choice of the degree of
the spline transform.

We present a practical FFT-based algorithm for the
implementation of these fractional wavelet transforms,
and give some examples of processing.

1. INTRODUCTION

Wavelets are a powerful tool for for signal compression
and analysis. They are especially useful for detecting
and characterizing signal singularities. This occurs be-
cause a wavelet with n vanishing moments behaves like
a differentiator of order n + 1: 1/;((.0) xwt! asw — 0.

However, in some applications where fractal signals
or fractional Brownian motions (fBm) are involved, it
is better that the wavelet behave like a fractional dif-
ferentiator 1/;((.0) x w?*t! asw — 0, for some noninteger
number «.

We have recently defined for all the values a larger
than —%, a set of wavelets indexed by a that have
this property [1]. They derive from a scaling function,
B%(x) which we named “fractional B-splines” because
they interpolate the better-known polynomial B-splines
at the integers [2]. These functions have most of the
good properties of integer degree B-splines (approxima-
tion, regularity, scaling or inductive properties) except
for their support which is infinite.

In this paper we will define the orthonormal frac-
tional spline wavelet filters and develop a practical al-
gorithm for the implementation of the associated wa-

velet transform. This method which uses the FFT al-
gorithm, is ezact despite the infinite support of the
wavelets (no truncation of basis functions, exact treat-
ment of boundaries, perfect reconstruction) and is com-
petitive with Mallat’s fast wavelet algorithm for this
type of filters [3].

2. FRACTIONAL SPLINES

2.1. Causal and symmetric fractional B-splines

These new functions are localized versions of the one-
sided power functions (z — k)¢ def max(z — k,0)* [2]
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where @ > —1/2 in order to ensure square integrability.
These functions interpolate the usual polynomial B-
splines; these are recovered for a integer. They are
“causal” in the sense that their support belongs to R .

Since the fractional B-splines are not symmetric in
general (except for integer degrees), we have also de-
fined symmetrized versions of them. If « is not an even
integer, then
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where the number |Z| is defined as the symmetrized ver-

sion of the binomial function by |:| = ( . Here, we

T
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assume that the factorial has been extended to nonin-

teger « by 2! = I'(z+ 1) using Euler’s gamma function.

2.2. Properties

We showed in [2] that fractional B-splines decrease like
|#|~*=% when |z| — oo and that they satisfy a two-
scale difference equation governed by a scaling filter
H® whose frequency response is given by
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for the causal and the symmetric fractional B-splines
of degree «, respectively. This also means that the
Fourier transform of the corresponding B-splines are
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One of the most interesting properties of these func-
tions is that they have a fractional order of approxima-
tion a 4+ 1. In particular, this implies that any poly-
nomials of degree < [a] can be expressed as a linear
combination of 3% (z — k), k € Z. In this respect, they
behave like approximators that have a higher, integer,
approximation order 1+ [a]. This property is useful
since 1t ensures that the very lowpass information—
essential in most types of image processing—is exactly
represented by the lowpass branch of the filterbank that
will be built from the fractional B-spline.

A plot of the B-splines of degree a = 1/2 is given
in Fig. 1.
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Figure 1: plot of [)’E(l‘) and ﬂé(m)

From now on, we will drop the subscripts (nonsym-
metric “+” or symmetric index “*”) since all the ex-
pressions we will give will be valid independently of the
subscript.

2.3. Orthogonal Fractional Splines

Using a standard technique [4], it is possible to or-
thonormalize the fractional B-splines. The obtained
functions now satify a two-scale relation with the fol-
lowing orthonormal filters
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where A%(z) is the autocorrelation filter of a B-spline
of degree a, i.e.
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2.4. Fractional Splines Wavelets

The wavelets are constructed by linear combination of
scaling functions. In the orthogonal case, the frequency
response of the generating filter is given by

GL(e') = e H (—e 1) (7)

according to classical wavelet theory [5]. Tt is inter-
esting to note that the fractional spline wavelets be-
have as a fractional differentiator of order a4+ 1 for low
frequencies: this is because, for w close to 0, the non-
symmetric and the symmetric fractional spline wavelets
are oc (—jw)**! and o |w|**?! respectively to the first
order in w. This property can also be very useful when
dealing with 1/f? signals, since the fractional differen-
tiator of order 8 “whiten” them.

3. ORTHOGONAL FRACTIONAL SPLINE
WAVELET TRANSFORM

Now that we have defined the orthonormal lowpass
and highpass filters, we want to implement the corre-
sponding analysis and synthesis filterbanks, as shown
in Fig. 2.

The difficulty with these filters is that they are in-
finitely supported and that, at least for small values of
a, the efficient number of coefficients to keep may be
quite large, sometimes even larger than the size of the
signal. In such a situation, it is quite advantageous to
use a Fourier implementation which will ensure perfect
reconstruction to a very high accuracy.

We will assume that the input signal is given by
its coefficients {z}r=0. n—1. We extend this signal



Figure 2: Analysis/Synthesis filterbank with fractional
spline filters

to any value of the index k& € 7Z by periodization, i.e.,

def
IN+kE — Tk.

3.1. Analysis

The filtering and downsampling operation on the ex-
tended signal z,, provide the outputs y, and z, asillus-
trated in Fig. 2. In order to be able to apply the same
filterbank to these outputs (or at least to the low-pass)
we need these outputs to be periodic as well. This can
happen only if N is even; this implies that y,, z, are
%—periodic. Thus, by induction, in order to propagate
the periodicity condition to all possible decomposition
levels, N has to be a power of 2.
Let us denote
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the DFTs of z,, y, and z,, respectively. Let us also
denote by _Hf,k and GY ; the values taken by H(ed2m™)
and G{(e?2™) at the frequency points v = £.

N
Then,fork:O...%—l,wehave
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Of course the number operations needed in (8) are lim-
ited only to k = 0... % — 1 since y, and z, are real
sequences, which implies conjugate symmetry of the
DFTs.

The cost of this implementation amounts to one
FFT of z,, then four complex multiplications and two
complex additions over % frequency points. If we count
that a real addition and a real multiplication are both
worth one operation, and that a complex multiplication
amounts to six operations, while a complex addition is
worth 2 of them, then the cost of (8) is 7TN. For a full
wavelet decomposition we would thus have 14(N — 1)
operations, due to (8) only.

The cost of the inverse Fourier transforms of the
outputs and of the input x,, is to be added to this num-
ber. For a full wavelet decomposition, this amounts to
2CNlogy N + (2C + 14)(N — 1), where C = 3 is a
constant that evaluates the efficiency of the FFT algo-
rithm.

Typically the cost of the Fourier transformations is
larger than (8). For example, when N = 256 we find
that the number of operations amounts to 68/ N. This
number has to be compared to 4L, which is the number
of operations needed to iterate an orthogonal filterbank
whose filters are of length L: for N = 256, the Fourier
algorithm is more efficient when L > 17. In general, a
direct implementation of the fractional spline filterbank
require filters that are well longer than 2 in order to
ensure a decent reconstruction error: our algorithm is
thus more efficient.

3.2. Synthesis

The reconstruction of z, from y, and z, follows easily
from (8) (and also from classical filterbank theory [6]),
since the filters are orthonormal

X = Hf,kyk + Gj’_‘yka
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Obviously, each synthesis iteration costs the same as
an analysis iteration.

3.3. Practical computations

For the computation of the Fourier transforms of the
fractional spline filters we need to evaluate the auto-
correlation filter at v = % for k =0... N —1. For this,
we use the Poisson-equivalent expression of (6), i.e.,
doner |[§’j’f_ (w + 2nm)|2. More precisely, since we must
limit this summation to a finite number of terms, we
evaluate A® using the following asymptotic equivalent
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An accurate analysis of this expression shows indeed
that the remainder of the difference between the lhs
and the rhs is O(xzigs), which ensures an accuracy
that is larger than 200 dB with N = 100 computed
terms, and for all values of o > —%.

Once the orthonormal fractional spline filters have

been evaluated at the frequency points v = %, we need
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not recompute the filters at each new iteration. In fact,
at the first iteration, we need the values H*, and G
for k= 0...N — 1. Then, at the second itération, we
need the values HY o and Gj_“y% for k =0... % -1,
and so on for higher iteration steps. This means that
the filters can be precomputed once and for all, before
applying the wavelet transform to different signals.

4. EXAMPLES

Our fractional spline iterated filterbank can be used as
an analysis tool, in a compression application or for sig-
nal synthesis. We give below two examples of a synthe-
sis of an fBm-like noise. As input, we used white noise
in the wavelet channels. The same noise was weighted
by 27(2+1) in the jth band for each values of a. This
ensures that we get a—nonstationary—signal that has,
on the average, a spectrum that behaves like 1/f>+!.
We used the nonsymmetric orthonormal filters for the
synthesis of the N = 4096 samples.

As can be observed in Figs. 3 and 4, the 1/f!* noise
seems to be a smoothed version of the 1/f1'! noise.
This is obviously a consequence of the localization of
the fractional spline wavelet transform, a property that
is not shared by the DFT. Due to this local property,
we expect that our transform can be beneficial either
for the synthesis of localized fBm’s or for their analysis.
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Figure 3: Synthesis of a 1/f! noise

5. CONCLUSION

We have presented a new wavelet transform based on
functions—the fractional splines—that we have recently
defined [2]. We have also shown how to implement
our wavelet transform efficiently and accurately, using
a Fourier technique. We believe that this transform
can be especially useful, either for the synthesis of fBm
noises, or for the analysis of such signals.
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Figure 4: Synthesis of a 1/f!* noise using the same
random coefficients as in Fig. 3

The main advantage of such a wavelet technique
over the more traditional Fourier method is that it of-
fers the possibility of a local analysis or synthesis.

Matlab M-files implementing a fractional spline wa-
velet transform (analysis and synthesis) are freely down-
loadable at

http://bigwww.epfl.ch/demo/fractsplines/index.html

with demos and papers on fractional splines.
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