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ABSTRACT
In a recent paper we showed that it is possible to localise
diffusion sources observed with a mobile sensor whilst
simultaneously estimating the piecewise linear trajectory
of the sensor. Here we address the case in which the
sensor moves along an arbitrary unknown parametric tra-
jectory and we show that by solving a linear system of
equations, we can retrieve the inner products between the
parameters of the trajectory. From these inner products
we then retrieve the curve parameters up to an orthogo-
nal transformation, which allows us to also perfectly es-
timate the amplitudes of the sources and find their loca-
tions up to an orthogonal transformation.

Index Terms— Diffusion field, sampling, localisa-
tion, trajectory estimation, diffusion SLAM.

1. INTRODUCTION

Sampling and reconstruction of physical fields has a
wide range of real-life applications, such as finding nu-
clear and chemical leakages [1], detection of wild fires
or pollution sources [2] or localising neuronal source ac-
tivities from electroencephalographic (EEG) signals [3].
This problem has attracted significant interest in the sig-
nal processing community [4–9]. With the exception of
[9], most of the state-of-the-art methods assume that the
diffusion field is monitored using sensors at fixed loca-
tions, which are known. Sampling physical fields along
trajectories using mobile sensors was considered in [10,
11], but assuming the trajectories are known.

The problem of localising diffusion sources from
samples taken along unknown trajectories was intro-
duced in [12] and more recently also addressed in [13].
The framework developed in [13] leverages the method
in [14] and achieves estimation of the trajectory and
source locations, from samples taken by a mobile sensor
along piecewise linear trajectories, up to an orthogonal
transformation.

In this paper, we extend the method in [13] to the
case in which the trajectory is parametric, and show that
also in this case we can retrieve both the source loca-

tions and the trajectory up to an orthogonal transforma-
tion. We make the assumption that the trajectory of the
mobile device is defined as a linear combination of a fi-
nite number of basis functions, which are known [15].
We first consider the case in which the activation times
of the sources are known and find an algebraic solution
up to an orthogonal transformation. We then relax this
assumption to provide a solution for the case of unknown
activation times, showing how we can estimate the diffu-
sion sources and trajectory of the mobile sensor up to a
scaled orthogonal transformation.

2. PROBLEM FORMULATION

Let us consider the diffusion field induced by an in-
stantaneous source (localized in both space and time),
which will propagate in RD according to the Green’s
function [5, 6], as follows:

gk(x, t) =
ak(

4πµ(t− τk)
)D

2

e
− ||x−Sk||

2

4µ(t−τk) H(t− τk), (1)

where:

ak = amplitude of the diffusion source,
τk = activation time of the diffusion source,
Sk = coordinates of the source in RD space,
H(t) = unit step function,
µ = diffusivity of the medium.

Let us assume the field propagates in R2 such that
D = 2 and denote the term 4µ(t − τk) with Dk(t). We
also assume that the observation starts at T ≥ τk, ∀k.
We can then re-write the measurements corresponding to
source k and given in Eq. (1), as follows:

fk(x, t) = πgk(x, t) =
ak

Dk(t)
e
− ||x−Sk||

2

Dk(t) .

Inspired by [15], suppose we take measurements
along a parametric trajectory made up of L basis func-
tions, with L unknown coefficients, of the form:

r(t) =

L∑
j=1

cjϕj(t), (2)
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Fig. 1: The problem we consider is localising the diffusion sources and the trajectory of a mobile sensor from samples along
unknown parametric trajectories, as illustrated in (a) and (b). In (c) we show the measurements taken along the trajectory in (b).

where the vectors cj ∈ R2 are multidimensional basis
coefficients and the functions ϕj(t) are known.

The cumulative measurements of the field induced by
K sources is given by:

f(xn, tn) =

K∑
k=1

fk(xn, tn) =

K∑
k=1

ak
Dk(tn)

e
− ||xn−Sk||

2

Dk(tn) .

If we assume that the diffusion sources are sufficiently
separated, each measurement will only have contribution
from a single source (see Fig. 1). We can then express
the measurements of the field due to each source Sk as:

fk(xn, tn) := fk(tn) =
ak

Dk(tn)
e
− ||xn−Sk||

2

Dk(tn) , (3)

where xn is the location of the measurement taken at
time tn and Sk is the location of the source.

Since the points xn belong to the trajectory r(t), we
can express them using Eq. (2) as:

xn =

L∑
j=1

cjϕj(tn), (4)

which we can then use to get:

||xn − Sk||2 = ||xn||2 + ||Sk||2 − 2ST
k xn

=

∥∥∥∥∥∥
L∑

j=1

cjϕj(tn)

∥∥∥∥∥∥
2

+ ||Sk||2 − 2ST
k

L∑
j=1

cjϕj(tn)

=

L∑
j=1

L∑
i=1

ϕj(tn)ϕi(tn)cTj ci + ||Sk||2 − 2

L∑
j=1

ϕj(tn)ST
k cj

=

L∑
j=1

ϕ2
j (tn)||cj ||2 + 2

L∑
j=1

L∑
i=j+1

(
ϕj(tn)ϕi(tn)cTj ci

)

+ ||Sk||2 − 2

L∑
j=1

ϕj(tn)ST
k cj .

(5)

3. SIMULTANEOUS SOURCE LOCALIZATION
AND TRAJECTORY RECOVERY

In this section we present a mathematical frame-
work for simultaneous estimation of the locations of the
sources and recovery of the parametric trajectory taken
by a mobile sensor. We first consider the case in which
the activation times of the sources are known, and then
extend the method to unknown activation times.

We assume that the phenomenon we observe is in-
duced in R2 by K ≥ 2 sources where K is known, and
that the trajectory is defined as in Eq. (2) using at least
two independent basis functions, which are non-constant
functions of time. Moreover, the diffusion sources are
sufficiently separated such that each sample has contri-
bution from a single source only. The overall number of
measurements N satisfies N ≥ L(L+1)

2 +K(L+ 1), and
the number of measurements of the field of each source is
assumed to be larger than L+ 1. Finally, we assume that
the evolution of the diffusion field is imperceptible within
the time interval of observation, such that Dk(t) = Dk,
and that the activation times of the sources are known.
For simplicity we set Dk = 1, ∀k. Under these assump-
tions, we can state the following result:
Theorem 1. Given spatial measurements along an un-
known parametric trajectory, the locations of the sources
and the parameters of the trajectory can be reconstructed
up to a 2D othogonal transformation, whilst the ampli-
tudes of the sources can be retrieved exactly. If any two
points in the trajectory are known, we can perfectly esti-
mate the sources and the trajectory.

Proof. We first show how to retrieve the inner products
between the sources and the trajectory parameters. We
then show how to estimate the trajectory parameters and
source locations up to an orthogonal transformation.

Given the hypothesis that sources are sufficiently sep-
arated, we assume that groups of samples of the fields in-
duced by nearby sources are separated by samples of am-
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plitude smaller than ε, where ε > 0 and ε ≈ 01. Hence,
we select the first L + 1 consecutive samples with am-
plitude f1(tn) > ε, for n = M1, ...,M1 + L, and assign
them to source S1. We then discard the next samples,
and assign the next group of L + 1 consecutive samples
satisfying f2(tn) > ε, for n = M2, ...,M2 + L, to S2.
We repeat the process for subsequent sources.

Once the measurements are paired to each source, we
replace Dk(tn) = Dk = 1 into Eq. (3), to obtain:

dn,k = ln
(
fk(tn)

)
= ln(ak)− ||xn − Sk||2.

We can then substitute the distances ||xn − Sk||2 in
Eq. (5), to get:

dn,k = ln(ak)− ||Sk||2 −
L∑

j=1

ϕ2
j (tn)||cj ||2

− 2

L∑
j=1

L∑
i=j+1

ϕj(tn)ϕi(tn)cTj ci + 2

L∑
j=1

ϕj(tn)ST
k cj .

(6)

Using the measurements fk(tn), for n = 1, 2, ..., N ,
we can construct a system of N equations of the form
in (6). Provided N ≥ L(L+1)

2 + K(L + 1), we can then
solve this linear system of equations2 to uniquely retrieve
the unknowns ||cj ||2, cTj ci, ST

k cj and ln(ak) − ||Sk||2,
for each source k = 1, 2, ...,K3 and trajectory parame-
ters j = 1, 2, ..., L.

Inspired by [13], we use the estimated parameters
Yk,j = cTk cj to create the following matrix:

Ω =


cT1 c1 . . . cT1 cL
cT2 c1 . . . cT2 cL

...
. . .

...
cTLc1 . . . cTLcL

 =


cT1
...

cTL


︸ ︷︷ ︸
L×2

[
c1 . . . cL

]︸ ︷︷ ︸
2×L

:= CTC.

1For higher levels of noise, the value of ε should be larger in order
to increase the robustness against spurious samples.

2In order to uniquely retrieve these unknowns, we need to impose
that each of the basis functions ϕj(t) is a non-constant function of
time, i.e. ϕj(t) 6= C, for C ∈ R. This system of equations may also
become underdetermined for a degenerate arrangement of the sources
and curve parameters, in which case it may not be possible to retrieve a
unique solution.

3There may be cases in which the mobile sensor takes measure-
ments in an already-visited region, such that samples dn,k in Eq. (6)
have contribution from the same source k, for n = N1,1, ..., N1,2

and n = N2,1, ..., N2,2. Provided the system of equations has full
rank, we can solve the problem also in this case. We would re-
trieve two sets of parameters ST

k,1cj corresponding to the samples
n = N1,1, ..., N1,2, and ST

k,2cj corresponding to samples n =

N2,1, ..., N2,2 respectively. If ST
k,1cj = ST

k,2cj , then these parame-
ters would be mapped to the same source, i.e. Sk,1 = Sk,2.

Given the fact that the trajectory is located in R2, Ω
is a matrix of rank ≤ 2. This means that we can factorise
it using singular value decomposition as follows:

Ω = U∆VT ,

where U is a L × 2 orthogonal matrix, ∆ is a 2 × 2
diagonal matrix and V is aL×2 orthogonal matrix, given
L ≥ 2.

We can then obtain the estimated trajectory parame-
ters from the SVD decomposition as follows:

C̃ =
√

∆VT .

We note that if C̃ is a solution, then RC̃ is also a so-
lution, where R is an arbitrary orthogonal matrix, since
Ω is symmetric. As a result, the estimated curve param-
eters will be up to an orthogonal transformation from the
true parameters.

Once the trajectory parameters cj have been re-
trieved, the location of each source can be found from
the following system of linear equations:

cT1
...

cTL

Sk =


Yk,1

...
Yk,L

 .
Once the terms ||cj ||2, cTj ci and ST

k cj have been
found by solving the system of linear equations de-
scribed by (6), we can compute the distances between
each source Sk and measurement xn as in Eq. (5). We
can then retrieve the amplitude ak from Eq. (3), where
Dk(t) = Dk = 1:

ak = fk(tn)e||xn−Sk||
2

.

The problem can also be solved in the case in which
the activation time τk of each source k is unknown. In
this case, the number of measurements of the field in-
duced by each source should be larger than 1 + L(L+3)

2
and hence, the total number of measurements along the
trajectory must satisfy N ≥ K

(
1 + L(L+3)

2

)
. Preserv-

ing the assumption that the diffusion field is not time-
varying and that the sources are sufficiently separated,
we can state the following result:
Theorem 2. Given spatial measurements along an un-
known parametric trajectory, the locations of the sources
and the parameters of the trajectory can be reconstructed
up to a scaled 2D othogonal transformation. If any two
points in the trajectory are known, we can perfectly es-
timate the trajectory, as well as the locations, activation
times and amplitudes of the sources.
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Proof. Using 1 + L(L+3)
2 consecutive measurements

which have contribution from source k, we can build a
linear system of 1 + L(L+3)

2 equations of the form in
(6), from which we can retrieve the unknown parameters
||cj ||2
Dk

,
cTj ci
Dk

, STk cj
Dk

and ln(ak)−||Sk||2
Dk

, for each source
k = 1, 2, ...,K and all lines j = 1, 2, ..., L, where
Dk = 4µ(T − τk).

Using cTi cj
Dk

parameters for an arbitrary k, we can then
build matrix Ω:

Ω =
1

Dk


cT1
...

cTL

 [c1 . . . cL
]

:=
1

Dk
CTC.

We then have that the true curve parameters can be
written as cj =

√
DkRc̃j , where R is an arbitrary or-

thogonal transformation and c̃j are the estimated trajec-
tory parameters. This also means that any point on the
true trajectory will be up to the same transformation from
the corresponding point on the estimated trajectory:

xn =
√
DkRx̃n,

where xn is defined as in Eq. (4).
Therefore, if any two points xi and xj are known, we

can find the transformation
√
DkR, by solving:[

xi

xj

]
=
√
DkR

[
x̃i

xj

]
.

Given R is an orthogonal matrix, we can retrieve√
Dk = ||R1||, where R1 is the first column of R, from

which τk = T −Dk. We can then similarly estimate the
activation times τk of all sources k = 1, 2, ...,K.

Finally, once the activation times have been esti-
mated, we can find the source locations using the system
of linear equations Yk,j =

STk cj
Dk

, for j = 1, 2, ..., L and
the source amplitudes from the measurements in Eq. (3).

Remark 1. This method can also be extended to the case
in which the sources and trajectory are located in RD, for
D > 2. In this case, we would need at least D diffusion
source and D(D+1)

2 independent trajectory parameters,
in order to retrieve a solution up to a scaled orthogonal
transformation. Finally, we would need to know the lo-
cations of D arbitrary points on the trajectory in order
to find an exact solution.

4. EXPERIMENTAL RESULTS

We consider a trajectory defined as in (2), where
the basis functions are given by: ϕ1(t) = 2 cos( t

100 ),
ϕ2(t) = 2 sin( 3t

100 ) and ϕ3(t) = 0.01t+ 1.

We also assume the diffusion field is induced by two
instantaneous sources, sufficiently separated in space,
and with known activation times. In Fig. 2 we depict the
location of the two sources together with the curvilinear
trajectory of the mobile sensor. The estimation of the
trajectory and sources is performed as in Section 3 and
is up to an orthogonal transformation (rotation and shift)
from the true trajectory and sources respectively. If any
two points on the trajectory are known, the trajectory
parameters and source locations are exactly retrieved.

Fig. 2: True and reconstructed trajectory and source locations,
in the case in which the activation times of the sources are
known. The estimation is up to an orthogonal transformation.

For the scenario in Fig. 3 we consider a trajectory
defined as in (2), where the basis functions are given by:
ϕ1(t) = −0.01t2 + 0.05t + 20, ϕ2(t) = t − 20 sin( 3t

50 )
and ϕ3(t) = 30 cos( t

25 ). The estimation of the trajectory
and sources is exact, when any two points on the trajec-
tory are known.

Fig. 3: Actual and reconstructed trajectory and source locations
(reconstruction shifted by 0.05 for visualisation purposes), in
the case in which the activation times of the sources are un-
known, and we know the locations of two sample points.

Finally, within the setting of Fig. 3, we now assume
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that the measurements dn are corrupted by additive white
Gaussian noise, as depicted in Fig. 4 for a signal-to-
noise(SNR) ratio of 20dB.

The error of the trajectory is computed as
Ecurve =

∫ 1

0
||̃rj(s)−rj(s)||2
||rj(s)||2 ds, where r̃j(s) and rj(s)

are the estimated and true trajectory respectively.
Averaged over 1000 experiments, the error in the re-

constructed trajectory isEcurve = 0.3848 for SNR=10dB,
Ecurve = 0.0077 for SNR=20dB and Ecurve = 0.0065
for SNR=30dB.

Fig. 4: Modified samples dn,k of the field, computed as in (6),
corrupted by additive white Gaussian noise, for SNR=20dB.

5. CONCLUSIONS

In this paper we proposed a method for localising in-
stantaneous diffusion sources, from samples taken along
unknown parametric trajectories. When the activation
times of the sources are known, the trajectory and source
locations are retrieved up to an orthogonal transforma-
tion, whereas the source amplitudes are retrieved exactly.
When the activation times of the sources are unknown,
the estimation is up to a scaled orthogonal transforma-
tion. Knowing any two points in the trajectory ensures
perfect estimation of the trajectory and source locations,
as well as their amplitudes and activation times.
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