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Noise in Images: Noise Sources

Noise: a random, undesirable, and often unavoidable perturbation.

Two main sources:
Random nature of photon emission and detection;
Imperfection of the electronic devices (photosensors, A/D
converter,...).

Tremendous impact on image visualization and
analysis (segmentation, tracking, recognition,...).
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Noise in Images: Measurement Model

Usual acquisition devices provide signals1

y = [y1, y2, . . . , yN ]T

that are corrupted with noise.

Frequent modeling using an additive white Gaussian noise
(AWGN) hypothesis

y = x + b
︷ ︸︸ ︷
noisy signal

︷ ︸︸ ︷
original signal

︷︸︸︷
noise

where E {b} = 0 and E {bbT} = σ2Id.

Signal denoising consists in finding a “good” candidate x̂ of x
using the noisy signal y only; i.e., find the algorithm F such that

x̂ = F(y)

1Images are represented as vectors, using lexicographic ordering.
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An Abundant Literature

Many approaches available, based on:

1 Explicit hypotheses on the signal:
Statistics-based: wavelet-domain (Bayesian) inference Donoho et al.

1994, Simoncelli et al. 1996, Abramovich et al. 1998, Vidakovic et al. 1998;
Regularization: Total Variation (TV) Osher et al. 1992;
PDE: anisotropic diffusion Perona et al. 1990;

2 Heuristics:
Filtering: Bilateral Filter Tommasi et al. 1998;
Patch-based: Non-Local Means Buades et al. 2005;
Any combination of approaches 1 when the hypotheses are not
satisfied/checked.

NOTE:

Some approaches can be either applied in the signal-domain or in a
transform-domain.

Most approaches involve several nonlinear parameters which are
often set empirically.
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Prior-Based Statistical Approaches

In the prior-based statistical approaches the signal to restore is considered
as the realization of a random variable.

Various possible objectives to optimize:

Maximum a posteriori (MAP)

Minimum mean-squared error (MMSE)

All these methods assume that the following are explicitly given:

The statistical relation (likelihood) between the measurements and
the signal to restore:

P {y|x} =
1

(2πσ2)N/2
exp

(
−‖y − x‖2

2σ2

)

The probability density function (pdf) of the original signal P {x}.

Highly sensitive to the modeling of
the pdf of the signal to restore.
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Maximum a Posteriori

The MAP consists in choosing the estimate x̂ that maximizes the
posterior probability density

x̂ = arg max
x

P {x|y} = arg max
x

P {y|x}·P {x}

Optimal detector: Given noisy measurements of a signal x having a
finite number of values x1, x2, . . . , xK occurring with probabilities p1,
p2,. . . , pK , the MAP minimizes the error probability

P {x̂ #= x}

NOTE: Description of the prior P {x} may require many nonlinear
parameters.

For signals with large or infinite number of levels, the probabilistic
optimality of the MAP becomes irrelevant ! MMSE instead.
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Linear MMSE: Wiener

The Wiener “filter” consists in finding the linear2 estimate, x̂ = Ây, that
minimizes the Mean-Squared Error (MSE)

E

{
1
N
‖Ây − x‖2

}

︸ ︷︷ ︸
MSE between x̂ and x

= min
A

E

{
1
N
‖Ay − x‖2

}

Solution: Requires only the knowledge of the covariance matrix
Γx = E {xxT} of the original signal

x = Γx

(
Γx + σ2Id

)−1 y

NOTE: Although very popular, linear processing is not well-adapted to
the processing of transient signals.

2if E {x} = 0 — an affine estimate is used, otherwise.
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Nonlinear MMSE: Bayesian Least Squares

Problem: Find the optimal processing F(·) that yields the estimate
x̂ = F(y) such that

E

{
1
N
‖F(y)− x‖2

}
is minimized.

Solution: The posterior expectation (conditional mean):

x̂ = E {x|y} =
∫

xP {x|y} dNx
Bayes
=

1
P {y}

∫
xP {y|x}·P {x} dNx

where P {y} =
∫

P {y|x} · P {x} dNx is the marginal pdf of y.

NOTE: The above integrals often need to be computed numerically.

The Bayesian MMSE algorithm requires the knowledge of the pdf of the
unknown signal ! Choice of prior ?
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Nonlinear MMSE: One Step Further

Problem: Find the optimal processing F(·) that yields the estimate
x̂ = F(y) such that

E

{
1
N
‖F(y)− x‖2

}
is minimized.

Solution: In the case of AWGN, the posterior expectation x̂ = E {x|y}
can be simplified to (Stein 1981, Raphan & Simoncelli 2007):

x̂ = y + σ2∇ log P {y}

NOTE: Because P {y} =

convolution with a Gaussian︷ ︸︸ ︷∫
P {y|x} · P {x} dNx, the optimal MSE

processing is infinitely differentiable.

The optimal algorithm only requires the knowledge of the pdf of the
observed noisy signal ! No prior information is needed !
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Examples

Assuming a Laplace prior, P {x} =
∏N

n=1
λ
2 e−λ|xn|, these statistical

approaches yield a pointwise thresholding involving T = λσ2:

MAP x̂n = softT (yn)

Wiener x̂n =
yn

1 + T 2

2σ2

MMSE x̂n = yn − T
e−λyn erfc

(
−yn+T

σ
√

2

)
− eλyn erfc

(
yn+T
σ
√

2

)

e−λyn erfc
(
−yn+T

σ
√

2

)
+ eλyn erfc

(
yn+T
σ
√

2

)

 

 

MAP

Wiener

MMSE
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Regularization Approaches

The signal estimate x̂ is selected as the minimizer of a (convex) regularized
cost-functional

J(x,y) = Ψ(x,y)
| {z }

data-fidelity term

+ λ Φ(x)
| {z }

penalty

Typical choice of data-fidelity term:

Ψ(x,y) = ‖y − x‖2 ∝ negative log-likelihood (AWGN)

Typical choices of penalty:

Tikhonov (smoothness prior): Φ(x) = ‖Lx‖2;
Sparsity prior: Φ(x) = ‖x‖!0 ! Φ(x) = ‖x‖!1 ;

TV (edge prior): Φ(x) = ‖ |∇x| ‖!1 .

NOTE: Depending on the choice of data-fidelity and penalty terms, J(x,y) can
be re-interpreted as a statistical prior and its optimization equivalent to a MAP.

No explicit distance minimization between original and denoised signal.
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Minimizing E
{
‖F(y)− x‖2

}
yields an algorithm F : y %→ x̂ that

depends on the probability of y alone: F(y) = y + σ2∇ log P {y}.
Problem: we have only one realization of the noisy image y.
Solution: estimate E

{
‖F(y)− x‖2

}
from y, instead of P {y}.

MSE estimation

Consider the random variablea

SURE(y) =
1
N
‖F(y)− y‖2 +

2σ2

N
div {F(y)}− σ2

Under the additive white Gaussian noise hypothesis, this random variable
is an unbiased estimate of the MSE Stein et al. 1981

E {SURE(y)} = E
{
‖F(y)− x‖2/N

}

aDivergence operator: div {F(y)} def
=

P
k

∂Fk(y)
∂yk

.

The original signal x may, or may not be random.
No assumptions on x are needed.
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A simple proof

On the one hand (remember that y = x + b)

E
{
‖F(y)− x‖2

}
= E

{
‖F(y)‖2

}
− 2 E {xTF(y)}︸ ︷︷ ︸

E{(y−b)TF(y)}

+ ‖x‖2︸︷︷︸
E{‖y‖2}−Nσ2

= E
{
‖F(y)− y‖2

}
+ 2E {bTF(y)}−Nσ2

and on the other hand (Stein’s Lemma)

E {bTF(y)} =
∫

P {b} bT

︸ ︷︷ ︸
−σ2∇P{b}T

F(x + b) dNb (Gaussian pdf)

=
∫

σ2 P {b}div {F(x + b)}dNb (by parts)

= E
{
σ2div {F(y)}

}
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Equivalence SURE-MSE

SURE(y) has a small variance (law of large numbers: ∝ 1/N), which
implies SURE(y) ≈ E {SURE(y)}. Hence

1
N
‖F(y)− x‖2 ≈ SURE(y)

NOTE: The SURE–MSE match worsens when F(y) is less regular; some
boundedness of div {F(y)} is needed ! hard-threshold excluded.

Example Donoho 1995: SURE soft-threshold

SUREsoft =
1
N

(
‖F(y)−y‖2

︷ ︸︸ ︷∑

|yn|≤T

y2
n +

∑

|yn|≥T

T 2 + 2σ2

div{F(y)}
︷ ︸︸ ︷∑

|yn|≥T

1
)
− σ2
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Closeness between SURE and MSE

Processing a noisy signal (left) with several lengths, using several
different pointwise thresholding functions
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NOTE: The use of the SURE (instead of the MSE) is particularly justified
for large data sizes (e.g., images).
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Approximation of processings

Functions can often be efficiently approximated onto adapted bases.

Examples of bases: wavelets (L2 functions), sinc kernels (bandlimited
functions), radial basis functions (scattered points interpolation), etc.

The MMSE result F(y) = y + σ2∇ log P {y} indicates that the optimal
processing is slowly varying. It can thus, in principle, be represented on a
basis of few functions — e.g., the identity and spline/Gaussian functions.

 

  Optimal MSE
 Approximated

≈ + +

(see slide 12) a× y b× sign(y)
“
1− e

− y2

2T2
”

c× ye
− y2

2T2
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Linear Expansion of Thresholds

An approximation of the optimal denoising process as a (finite) linear
combination of elementary processes

F(y) =
K∑

k=1

akFk(y)

The approximation is all the better as the order, K, is larger.

The linear space approximation will prove particularly useful when
combined with a quadratic objective functional (e.g., MSE or SURE), as
the optimization boils down to solving a linear system of equations.

The idea of LET is that a genuine approximation of the optimal
processing can be sufficient, while having useful linear properties.
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Choosing the LET basis

Based on Wiener theory, homogenous (Gaussian, zero-mean) images are
optimally denoised by linear transformations.

By segmenting/partitioning a non-homogenous image into homogenous
zones, the “optimal” denoising process can thus be expressed as a sum of
linear processes within each zone

F(y) =
∑

zones

indicator function of zone k︷ ︸︸ ︷
γk(y)Aky

Hence, the choice of a LET basis essentially amounts to choosing a
“good” (MSE-wise) segmentation algorithm.
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Choosing the LET basis

Example: A simple threshold tends to segment a signal into large values,
and small values. A possible choice3 for the indicator function of the
small values is

γ(y) = e−
y2

2T2

Then, a possible LET function is of the form

F (y) = γ(y)× ay︸ ︷︷ ︸
small y

+
(
1− γ(y)

)
× by

︸ ︷︷ ︸
large y

The coefficients a and b characterize the linear behavior of the processing
in each zone.

NOTE: A practical choice for T is
√

6 σ (noise), which can be related to a
significance level in a statistical test.

3for a tanh-based threshold, see Pesquet et al. 1997
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Recapitulation of the SURE-LET approach

1 Instead of finding an approximation of the signal x, find an
approximation of the processing F(y) that transforms y into x̂;

2 Instead of minimizing the MSE between x̂ and x, minimize an
(unbiased) estimate of this MSE, based on y alone (SURE);

3 Express F(y) as a linear decomposition (LET)
∑

k akFk(y) of basis
processings Fk(y) ! linear system of equations (fast, unique).

NOTE: The number K of elementary processings is chosen very small
(usually, K < 200), compared to the number of pixels N .
! faster algorithm, and better agreement between MSE and SURE.
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The SURE minimization

By restricting F(y) to be of the LET form
∑

k akFk(y), the becomes a
quadratic expression, in function of the ak’s. Its minimization yields, for
all k = 1, 2, . . . ,K

K∑

l=1

Fk(y)TFl(y) al = Fk(y)Ty − σ2div {Fk(y)}

Finally, by stacking the LET coefficients in a = [a1, a2, . . . , aK ]T, we get

a = M−1c where

∣∣∣∣∣
M =

[
Fk(y)TFl(y)

]
1≤k,l≤K

c =
[
Fk(y)Ty − σ2div {Fk(y)}

]
1≤k≤K

NOTE: When M is non-invertible, it means that one LET basis element
depends linearly on the other Fk ! decrease the LET-order to K − 1.
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The Oracle minimization

The same LET optimization, by minimizing the MSE ‖F(y)− x‖2
instead of the SURE yields, for all k = 1, 2, . . . ,K

K∑

l=1

Fk(y)TFl(y) al = Fk(y)Tx

This also boils down to solving a linear system of equations

a = M−1c′ where

∣∣∣∣∣
M =

[
Fk(y)TFl(y)

]
1≤k,l≤K

c′ =
[
Fk(y)Tx

]
1≤k≤K

NOTE: The Oracle computation allows to choose elementary LET
processings Fk that are likely to yield more efficient denoising results.
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A strategy for evaluating algorithms

How to evaluate the potential of an algorithm, that usually involves a
number of non-linear parameters?

Approximate the resulting algorithm as a LET; i.e., transfer the
non-linear degrees of freedom to linear parameters;

Probe the efficiency of the algorithm through Oracle minimization.

Example: If the algorithm F(y;λ) depends on one non-linear parameter,
λ, approximate it using two (or more) LETs

F(y;λ) = a1F(y;λ1) + a2F(y;λ2)

where λ1, λ2 are fixed:
[
λ1, λ2

]
is the expected range of values for λ.
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Monte-Carlo divergence estimation

The computation of the divergence term in the SURE may be impractical
when N is large: a direct application of the formula

div {F(y)} =
N∑

n=1

∂Fn(y)
∂yn

may prove too much CPU intensive.

An alternative is to use a consequence of Stein’s Lemma

div {F(y)} ≈ bT
0
F(y + εb0)− F(y)

ε

}
(law of large numbers)

where b0 is a normalized (unit-variance, zero-mean) Gaussian white noise.
ε is some small value compared to the level of noise; typ., ε = σ/100.

NOTE: Particularly useful when F(y) is not obtained explicitely, but
through a “black-box” algorithm like TV regularization Ramani et al. 2008.
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Linear transformations

In order to exploit their strong local correlations, it is advantageous to re-
present the pixels in another domain: Discrete Cosine Transform (DCT),
Block DCT, Wavelet Transform, etc.

BDCT transformed image (block!size = 8)

Edge!
inaccurate

Wavelet decomposition (3 iterations)

Edge!
frie

ndly
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Most generally, a linear transformation maps an image y onto another
image w through a matrix multiplication Dy. It is assumed that the
transformation can be inverted using a matrix R.

Desirable properties (not all of them can be satisfied at once):

Perfect reconstruction: RD = Id;

D yields a sparse/decorrelated image representation;

Shift, scale, rotation invariance;

Orthonormality.

Example: undecimated wavelet transforms/BDCT are shift-invariant,
but are not orthogonal.

Processing images expressed in a sparse representation considerably
increases denoising efficiency.
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y D

linear
decomposition

w = Dy
!" #$Θ ŵ = Θ(w)

(nonlinear)
processing

R x̂ =

F(y)
︷ ︸︸ ︷
RΘ(Dy)

linear
reconstruction

!
image domain

!"
transform domain

"
image domain

Graphical overview: transform-domain thresholding

SURE-LET methodology: specify a LET basis Fk(y) as follows

Θ(w) =
K∑

k=1

akΘk(w) ! Fk(y) = RΘk(Dy)

Potential issue: efficient computation4 of the SURE (essentially the
div {Fk} term) for this type of processing ! Monte-Carlo technique.

4However, exact expression in a number of practical cases (periodic extensions).
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Orthonormality

A decomposition is orthonormal iff DTD = DDT = Id. Properties:

The reconstruction is given by R = DT;

Preservation of the energies: ‖w‖ = ‖y‖ and ‖x̂− x‖ = ‖ŵ−Dx‖;
Statistical independence of the transformed coefficients;

NOTE: an orthonormal decomposition is automatically non-redundant.

If wj = Djy for j = 1, 2, . . . , J where D = [D1;D2; . . . ;DJ ], then the
unbiased estimate of ‖x̂− x‖2 can be written in the transformed domain

SURE(y) =
1
N

( J∑

j=1

‖Θj(wj)−wj‖2 + 2σ2div {Θj(wj)}
)
− σ2

where Θ = [Θ1;Θ2; . . . ;ΘJ ].

Optimizing the denoising process F(y) is equivalent to denoising
separately the denoising processes Θj in the transformed domain.
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Simple wavelet thresholding

Choice of an orthonormal wavelet transform5 (e.g., symlet 8). Then, the
processing in subband j is a simple thresholding ŵj,n = θj(wj,n) for each
of the coordinates n = 1, 2, . . . , Nj of wj , and

SUREj(wj) =
1

Nj

( Nj∑

n=1

∣∣θj(wj,n)− wj,n

∣∣2 + 2σ2θ′j(wj,n)
)
− σ2

SURE-LET simple threshold

A two-parameter zone-selection function

θj(w) = ajw + bjwe−
w2

12σ2

where aj and bj are obtained by minimizing SUREj(wj).

NOTE: SureShrink Donoho 1995 makes the choice θj(w) = softTj (w) and
minimizes SUREj(wj) for Tj .

5However, any (non-wavelet) orthonormal transform can be used.
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In details, aj , bj solve the following linear system of equations

∂SUREj

∂aj
= 0 !

Nj∑

n=1

ajw
2
j,n + bjw

2
j,ne−

w2
j,n

12σ2 = −Njσ
2 +

Nj∑

n=1

w2
j,n

∂SUREj

∂bj
= 0 !

Nj∑

n=1

ajw
2
j,ne−

w2
j,n

12σ2 + bjw
2
j,ne−

w2
j,n

6σ2 =
Nj∑

n=1

(7
6
w2

j,n − σ2
)
e−

w2
j,n

12σ2
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wavelet
decomposition−−−−−−−−−→

5 iter
ati

ons

Noisy: PSNR = 18 dB ↓ simple thresholding

wavelet
reconstruction←−−−−−−−−−

Denoised: PSNR = 29.06 dB (SureShrink: PSNR = 28.73 dB)
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InterScale wavelet thresholding

The relative locality of the DWT implies that there may be a spatial
correlation between different wavelet scales: three potential
tree-structures — LH, HH and HL

LH1 HH1

HL1

LH2 HH2

HL2
LH3 HH3

HL3LL3

!
!

!
!

!!"

!
!
!"

“parent” !

“child” ! w

p

Interscale thresholding consists in expressing the denoised estimate as

ŵj,n = θj(wj,n, pj,n)
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InterScale wavelet thresholding

Principle: separate the parent into large and small coefficients, and
within each zone so defined, apply a pointwise thresholding function:

θj(w, p) = e−
p2

12σ2

(
ajw + bjwe−

w2

12σ2

)

︸ ︷︷ ︸
small parents

+(1− e−
p2

12σ2 )
(
a′jw + b′jwe−

w2

12σ2

)

︸ ︷︷ ︸
large parents

NOTE: DWT is orthogonal, hence w and p are statistically independent
! same SURE formula as for the simple threshold case.

PROBLEM: the wavelet coefficients are not exactly aligned from band to
band (filtering and downsampling effect). How to obtain a parent aligned
exactly with its child?
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Parent/child alignment: Group-Delay Compensation

Adequate high-pass filtering of the
lowpass LLj — which contains the
whole parent tree: W compensates
the group-delay difference between
the low-pass and the high-pass band.

GDC filter formula

W (z2) = (1 + z−2)G(z−1)G(−z−1)
where G(z) = wavelet filter.
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Overview of the interscale SURE-LET denoising
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Example of result

Noisy SureShrink SURE-LET interscale

PSNR=18 dB PSNR=28.73 dB PSNR=30.18 dB

Best non-redundant transform-domain algorithm.
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Extension to multichannel denoising

Direct generalization by replacing:

scalar-valued by vector-valued wavelet coefficients;
scalar-valued by matrix-valued LET parameters.

Assuming Q = covariance matrix of the noise, and γ(x) = exp(−x/12)

θj(w,p) = γ(pTQ−1p)γ(wTQ−1w)︸ ︷︷ ︸
small parents and small coefficients

aT
1,jw

+
(
1− γ(pTQ−1p)

)
γ(wTQ−1w)

︸ ︷︷ ︸
large parents and small coefficients

aT
2,jw

+ γ(pTQ−1p)
(
1− γ(wTQ−1w)

)
︸ ︷︷ ︸
small parents and large coefficients

aT
3,jw

+
(
1− γ(pTQ−1p)

)(
1− γ(wTQ−1w)

)
︸ ︷︷ ︸

large parents and large coefficients

aT
4,jw

NOTE: Automatically selects the best color space (color images).
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Overview of the Multichannel SURE-LET denoising
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Undecimated wavelet denoising

Limitations of non-redundant transformations

High sensitivity to shifts ! inconsistent reconstruction of edges

Low design flexibility ! poor directional sensitivity

Solution: increase the redundancy

Shifts : Cycle-Spinning Coifman 1995, Undecimated DWT Guo 1995;
Rotations : Steerable Pyramid Simoncelli 1995, Complex DWT Kingsbury 1998;

Edges : Curvelets Candès 2002; etc. . .

Redundancy vs orthonormality

Although it is still possible to have R = DT (tight frame)

RD = Id but DR #= Id
Energies: ‖w‖ = ‖y‖ (if tight frame) but ‖x̂− x‖ #= ‖ŵ −Dx‖;
Statistical dependence of the transformed coefficients;

In addition, redundancy brings about a higher computational cost.
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Two iterations of a 1D UDWT

︸ ︷︷ ︸
R

︸ ︷︷ ︸
D

Perfect reconstruction condition: RD = Id

NOTE: same lowpass and highpass filters, H(z) and G(z), as in the
non-redundant WT case.

Thierry Blu Image Denoising — The SURE-LET Methodology 42 / 80



Image Denoising Methods
The SURE-LET Methodology

SURE-LET Algorithmics
Algorithm Comparisons

Extension to Poisson-Gaussian Denoising

Transform domain denoising
Orthogonal Representations/Transformations
Redundant Representations/Transformations
Noise Variance Estimation

Undecimated simple wavelet thresholding

Hard-like6 thresholding rule

In each wavelet subband j, the noisy coefficients are thresholded using

θj(w) = ajw + bjw
(
1− e−( w

3σ )8
)

where (aj , bj) change from subband to subband — i.e., two parameters
per subband.

The optimal set of parameters {aj , bj} is then found by minimizing the
global image-domain SURE.

NOTE: Contrary to the nonredundant case, it is not possible to optimize
the SURE separately in each subband.

6Hard threshold cannot be optimized using SURE, for not being differentiable.
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Undecimated pointwise wavelet thresholding

Undecimated discrete symlet 8 transform

Noisy SureShrink SURE-LET

PSNR=18 dB PSNR=28.73 dB PSNR=31.15 dB

NOTE: Surprisingly, it is the simplest wavelet type (Haar) that works best.
Smallest support?
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Undecimated pointwise wavelet thresholding

Undecimated discrete Haar wavelet transform

Noisy SureShrink SURE-LET

PSNR=18 dB PSNR=28.73 dB PSNR=31.91 dB

NOTE: Surprisingly, it is the simplest wavelet type (Haar) that works best.
Shortest support?
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Extensions

Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

Thresholding (possibly multivariate) in a dictionary of transforms.

Multiframe video denoising: involving motion compensation;

Orthonormal discrete symlet 8 transform

Noisy SURE-LET interscale SURE-LET multivariate

PSNR=18 dB PSNR=30.18 dB PSNR=30.65 dB
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Extensions

Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

Thresholding (possibly multivariate) in a dictionary of transforms.

Multiframe video denoising: involving motion compensation;

Undecimated discrete Haar wavelet transform

Noisy SURE-LET SURE-LET multivariate

PSNR=18 dB PSNR=31.91 dB PSNR=32.22 dB
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Extensions

Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

Thresholding (possibly multivariate) in a dictionary of transforms.

Multiframe video denoising: involving motion compensation;

Dictionary of two transforms (UWT Haar & 12× 12-BDCT)

Noisy SURE-LET UWT Haar SURE-LET
Multivariate
Dictionary

PSNR=18 dB PSNR=25.90 dB PSNR=28.80 dB
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Extensions

Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

Thresholding (possibly multivariate) in a dictionary of transforms.

Multiframe video denoising: involving motion compensation;

Orthonormal discrete symlet 8 transform
Noisy Multiframe SURE-LET

PSNR=22.11 dB PSNR=30.85 dB
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Noise Variance Estimation

The most popular approach for estimating the variance σ2 of the AWGN
for wavelet-based denoising algorithms: MAD estimator Donoho 1995

σ̂ = 1.4826 med {|y −med{y}|} , yn ∈ HH

+ Simple and accurate for relatively high levels of noise;

− Inaccurate for moderate to low levels of noise.

Proposed approach: Eigenfilter-based design Vaidyanathan et al. 1987

1 Find hopt = arg min
h∈RM

‖h ∗ y‖2 subject to ‖h‖2 = 1

! Eigenvector corresponding to the smallest eigenvalue of the

autocorrelation matrix Γy =
[∑N

n=1 yn−iyn−j

]

1≤i,j≤M

2 Noise variance robustly estimated from the filtered residual
(hopt ∗y), as the mode of the smoothed histogram of the local noise
variances computed inside blocks of given size (typically, 25× 25).
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Noise Variance Estimation

Overview of the Proposed Approach

Noisy Input: σ = 10 Residual
Distribution of the Local

Standard Deviations

∗ hopt = !
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Estimated σ: σ̂ = 10.09
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Noise Variance Estimation

Performance of the Proposed Approach

Cameraman Mandrill
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Protocol for Fair Comparisons

Denoising of a representative set of standard grayscale/color images
and video sequences, corrupted by simulated AWGN at 8 different
powers σ ∈ [5, 10, 15, 20, 25, 30, 50, 100] (assumed to be known).

PSNR results averaged over 10 different noise realizations for each
noise standard deviation.

Parameters of each method set according to the values given in the
corresponding referred papers or optimized in the MMSE sense (if
not explicitly provided).
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Interscale SURE-LET BiShrink Sendur & Selesnick 2002

(baseline) ProbShrink Pižurica et al. 2006

Multivariate SURE-LET BLS-GSM Portilla et al. 2003
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The Non-Redundant Case: PSNR Comparisons

Lena 512× 512 Barbara 512× 512
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Interscale SURE-LET BiShrink Sendur & Selesnick 2002

(baseline) ProbShrink Pižurica et al. 2006

Multivariate SURE-LET BLS-GSM Portilla et al. 2003
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Grayscale Image Denoising
Color Image Denoising
Video Denoising

The Non-Redundant Case: Visual Comparisons

Original Noisy

Average SSIM1: 1.000 Average SSIM: 0.284

1Structural Similarity Index Map Wang, Bovik, Sheikh & Simoncelli 2004
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Grayscale Image Denoising
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The Non-Redundant Case: Visual Comparisons

Original Multivariate SURE-LET

Average SSIM: 1.000 Average SSIM: 0.894

1Structural Similarity Index Map Wang, Bovik, Sheikh & Simoncelli 2004
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Grayscale Image Denoising
Color Image Denoising
Video Denoising

The Non-Redundant Case: Visual Comparisons

BiShrink Multivariate SURE-LET

Average SSIM: 0.877 Average SSIM: 0.894

1Structural Similarity Index Map Wang, Bovik, Sheikh & Simoncelli 2004
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The Non-Redundant Case: Visual Comparisons

ProbShrink Multivariate SURE-LET

Average SSIM: 0.882 Average SSIM: 0.894

1Structural Similarity Index Map Wang, Bovik, Sheikh & Simoncelli 2004
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Grayscale Image Denoising
Color Image Denoising
Video Denoising

The Non-Redundant Case: Visual Comparisons

BLS-GSM Multivariate SURE-LET

Average SSIM: 0.888 Average SSIM: 0.894

1Structural Similarity Index Map Wang, Bovik, Sheikh & Simoncelli 2004
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The Redundant Case: PSNR Comparisons
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Multivariate SURE-LET (baseline) BM3D Dabov et al. 2007

NLmeans Buades et al. 2005 Fast TV Chambolle 2004

BLS-GSM Portilla et al. 2003 K-SVD Elad & Aharon 2006
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Boat 512× 512 Goldhill 512× 512
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Multivariate SURE-LET (baseline) BM3D Dabov et al. 2007

NLmeans Buades et al. 2005 Fast TV Chambolle 2004

BLS-GSM Portilla et al. 2003 K-SVD Elad & Aharon 2006
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Grayscale Image Denoising
Color Image Denoising
Video Denoising

The Redundant Case: Visual Comparisons

Original Noisy

Average SSIM: 1.000 Average SSIM: 0.263
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Grayscale Image Denoising
Color Image Denoising
Video Denoising

The Redundant Case: Visual Comparisons

Original Multivariate SURE-LET

Average SSIM: 1.000 Average SSIM: 0.739
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The Redundant Case: Visual Comparisons

NLmeans Multivariate SURE-LET

Average SSIM: 0.662 Average SSIM: 0.739
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Extension to Poisson-Gaussian Denoising

Grayscale Image Denoising
Color Image Denoising
Video Denoising

The Redundant Case: Visual Comparisons

Fast TV Multivariate SURE-LET

Average SSIM: 0.704 Average SSIM: 0.739
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The Redundant Case: Visual Comparisons

BLS-GSM Multivariate SURE-LET

Average SSIM: 0.732 Average SSIM: 0.739
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SURE-LET CBM3D Dabov et al. 2007
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More Realistic Measurement Model

Most light intensity measurements y = [y1 . . . yN ]T are more accurately
modeled as a vector z of independent Poisson random variables
degraded by independent AWGN b:

y = z + b, where z ∼ P(x) and b ∼ N (0, σ2Id)

This model accounts for:

Random nature of photon emission/detection
! signal-dependent degradation;

Thermal instabilities of the electronic devices
! signal-independent noise.

Only few denoising algorithms consider this hybrid measurement model.
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Two Main Approaches for Poisson Intensity Estimation

Variance-stabilizing transform (VST):

Design a transform T such that T(y)− T(x) D−→
x→+∞

N (0, 1)

Anscombe and its extension to Poisson-Gaussian noise
Murtagh et al. 1995;
Haar-Fisz Fryzlewicz & Nason 2004;
Multiscale VST Jansen 2006, Fadili et al. 2008.

Direct handling of Poisson statistics:
Almost exclusively in a Bayesian framework

Multiscale Bayesian model Nowak et al. 1999;
Hypothesis testing Kolaczyk 1999, Fadili et al. 2007;
Penalized likelihood Sardy et al. 2004, Willett & Nowak 2007.

Potential of purely data-driven, prior-free
MMSE techniques remains under-exploited.
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PURE: Poisson-Gaussian Unbiased Risk Estimate

Let y = z + b with z ∼ P(x) independent of b ∼ N (0, σ2Id). Let
f(y) = [fn(y)]1≤n≤N such that E {|∂fn(y)/∂yn|} < +∞. Then,

PURE =
1
N

(
‖f(y)‖2 − 2yTf−(y) + 2σ2div

{
f−(y)

})
+

1
N

(
‖y‖2 − 1Ty

)
− σ2

is an unbiased estimate of the expected MSE; i.e.,

E {PURE} =
1
N

E
{
‖f(y)− x‖2

}

Notation: f−(y) = [fn(y − en)]1≤n≤N , where (en)1≤n≤N is the
canonical basis of RN .
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PURE: Poisson-Gaussian Unbiased Risk Estimate

Sketch of proof: Need to estimate

E
{
‖f(y)− x‖2

}
=

∑

n

(
E

{
f2

n(y)
}
− 2 E {xnfn(y)}︸ ︷︷ ︸

1

+ x2
n︸︷︷︸
2

)

1 Poisson’s Lemma Hudson 1978, Tsui & Press 1982:

E {xnfn(y)} = E {xnfn(z + b)}
= E {znfn(z + b− en)}

Stein’s Lemma Stein 1981:

E {znfn(z + b− en)} = E {ynfn(y − en)}− E {bnfn(z + b− en)}
= E {ynfn(y − en)}− σ2E {∂fn(y − en)/∂yn}

2 Notice that: x2
n = E {xnyn}

1= E {yn(yn − 1)}− σ2
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The Unnormalized Haar Wavelet Transform

Denoising by interscale thresholding of the unnormalized Haar-wavelet
coefficients: set s0 = y, then for j = 1, 2, . . . , J

1− z−1 %&'(
↓2 dj

1 + z−1 %&'(
↓2 sj!

!

!sj−1 #

!

!

θj(dj , sj)

Same scheme
applied recursively

δ̂j

ς̂j

%&'(
↑2 1−z

2

%&'(
↑2 1+z

2
!

!

⊕! ς̂j−1

Haar conservation properties:

Error energy: MSE =
2−J

N
‖ς̂J − ςJ‖2 +

J∑

j=1

2−j

N
‖δ̂j − δj‖2

Statistics: sj ∼ P(ςj) + N (0, σ2
j Id), where σ2

j = 2jσ2

Allows independent processing of each wavelet subband.
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Interscale Haar-Wavelet-Domain PURE

Let θ(d, s) = θj(dj , sj) be an estimate of the noise-free wavelet coefficients
δ = δj . Define θ+(d, s) and θ−(d, s) by


θ+

n (d, s) = θn(d + en, s− en)
θ−n (d, s) = θn(d− en, s− en)

Then the random variable1

PUREj =
1

Nj

“
‖θ(d, s)‖2 + ‖d‖2 − 1Ts−Njσ

2
j

−dT`θ−(d, s) + θ+(d, s)
´
− sT`θ−(d, s)− θ+(d, s)

´

+σ2
j

`
divd

˘
θ−(d, s) + θ+(d, s)

¯
+ divs

˘
θ−(d, s)− θ+(d, s)

¯´”

is an unbiased estimate of the expected MSE for the jth subband; i.e.,

E {PUREj} = E {MSEj}

1A similar result for pure Poisson noise can be found in Hirakawa et al. 2009.
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Interscale Haar-Wavelet-Domain LET

Lowpass: s Smoothed interscale predictor: p Magnitude of the highpass

z − z−1 ! used to predict−−−−−−−−−→

θn(dn, sn) = γn(p2
n)γn(d2

n)︸ ︷︷ ︸
small predictor and small coefficient

a1dn + γn(p2
n)γn(d2

n)︸ ︷︷ ︸
large predictor and small coefficient

a2dn +

γn(p2
n)γn(d2

n)︸ ︷︷ ︸
small predictor and large coefficient

a3dn + γn(p2
n)γn(d2

n)︸ ︷︷ ︸
large predictor and large coefficient

a4dn +

γn(p2
n)a5d̃n + γn(p2

n)a6d̃n︸ ︷︷ ︸
sign consistency enhancement

where γn(x) = e−
|x|

12(|sn|+σ2) and γn(x) = 1− γn(x).
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PURE for Arbitrary Nonlinear Processing

Problem: PURE is time-consuming to compute for an arbitrary nonlinear
processing due to the term: f−(y) = [fn(y − en)]1≤n≤N .

Solution: First-order Taylor series approximation of f−(y) given by

f−(y) 3 f(y)− ∂f(y), where ∂f(y) = [∂fn(y)
∂yn

]1≤n≤N .

Consequently, provided that each fn varies slowly, PURE is
well-approximated by

P̂URE =
1
N

(
‖f(y)‖2 − 2yT(f(y)− ∂f(y)) + 2σ2div {f(y)− ∂f(y)}

)
+

1
N

(‖y‖2 − 1Ty)− σ2
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PURE for Arbitrary Transform-Domain Processing

y D

Linear
decomposition

Image Domain

w = Dy
Θ

Nonlinear
processing

Transform Domain

D

Linear noise
variance estimation

w = Dy

ŵ = Θ(w,w)

Image Domain

R

Linear
reconstruction

x̂ = f(y)

For pointwise processing Θ(w,w) = [θl(wl, wl)]1≤l≤L, P̂URE becomes:

P̂URE =
1

N
‖f(y)− y‖2 +

2

N

“
Θ1(w,w)T(D • RT)y + Θ2(w,w)T(D • RT)y

”
+

2σ2

N

“
diag {DR}TΘ1(w,w) + diag

˘
DR

¯T
Θ2(w,w)

”
−

2σ2

N

“
diag {(D • D)R}TΘ11(w,w)− diag

˘
(D • D)R

¯T
Θ22(w,w)−

2 diag
˘
(D • D)R

¯T
Θ12(w,w)

”
−

1

N
1Ty − σ2
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Example: Undecimated Haar Thresholding

Undecimated Haar filterbank: H(z) = 1√
2
(1 + z) and G(z) = 1√

2
(1− z)

!y

G(z−1)

H(z−1)

!w1

G(z−2)

H(z−2)

w2

lowpass w3

!

!

w1 !

w2

θ1(w1,w1)

θ2(w2,w2)

1
2G(z)

1
2G(z2)

1
2H(z2)

⊕ 1
2H(z)

⊕!x̂ = f(y)

Subband-adaptive thresholding function:

θj(w, w) = aj,1 · w + aj,2 · w exp

 
−
„

w
3tj(w)

«8
!

with signal-dependent threshold: tj(w) =
p

2−j/2|w| + σ2
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Some PSNR Comparisons
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Haar PURE-LET (baseline) Haar-Fisz Fryzlewicz & Nason 2004

Haar PURE-LET Anscombe+BLS-GSM Portilla et al. 2003

(5 cycle-spins) Platelet Willett & Nowak 2007

Redundant PURE-LET PH-HMT Lefkimmiatis et al. 2009
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Some Visual Comparisons

Original Noisy

Average SSIM: 1.000 Average SSIM: 0.385
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Some Visual Comparisons

Original Redundant PURE-LET

Average SSIM: 1.000 Average SSIM: 0.543

Thierry Blu Image Denoising — The SURE-LET Methodology 70 / 80

Image Denoising Methods
The SURE-LET Methodology

SURE-LET Algorithmics
Algorithm Comparisons

Extension to Poisson-Gaussian Denoising

Poisson-Gaussian MSE Estimate
Interscale Haar-Wavelet Algorithm
Redundant Algorithm
Some Comparisons
Fluorescence Microscopy Results

Some Visual Comparisons

Haar-Fisz Redundant PURE-LET

Average SSIM: 0.445 Average SSIM: 0.543
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Some Visual Comparisons

Anscombe+BLS-GSM Redundant PURE-LET

Average SSIM: 0.432 Average SSIM: 0.543
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Some Visual Comparisons

Platelet Redundant PURE-LET

Average SSIM: 0.420 Average SSIM: 0.543
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Some Visual Comparisons

Haar PURE-LET Redundant PURE-LET

Average SSIM: 0.520 Average SSIM: 0.543
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Fluorescence Microscopy

A fluorescence microscope is an imaging system that performs:

Excitation of fluorescent constituents of a specimen;

Focusing/filtering of the fluorescent light emitted from the specimen;

Amplification/quantification of the light received at the ocular.

Combined with protein tagging (e.g., with GFP), fluorescence microscopy
allows to image selected fine structures of living cells.

Optical description

Dynodes Photocathode 
Window 

Focusing 
electrode 

Anode 

Photomultiplier tube
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Noise in Fluorescence Microscopy

Three main sources:

Photon-counting noise: major source of noise due to the random
nature of photon emission/detection (signal-dependent);

Measurement noise: thermal instabilities of the various electronic
devices (signal-independent);

Other: autofluorescence and bleaching (reduced by short exposure
and low fluorophore concentration).

! Measurement model: scaled Poisson rdv degraded by AWGN

y ∼ αP(x) + N (µ, σ2)

α: detector gain µ: detector offset σ2: AWGN variance
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Noise Parameters Estimation

Affine relationship between sample-mean and sample-variance:

µy
def= E {y} = αx + µ

σ2
y

def= Var {y} = α2x + σ2

}
→ σ2

y = αµy + σ2 − αµ︸ ︷︷ ︸
β

Simple estimation procedure: (similar to Lee 1989, Boulanger et al. 2007)

1 Compute µy and σ2
y in many small regions of the noisy image.

2 Perform a robust linear regression on the set of points (µy, σ2
y).

3 Identify α as the slope of the fitted line and β as the ordinate at
µy = 0.

4 σ2 and µ can be estimated independently in signal-free regions and
cross-checked with β.
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Experiments: 2D Sample

Specifications:

512× 512 image acquired on a confocal microscope at the Imaging
Center of the IGBMC, France;

C. elegans embryo labeled with 3 fluorescent dyes;

Each channel has been processed independently.

Raw Data UWT PURE-LET
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Experiments: 3D Sample

Specifications:
1024× 1024× 64 volume of confocal microscopy images;
Fibroblast cells labeled with DiO and 100nm fluorescent beads;
Voxel resolution: 0.09× 0.09× 0.37µm3.

Raw Data Multislice Haar PURE-LET
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Experiments: 3D Sample

Specifications:
1024× 1024× 64 volume of confocal microscopy images;
Fibroblast cells labeled with DiO and 100nm fluorescent beads;
Voxel resolution: 0.09× 0.09× 0.37µm3.

3D Median Filter Multislice Haar PURE-LET
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Experiments: 2D Timelapse Sequence

Specifications:
448× 512× 100 image sequence of confocal microscopy images;
C. elegans embryos labeled with GFP;

Raw Data Multiframe Haar PURE-LET
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Conclusion

Presentation of a generic methodology for building signal/image denoising
algorithms.

Advantages:

Does not require hypotheses on the signal, only on the noise (SURE/PURE);

No parameters to tune;

Fast, non-iterative (SURE/PURE + LET);

Natural construction of multivariate/redundant thresholding rules.

Although they involve only simple thresholding operations in a transformed
domain (single step, no training, no block-matching, no direction/edge
detection), the proposed algorithms reach the state of the art in image/video
denoising.
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A New SURE Approach to Image Denoising:
Interscale Orthonormal Wavelet Thresholding

Florian Luisier, Thierry Blu, Senior Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract—This paper introduces a new approach to or-
thonormal wavelet image denoising. Instead of postulating a
statistical model for the wavelet coefficients, we directly param-
etrize the denoising process as a sum of elementary nonlinear
processes with unknown weights. We then minimize an estimate of
the mean square error between the clean image and the denoised
one. The key point is that we have at our disposal a very accurate,
statistically unbiased, MSE estimate—Stein’s unbiased risk esti-
mate—that depends on the noisy image alone, not on the clean one.
Like the MSE, this estimate is quadratic in the unknown weights,
and its minimization amounts to solving a linear system of equa-
tions. The existence of this a priori estimate makes it unnecessary
to devise a specific statistical model for the wavelet coefficients.
Instead, and contrary to the custom in the literature, these co-
efficients are not considered random anymore. We describe an
interscale orthonormal wavelet thresholding algorithm based on
this new approach and show its near-optimal performance—both
regarding quality and CPU requirement—by comparing it with
the results of three state-of-the-art nonredundant denoising
algorithms on a large set of test images. An interesting fallout
of this study is the development of a new, group-delay-based,
parent–child prediction in a wavelet dyadic tree.

Index Terms—Image denoising, interscale dependencies, ortho-
normal wavelet transform, Stein’s unbiased risk estimate (SURE)
minimization.

I. INTRODUCTION

DURING acquisition and transmission, images are often
corrupted by additive noise that can be modeled as

Gaussian most of the time. The main aim of an image denoising
algorithm is then to reduce the noise level, while preserving
the image features. The multiresolution analysis performed by
the wavelet transform has been shown to be a powerful tool to
achieve these goals. Indeed, in the wavelet domain, the noise
is uniformly spread throughout the coefficients, while most of
the image information is concentrated in the few largest ones
(sparsity of the wavelet representation).

The most straightforward way of distinguishing information
from noise in the wavelet domain consists of thresholding the
wavelet coefficients. Of the various thresholding strategies,
soft-thresholding is the most popular and has been theoretically
justified by Donoho and Johnstone [1]. These authors have

Manuscript received February 28, 2006; revised September 14, 2006. This
work was supported in part by the Center for Biomedical Imaging (CIBM) of
the Geneva–Lausanne Universities and the EPFL, in part by the foundations
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shown that the shrinkage rule is near-optimal in the minimax
sense and provided the expression of the optimal threshold
value —called the “universal threshold”—as a function of
the noise power when the number of samples is large:

. The use of the universal threshold to denoise
images in the wavelet domain is known as VisuShrink [2].

Yet, despite its theoretical appeal, minimax is different from
mean-squared error (MSE) as a measure of error. A lot of work
has been done to propose alternative thresholding strategies that
behave better in terms of MSE than VisuShrink [3]–[6]. Donoho
and Johnstone themselves acknowledged this flaw and sug-
gested to choose the optimal threshold value by minimizing
Stein’s unbiased risk estimator (SURE) [7] when the data fail
to be sparse enough for the minimax theory to be valid. This
hybrid approach has been coined SureShrink by their authors [1].
Without challenging the soft-thresholding strategy, alternative
threshold value selections have been proposed as well. One of
the most popular was proposed by Chang et al., who derived
their threshold in a Bayesian framework, assuming a generalized
Gaussian distribution for the wavelet coefficients. This solution
to the wavelet denoising problem is known as BayesShrink [8]
and has a better MSE performance than SureShrink.

Beyond the pointwise approach, more recent investigations
have shown that substantially larger denoising gains can be ob-
tained by considering the intra- and interscale correlations of the
wavelet coefficients. In addition, increasing the redundancy of
the wavelet transform is strongly beneficial to the denoising per-
formances, a point to which we will come back later. We have
selected three such techniques reflecting the state-of-the-art in
wavelet denoising, against which we will compare our results.

• Portilla et al. [9]:1 Their main idea is to model the neigh-
borhoods of coefficients at adjacent positions and scales as
a Gaussian scale mixture (GSM); the wavelet estimator is
then a Bayes least squares (BLS). Their denoising method,
consequently called BLS-GSM, is the most efficient up-to-
date approach.

• Pižurica et al. [10]:2 Assuming a generalized Laplacian
prior for the noise-free data, their approach called Prob-
Shrink is driven by the estimation of the probability that a
given coefficient contains significant information—notion
of “signal of interest.”

• Sendur et al. [11], [12]:3 Their method, called BiShrink,
is based on new non-Gaussian bivariate distributions

1Available at http://www.decsai.ugr.es/~javier/denoise/software/index.htm,
with a 3 � 3 neighborhood as suggested by the authors.

2Available at http://www.telin.ugent.be/~sanja/, with a 3 � 3 neighborhood
and a threshold value T = � as suggested by the authors.

3Available at http://www.taco.poly.edu/WaveletSoftware/denoise2.html,
with a 7 � 7 neighborhood as suggested by the authors.

1057-7149/$25.00 © 2007 IEEE
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Fig. 1. Principle of wavelet denoising.

to model interscale dependencies. A nonlinear bivariate
shrinkage function using the maximum a posteriori (MAP)
estimator is then derived. In a second paper, these authors
have extended their approach by taking into account the
intrascale variability of wavelet coefficients.

These techniques have been devised for both redundant and
nonredundant transforms.

Despite reports on the superior denoising performances of
redundant transforms [13], [14], we will only consider critically
sampled wavelet transforms in this paper. The rationale behind
our choice is that, since there is no added information—only
repeated information—in redundant transforms, we believe
that, eventually, a nonredundant transform may match the
performance of redundant ones. This would potentially be very
promising since the major drawback of redundant transforms
are their memory and CPU time requirements which limits their
routine use for very large images and, above all, usual volumes
of data.

More than a specific denoising algorithm, this paper is about
a powerful new method for optimizing beforehand—unaware of
the clean image—the performance of a denoising method. Here,
we want in particular to promote Stein’s unbiased risk estimate
(SURE) which is nothing less than an a priori estimation of the
MSE resulting from an arbitrary processing of noisy data. This
estimate turns out to be more accurate as more data are avail-
able, which is the case of images. Wavelet denoising methods
routinely involve a statistical description of the coefficient dis-
tribution [15], an estimation of the—always nonlinear—statis-
tical parameters and then, a search for the best denoising algo-
rithm for this type of statistics. In contrast, by taking advantage
of Stein’s MSE estimate, our method goes directly to the last
step, without caring for the statistical description: in short, we
do not make any explicit hypotheses on the clean image. In fact,
we do not consider it as a random process at all; the randomness
in our formulation follows from the Gaussian white noise alone.

Our approach consists, thus, in parametrizing the denoising
method and choosing the parameters that minimize this MSE
estimate. Previous techniques using the SURE required the min-
imization of complicated expressions for few nonlinear param-
eters [16], [17] or the use of parallel block iterative convex pro-
gramming [18]. What makes our approach more tractable and
efficient, is precisely the parametrizing method: a linear com-
bination of nonlinear denoising functions—thresholding func-
tions. Because of this “linear” choice, the minimization of the
MSE estimate merely amounts to solving a linear system of
equations, whose size is the number of weights in the linear
combination. Obviously, the number of parameters, or degrees
of freedom, is not a challenge and highly complicated thresh-
olding behaviors can be obtained this way. In the context of
image denoising, a univariate linear parametrization combined

with an implicit SURE minimization was already evoked in [19]
(sigmoidal filtering).

Because of the particular simplicity of Stein’s estimate for
pointwise denoising functions, we will not exploit the full po-
tential of the theory in this paper and will only consider inter-
scale pointwise thresholding in the orthonormal wavelet trans-
form. This excludes any intrascale considerations. Yet, we will
show that our denoising method performs better than the nonre-
dundant versions of the state-of-the-art methods [9], [10], [12]
on almost all tested images, to the noteworthy exception of Bar-
bara, which may require intrascale processing. Without any op-
timization attempts in our implementation, the comparison of
computation times already show how economical our method
is.

The paper is organized as follows. In Section II, we expose the
SURE theory for functions of one or several statistically inde-
pendent variables, and sketch the principles of our parametriza-
tion strategy. In Section III, we show how these principles can
be exploited to build an efficient pointwise thresholding func-
tion that outperforms all known pointwise techniques. In Sec-
tion IV, we extend the approach to a thresholding function that
involves coarser scale parents as well. On this occasion, we de-
velop a new formula to build a parent coefficient out of parent
subbands, and, finally, we compare our denoising method to the
best available nonredundant techniques (Section V). Both the
competitiveness and robustness of our method validate our new
approach as an attractive solution for image denoising.

II. THEORETICAL ELEMENTS

A. Problem Setting

Wavelet denoising consists of three main stages (see Fig. 1).
i) Perform a discrete wavelet transform (DWT) to the noisy

data which is the sum of the noise-free
data and the noise .

ii) Denoise noisy wavelet subimages
, by computing estimates of

the noise-free highpass subbands .
iii) Reconstruct the denoised image by applying the inverse

discrete wavelet transform (IDWT) on the processed
highpass wavelet subimages to obtain an estimate
of the noise-free data .

One can make two important remarks that set the context in
which we will develop our denoising method.

• We will only consider additive Gaussian white noise fol-
lowing a normal law defined by a zero mean and a known4

variance; i.e., .

4In practice, the noise standard deviation can be accurately estimated using a
robust median estimator [1].
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• We will only consider orthonormal wavelet transform; the
consequences are as follows.
— The mean-square error (MSE) in the space domain is a

weighted sum of the MSE of each individual subband

(1)

where we have introduced the notation

(2)

for the statistical mean estimate.
— The noise remains white and Gaussian with same sta-

tistics in the orthonormal wavelet domain, i.e.,
.

This allows us to apply a new denoising function independently
in every highpass subband, which means that our solution is
subband-adaptive like most of the successful wavelet denoising
approaches.

B. Stein’s Unbiased MSE Estimate (SURE)

In denoising applications, the performance is often measured
in terms of peak signal-to-noise ratio (PSNR), which can be
defined as follows:5

PSNR (3)

Since the noise is a random process, we introduce an expecta-
tion operator to guess the potential results obtained after
processing the noisy data . Note that the noise-free data is
not modeled as a random process; thus, .

The aim of image denoising is naturally to maximize the
PSNR and, thus, to minimize the MSE defined in (1). In this
paper, we choose to estimate each by a pointwise function
of

From now on, we will drop the subband index since a new
denoising function is independently applied in each individual
subband. Our goal is to find a function that minimizes

(4)

In practice, we only have access to the noisy signal ,
and not to the original signal . In (4), we, thus, need to remove
the explicit dependence on . Note that, since has no influ-
ence in the minimization process, we do not need to estimate it.
The remaining problematic term is only . However, the
following theorem, a version of which was proposed by Stein in
[7], allows us to overcome this difficulty.

5For 8-bit images, usually max(x ) = 255 .

Theorem 1: Let be a (weakly) differentiable
function that does not explode at infinity.6 Then, the following
random variable:

(5)

is an unbiased estimator of the MSE, i.e.

Proof: We can develop the square error between and its
estimate as

where each term is well-defined thanks to the hypothesis on .
We then use the fact that the Gaussian probability density

satisfies to evaluate

by parts

(6)

Note that the integrated part vanishes
by hypothesis. This is known as Stein’s Lemma [7] and leads to

Since the expectation of a sum is equal to the sum of the
expectations, we can deduce that

As said before, there is no need to estimate , since this
term will disappear in the minimization. So, in practice, we will
consider which is the only part of the MSE estimate that de-
pends on the choice of the denoising function .

Note that Theorem 1 is still valid if is replaced by a two-
variable denoising function where is random, but in-
dependent7 of . In particular, in an orthonormal wavelet trans-
form—which transforms Gaussian white noise into Gaussian

6Typically, such that j�(z)j � Const � exp(az ) for a < (1=2� ).
7We recall that the randomness of y = x+ b only results from the Gaussian

white noise b, because no statistical model is assumed on the noise-free data x.
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white noise— can be any wavelet coefficients other than
itself.

The result given by Theorem 1 becomes particularly inter-
esting in image denoising applications, where the number of
samples is large. Indeed, by the law of large numbers, the stan-
dard deviation of is small; i.e., the estimate is close to its
expectation which is the MSE of the denoising procedure. As a
result, we can use as if it were the true MSE. The next section
shows how to use Theorem 1 efficiently.

C. SURE Approach to Image Denoising

Our denoising approach amounts to minimizing over a
range of reasonable denoising functions . We claim that this
will result in the minimization of the MSE over the same range
of functions, up to a small random error inversely proportional
to the square root of the number of samples. Before defining
more precisely which denoising functions we consider reason-
able, we can illustrate the search for the optimal value by
applying Theorem 1 when is the well-known soft-thresh-
olding function defined by

(7)

where .
By Theorem 1, the following expression has to be minimized

over

(8)

The last expression has its minimum exactly for the same as
the following formula:

(9)

which appears in [1].
The estimated optimal threshold value is then:

.
We must notice here that the so-called SureShrink procedure

developed by Donoho and Johnstone in [1] uses, in fact, a hybrid
scheme between the SURE theory and the universal threshold
(asymptotically optimal when the data exhibit a high level of
sparsity). Their minimization of is, thus, restricted
to , where is the universal
threshold. Our opinion, however, is that this restriction is un-
necessary—and often suboptimal—in image denoising appli-
cations where quality is measured by a mean-square criterium.
This is because, even though natural images have small wavelet
coefficients, these are not vanishing as required by the strict
sparsity results. It may even be argued that these small coef-
ficients convey important texture information and should not,
thus, be set to zero.

As we can verify in Fig. 3, the estimate of the theorem is sta-
tistically very reliable and robust, making it completely suitable
for an accurate estimation of the optimal threshold.

The soft-thresholding function (see Fig. 2) exhibits two main
drawbacks. First, it only depends on a single parameter , and,
thus, its shape is not very flexible; second, this dependency is not

Fig. 2. Soft-thresholding function.

linear. The consequence of these two remarks is that the sensi-
tivity of the soft-thresholding function with respect to the value
of is high, and that finding the optimal threshold requires a
nonlinear search algorithm.

In order to mitigate this issue, we choose to build a denoising
function that depends linearly on a set of parameters—degrees
of freedom—which we will determine exactly by minimizing .
The exact minimization is especially simple (linear) because the
MSE estimate has a quadratic form, much like the true MSE.
The key idea is, thus, to build a linearly parameterized denoising
function of the form

(10)

where is the number of parameters.
If we introduce (10) into the estimate of the MSE given in

Theorem 1 and perform differentiations over the , we obtain
for all

These equations can be summarized in matrix form as ,
where and are vectors of size

, and is a matrix of size . This
linear system is solved for by

(11)

which makes our approach very simple to implement. Note that,
since we are only interested in the minimum of , we are ensured
that there will always be a solution. When several solutions are
admissible (e.g., when ) any one of them will
be acceptable—in particular, the one provided by the pseudoin-
verse of . When this degeneracy occurs, we will conclude
that the parameters belong to some linear subspace and, thus,
that some of them are useless (the function is “over-parameter-
ized”). Of course, it is desirable to keep the number of degrees
of freedom as low as possible in order for the estimate to
keep a small variance.
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Fig. 3. Statistical accuracy of Theorem 1 illustrated with the soft-threshold: true MSE is in dashed lines, while its estimate � is in solid line. (a) N = 32 �

32 samples and � = 20. (b) N = 256� 256 samples and � = 20. The variance of the estimator decreases when the number of samples N increases, making
Theorem 1 statistically reliable for image denoising applications.

Fig. 4. Shape of our denoising function (12) in a particular subband, for various
K and optimized a ’s and T .

III. EFFICIENT SURE-BASED POINTWISE THRESHOLDING

In the previous section, we have proposed a general form of
denoising functions (10). The difficulty is now to choose suit-
able basis functions that will determine the shape of our de-
noising function. Therefore, we want the denoising function
to satisfy the following properties:

• differentiability: required to apply Theorem 1;
• anti-symmetry: the wavelet coefficients are not expected to

exhibit a sign preference;
• linear behavior for large coefficients: because should

asymptotically tend to .
After trying several types of , we have found that all of them
give quite similar results, when the above conditions are satis-
fied. We have, thus, decided to retain the following pointwise
denoising function:

(12)

We choose derivatives of Gaussians (DOG) because they decay
quite fast, which ensures a linear behavior close to the identity
for large coefficients (see Fig. 4).

In addition to the linear coefficients, our denoising function
contains two nonlinear dependencies: the number of terms
and the parameter . We will see later that they can be fixed
independently of the image.

If we consider only one parameter , our denoising
function simply becomes , which is the simplest
linear pointwise denoising function. The direct minimization of
the estimate provides

(13)

which is known as the James–Stein estimator [20].
Practical tests (with optimization over the parameter , inde-

pendently in each subband) on various images and with various
noise levels have shown that, as soon as , the results be-
come quite similar. It, thus, appears that it is sufficient to keep as
few as terms in (12). This is confirmed in Fig. 4, which
shows that the shape of our denoising function is nearly insen-
sitive to the variation of .

Moreover, the optimal value of the parameter is closely
linked to the standard deviation of the noise and in a lesser way
to the number of parameters . Its interpretation is quite similar
as in the case of the soft-threshold: It manages the transition
between low SNR to high SNR coefficients. In our case though,
the variations of the minimal (over ) when changes are
quite small (see Fig. 5), because our denoising function is much
more flexible than the soft-threshold. This sensitivity becomes
even smaller as the number of parameters increases. In fact,
this indicates that some parameters are, in that case, useless.

To summarize, we have shown that both the number of terms
and the parameter have only a minor influence on the

quality of the denoising process. This indicates that these two
parameters do not have to be optimized; instead, they can be
fixed once for all, independently of the type of image. From a
practical point of view, we suggest to use terms and

(see Fig. 5), leading to the following pointwise
thresholding function:

(14)
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Fig. 5. Sensitivity of our denoising function (14) with respect to variations of T . (a) Peppers 256 � 256. (b) MIT 256 � 256. (c) Lena 512 � 512. (d) Boat 512
� 512. We can notice that for all images and for the whole range of input PSNR the maximum of the PSNR is reached for (T =� ) ' 6.

TABLE I
COMPARISON OF OUR SUM OF DOG (14) WITH THE ORACLE SOFT-THRESHOLD (NONREDUNDANT SYM8, FOUR ITERATIONS)

Note: output PSNRs have been averaged over ten noise realizations.

Now, it is interesting to evaluate the efficiency of our denoising
function (14) and the accuracy of our minimization process
based on an estimate of the MSE. We propose to compare our
results with the best results that can be reached by the popular
soft-threshold with an optimal threshold choice (OracleShrink).
Two main observations naturally come out of Table I.

i) SURE is a reliable estimate of the MSE, since the re-
sulting average loss in PSNR is within 0.02 dB for all
images.

ii) Our sum of DOG (14) gives better PSNRs than the op-
timal soft-threshold.

IV. EFFICIENT SURE-BASED INTERSCALE THRESHOLDING

The integration of interscale information has been shown
to improve the denoising quality, both visually and in terms
of PSNR [9], [11], [21]. However, the gain brought is often
modest, especially considering the additional complications in-
volved by this processing [9]. In this section, we reformulate
the problem by first building a loose prediction of wavelet
coefficients out of a suitably filtered version of the lowpass
subband at the same scale, and then by including this predictor
in an explicit pointwise denoising function. Apart from the
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Fig. 6. Three stages of a fully decimated orthogonal wavelet transform and the
so-called parent–child relationship.

specific denoising problem addressed in this paper, we believe
more generally that other applications (e.g., compression, de-
tection, segmentation) could benefit as well from the theory
that leads to this predictor.

A. Building the Interscale Prediction

The wavelet coefficients that lie on the same dyadic tree (see
Fig. 6) are well known to be large together in the neighborhood
of image discontinuities. What can, thus, be predicted with rea-
sonably good accuracy are the position of large wavelet coef-
ficients out of parents at lower resolutions. However, getting
the actual values of the finer resolution scale coefficients seem
somewhat out of reach. This suggests that the best we can get
out of between-scale correlations is a segmentation between re-
gions of large and small coefficients. This comes back to the
idea of signal of interest proposed by Pižurica et al. in [10].

In a critically sampled orthonormal wavelet decomposition,
the parent subband is half the size of the child subband. The usual
way of putting the two subbands in correspondence is simply to
expand the parent by a factor two. Unfortunately, this approach
does not take into account the potential—noninteger— shift
caused by the filters of the DWT. We, thus, propose a more so-
phisticated solution, which addresses this issue and ensures the
alignment of image features between the child and its parent.

Our idea comes from the following observation: Let
and be, respectively, bandpass and lowpass outputs at
iteration of the filterbank. Then, if the group delay8 between
the bandpass and the lowpass filters are equal, no shift between
the features of and will occur. Of course, depending
on the amplitude response of the filters, some features may
be attenuated, blurred, or enhanced, but their location will
remain unchanged. When the group delays differ—which is the
general case—we, thus, propose to filter the lowpass subband

in order to compensate for the group delay difference with
. This operation is depicted in Fig. 7(a): is filtered in

the three bandpass “directions” by adequately designed filters
, , and , providing aligned—i.e., group delay

compensated—subbands with , , and .
Because the filters considered in this paper are separable, we

only have to consider 1-D group delay compensation (GDC).

8For example, the frequency gradient of the phase response, with a minus
sign.

Fig. 7. One way of obtaining the whole parent information out of the lowpass
subband: (a) 2-D illustration; (b) 1-D filterbank illustration.

Definition 1: We say that two filters and are group
delay compensated if and only if the group delay of the quotient
filter is zero identically; i.e., if and only if there
exists a (anti-) symmetric filter such that

.
The following result shows how to choose a GDC filter in a

standard orthonormal filterbank.
Theorem 2: For the output of the dyadic orthonormal filter-

bank of Fig. 7(b) to be group delay compensated, it is necessary
and sufficient that

(15)

where and is arbitrary.
Proof: Group delay compensation between the two filter-

bank branches is equivalent to [see Fig. 7(b)]

(16)

where is an arbitrary symmetric or
anti-symmetric filter.

Because the filters and are orthonormal, we have
, and, thus, (16) can be rearranged as

(17)



600 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 3, MARCH 2007

Fig. 8. Building an efficient interscale predictor, illustrated with a particular subband (HL ) of the noise-free Peppers image.

Fig. 9. Three-dimensional surface plot of a possible realization of our interscale thresholding function (21).

We observe that is an even polynomial because both
and are. If we denote

, then the symmetry of implies that

i.e., is and arbitrary zero-phase filter.
After substitution in (17), this finally leads us to the formu-

lation (15), as an equivalent characterization of the group delay
compensation in the filterbank of Fig. 7(b).

In addition to (15), the GDC filter has to satisfy a few
constraints:

• energy preservation, i.e., , in order for the
amplitude of the two outputs to be comparable;

• highpass behavior, in order for the filtered lowpass image
to “look like” the bandpass target;

• shortest possible response, in order to minimize the en-
largement of image features.

We can give a simple GDC filter in the case of symmetric
filters. The shortest highpass satisfying the GDC condi-
tion is in fact the simple gradient filter: . If the
symmetry is not centered at the origin but at a position , then

. This type of solution is still adequate
for near-symmetric filters such as the Daubechies symlets [22].
When the lowpass filter is not symmetric, we can simply take

in (15).
Finally, in order to increase the homogeneity inside re-

gions of similar magnitude coefficients, we apply a 2-D
smoothing filter—a normalized Gaussian kernel

—onto the absolute value of the GDC output.
In the rest of the paper, we will refer to the so-built interscale
predictor by .

B. Integrating the Interscale Predictor

Now that we have built the interscale predictor , we have
to suitably integrate it into our pointwise denoising function.
As mentioned before, this interscale predictor does not tell us
much about the actual value of its corresponding child wavelet
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TABLE II
DENOISING PERFORMANCE IMPROVEMENT BROUGHT BY OUR INTERSCALE STRATEGY (NONREDUNDANT SYM8, FOUR ITERATIONS)

Note: output PSNRs have been averaged over ten noise realizations.

TABLE III
COMPARISON OF SOME OF THE MOST EFFICIENT DENOISING METHODS (NONREDUNDANT SYM8, FOUR ITERATIONS)

Note: output PSNRs have been averaged over ten noise realizations. The best redundant results are obtained using the BLS-GSM 3 � 3 with an 8-orientations
full steerable pyramid; results slightly differ from the ones published in [9], because no boundary extension has been applied here.

coefficients. It only gives an indication on its expected mag-
nitude. Here, we, thus, propose to use the parent as a dis-
criminator between high SNR wavelet coefficients and low SNR
wavelet coefficients, leading to the following general pointwise
denoising function:

(18)

The linear parameters and are then solved for by mini-
mizing the MSE estimate defined in Theorem 1, for the linear
parameters and . The optimal coefficients are obtained in
the same way as in Section II-C and involve a solution similar
to (11).

Fig. 10. (a) Zoom at Barbara’s trousers at the finest scale of an orthonormal
wavelet transform: the stripes are clearly visible. (b) Zoom at Barbara’s trousers
at the next coarser scale: the stripes are not visible anymore.
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Fig. 11. Comparison of our interscale dependent thresholding function (21) with the best possible soft-threshold OracleShrink and with our simple univariate
denoising function (14). (a) Peppers 256 � 256. (b) House 256 � 256. (c) Lena 512 � 512. (d) Barbara 512 � 512.

A first thought choice for the function in (18) is simply the
Heaviside function

if
if

(19)

where can be interpreted as a decision factor. However, since
the classification will not be perfect (i.e., some small parent co-
efficients may correspond to high-magnitude child coefficients,
and vice versa), it is more appropriate to use a smoother deci-
sion function. Instead, we, thus, propose to use

(20)

As in the univariate case (Section III), we suggest to use a sum of
DOG with terms for each class of wavelet coefficients
and9 , leading to the following bivariate denoising
function:

(21)

Table II quantifies the improvement introduced by this new
way of integrating the interscale information, as compared to
the usual expansion of the parent subband.

9Side investigations have shown that the T needed in (20) and the one opti-
mized in Section III can be chosen identical for optimal performances and equal
to
p
6�.

V. EXPERIMENTAL RESULTS

In this section, we compare our interscale dependent thresh-
olding function (21) with some of the best state-of-the-art
techniques: Sendur’s et al. bivariate MAP estimator with local
variance estimation, Portilla’s BLS-GSM and Pižurica’s Prob-
Shrink.

In all comparisons, we use a critically sampled orthonormal
wavelet basis with eight vanishing moments (sym8) over four
decomposition stages.

A. PSNR Comparisons

We have tested the various denoising methods for a repre-
sentative set of standard 8-bit grayscale images such as Al,
Barbara, Boat, Crowd, Goldhill (size 512 512) and Pep-
pers, House, Bridge (size 256 256), corrupted by simulated
additive Gaussian white noise at eight different power levels

, which corresponds to PSNR
decibel values [34.15, 28.13, 24.61, 22.11, 20.17, 18.59, 14.15,
8.13]. The denoising process has been performed over ten
different noise realizations for each standard deviation and the
resulting PSNRs averaged over these ten runs. The parameters
of each method have been set according to the values given by
their respective authors in the corresponding referred papers.
Variations in output PSNRs are, thus, only due to the denoising
techniques themselves. This reliable comparison was only
possible thanks to the kindness of the various authors who
have provided their respective Matlab codes on their personal
websites.

Table III summarizes the results obtained. To the noteworthy
exception of Barbara, our results are already competitive with
the best techniques available that consider nonredundant or-
thonormal transforms. We stress again that our processing con-
sists of a simple pointwise threshold, driven by interscale infor-
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Fig. 12. (a) Part of the noise-free 256 � 256 House image. (b) Noisy version of it: PSNR = 18:59 dB. (c) Denoised result using the BayesShrink: PSNR =

27:57 dB. (d) Denoised result using the BiShrink 7 � 7: PSNR = 28:19 dB. (e) Denoised result using the BLS-GSM 3 � 3: PSNR = 28:73 dB. (f) Denoised
result using our interscale dependent thresholding function (21): PSNR = 28:96 dB.

mation; i.e., without taking intrascale dependencies into consid-
eration, contrary to the best performing methods (ProbShrink,
BiShrink and BLS-GSM).

When looking closer at the results, we observe the following.
• Our method outperforms the classical BayesShrink by

more than 1 dB on average.
• Our method gives better results than Sendur’s BiShrink

7 7 which integrates both the inter- and the intrascale de-
pendencies (average gain of 0.6 dB).

• Our method gives better results than Pižurica’s ProbShrink
3 3 which integrates the intrascale dependencies (av-
erage gain of 0.4 dB).

• We obtain similar or sometimes even better results than
Portilla’s BLS-GSM 3 3 for most of the images.

• For the Barbara image, our method is among the worst
performers together with the pointwise BayesShrink. Our
explanation for this is that some local information (espe-
cially the texture in Barbara’s trousers) is completely lost
at coarser scales (see Fig. 10). Interscale correlations may
be too weak for this image, which indicates that an effi-
cient denoising process may require intrascale information
as well.

• The gap between our nonredundant SURE-based approach
and the best up-to-date redundant results lies in the range
of 0.5–1 dB for most images.

It is instructive to compare the results (see Fig. 11) obtained
with our interscale dependent thresholding function (21), with
the ones obtained with our simple univariate denoising function
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Fig. 13. (a) Part of the noise-free 512� 512 Al image. (b) Noisy version of it: PSNR = 14:15 dB. (c) Denoised result using the BayesShrink: PSNR = 26:71 dB.
(d) Denoised result using the BiShrink 7 � 7: PSNR = 27:12 dB. (e) Denoised result using the BLS-GSM 3 � 3: PSNR = 27:34 dB. (f) Denoised result using
our interscale dependent thresholding function (21): PSNR = 27:66 dB.

(14). The improvement (often more than 1 dB) is quite signifi-
cant for most standard images (see Fig. 11). Yet, for images that
have substantial high-frequency contents, the integration of in-
terscale dependencies does not lead to such an impressive gain.
On the same graphs, we have also included the results obtained
with the OracleShrink, showing a systematic underperformance
with regards to even our simple univariate denoising function.

B. Visual Quality

Although there is no consensual objective way to judge the
visual quality of a denoised image, two important criteria are

widely used: the visibility of processing artifacts and the conser-
vation of image edges. Processing artifacts usually result from
a modification of the spatial correlation between wavelet coef-
ficients (often caused by the zeroing of small neighboring co-
efficients) and are likely to be reduced by taking into account
intrascale dependencies. Instead, image edge distortions usu-
ally arise from modifications of the interscale coefficient cor-
relations. The amplitude of these modifications is likely to be
reduced by a careful consideration of interscale dependencies
in the denoising function.

Since our algorithm only includes interscale considerations,
we expect it to be specifically robust to noise with regards to
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TABLE IV
RELATIVE COMPUTATION TIME OF VARIOUS DENOISING TECHNIQUES

Note: The computation times have been averagde over twenty runs.

edge preservation. Additionally, we would like to stress that our
method exhibits the fewest number of artifacts, which we at-
tribute to the fact that we are never forcing any wavelet coef-
ficients to zero. These observations are illustrated in Figs. 12
and 13.

C. Computation Time

It is also interesting to evaluate the various denoising methods
from a practical point of view: the computation time. Indeed, the
results achieved by overcomplete representation are admittedly
superior than the ones obtained by critically sampled wavelet
transforms, but their weakness is the time they require (nearly
27 s on a Power Mac G5 workstation with 1.8-GHz PowerPC
970 CPU for 256 256 images to obtain the redundant results
reported in Table III). With our simple univariate method (14),
the whole denoising process (including four iterations of an or-
thonormal wavelet transform) lasts approximately 0.4 s for 256

256 images (1.6 s for 512 512 images), using a similar
workstation. With our interscale dependent thresholding func-
tion (21), the whole denoising task takes between 0.6–0.7 s for
256 256 images and about 2.7 s for 512 512 images. To
compare with, Portilla’s BLS-GSM with a 3 3 window size
lasts approximately 10 s for 512 512 images, using the same
orthonormal transform. Besides giving competitive results, our
method is, thus, also much faster.

Table IV summarizes the relative computation time of the var-
ious methods considered in this paper. Note that the main part
of the ProbShrink is contained in a precompiled file, making its
execution time a bit faster than the other algorithms which are
fully implemented in Matlab.

VI. CONCLUSION

We have presented a new approach to orthonormal wavelet
image denoising that does not need any prior statistical mod-
elization of the wavelet coefficients. This approach is made pos-
sible thanks to the existence of an efficient estimate of the MSE
between noisy and clean image—the SURE—that is based on
the noisy data alone. Its minimization over a set of denoising
processes automatically provides a near-optimal solution in the
sense of the a posteriori MSE. For efficiency reasons, we have
chosen this set to be a linear span of basic nonlinear mappings.

Using this approach, we have designed an image denoising al-
gorithm that takes into account interscale dependencies, but dis-
cards intrascale correlations. In order to compensate for features
misalignment, we have developed a rigorous procedure based
on the relative group delay between the scaling and wavelet fil-
ters—group delay compensation. The information brought by
this new interscale predictor is used to classify smoothly be-
tween high- and low-SNR wavelet coefficients.

The comparison of the denoising results obtained with our
algorithm, and with the best state-of-the-art nonredundant tech-
niques (that integrate both inter- and intrascale dependencies),
demonstrate the efficiency of our SURE-based approach which
gave the best output PSNRs for most of the images. The vi-
sual quality of our denoised images is moreover characterized
by fewer artifacts than the other methods.

We are currently working on an efficient integration of the
intrascale correlations within the SURE-based approach. Our
goal is to show that the consideration of inter- and intrascale
dependencies brings denoising gains that rival the quality of the
best redundant techniques such as BLS-GSM.
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The SURE-LET Approach to Image Denoising
Thierry Blu, Senior Member, IEEE, and Florian Luisier

Abstract—We propose a new approach to image denoising,
based on the image-domain minimization of an estimate of the
mean squared error—Stein’s unbiased risk estimate (SURE). Un-
like most existing denoising algorithms, using the SURE makes it
needless to hypothesize a statistical model for the noiseless image.
A key point of our approach is that, although the (nonlinear)
processing is performed in a transformed domain—typically,
an undecimated discrete wavelet transform, but we also address
nonorthonormal transforms—this minimization is performed
in the image domain. Indeed, we demonstrate that, when the
transform is a “tight” frame (an undecimated wavelet transform
using orthonormal filters), separate subband minimization yields
substantially worse results. In order for our approach to be
viable, we add another principle, that the denoising process can
be expressed as a linear combination of elementary denoising
processes—linear expansion of thresholds (LET). Armed with the
SURE and LET principles, we show that a denoising algorithm
merely amounts to solving a linear system of equations which is ob-
viously fast and efficient. Quite remarkably, the very competitive
results obtained by performing a simple threshold (image-domain
SURE optimized) on the undecimated Haar wavelet coefficients
show that the SURE-LET principle has a huge potential.

I. INTRODUCTION

DURING acquisition and transmission, images are often
corrupted by additive noise. The main aim of an image

denoising algorithm is then to reduce the noise level, while
preserving the image features.

Transform domain image denoising—the most popular ap-
proaches to process noisy images consist in first applying some
linear—often multiscale—transformation, then performing a
usually nonlinear—and sometimes multivariate—operation on
the transformed coefficients, and finally reverting to the image
domain by applying an inverse linear transformation. Among
the many denoising algorithms to date, we would like to cite
the following ones.

• Portilla et al. [1]:1 The authors’ main idea is to model
the neighborhoods of coefficients at adjacent positions and
scales as a Gaussian scale mixture (GSM); the wavelet
estimator is then a Bayes least squares (BLS). The re-
sulting denoising method, consequently called BLS-GSM,

Manuscript received March 20, 2007; revised July 13, 2007. This work was
supported in part by the Center for Biomedical Imaging (CIBM) of the Geneva-
Lausanne Universities and the EPFL, in part by the foundations Leenaards and
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200020-109415. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Pier Luigi Dragotti.

The authors are with the Biomedical Imaging Group (BIG), Swiss Federal In-
stitute of Technology (EPFL), CH-1015 Lausanne, Switzerland (e-mail: thierry.
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1Available at http://www.io.csic.es/PagsPers/JPortilla/denoise/soft-
ware/index.htm.

is the most efficient up-to-date approach in terms of peak
signal-to-noise ratio (PSNR).

• Pižurica et al. [2]:2 Assuming a generalized Laplacian
prior for the noise-free data, the authors’ approach called
ProbShrink is driven by the estimation of the probability
that a given coefficient contains significant informa-
tion—notion of “signal of interest”.

• Sendur et al. [3], [4]:3 The authors’ method, called
BiShrink, is based on new non-Gaussian bivariate distri-
butions to model interscale dependencies. A nonlinear
bivariate shrinkage function using the maximum a poste-
riori (MAP) estimator is then derived. In a second paper,
these authors have extended their approach by taking into
account the intrascale variability of wavelet coefficients.

These techniques have been devised for both redundant and
nonredundant transforms.

While the choice of the transformation is easily justified
by well-accepted general considerations—e.g., closeness to
the Karhunen–Loève transformation, “sparsity” of the trans-
formed coefficients, “steerability” of the transformation—the
nonlinear operation that follows is more frequently based on
ad hoc statistical hypotheses on the transformed coefficients
that are specific to each author. The final performance of the
algorithms—typically, PSNR results—is, thus, inconclusively
related to the accuracy of this modelization.

SURE-LET denoising—In this paper, we want to promote
quite a different point of view, which avoids any a priori
hypotheses on the noiseless image—in particular, no random
process modelization—but for the usual white Gaussian noise
assumption. This approach is made possible by the existence of
an excellent unbiased estimate of the mean squared error (MSE)
between the noiseless image and its denoised version—Stein’s
unbiased risk estimate (SURE). If we evaluate denoising per-
formances by comparing PSNRs, then this MSE is precisely
the quantity that we want to minimize. Similar to the MSE, the
SURE takes the form of a quadratic expression in terms of the
denoised image (see Theorem1).

Our approach, thus, consists in reformulating the denoising
problem as the search for the denoising process that will
minimize the SURE—in the image domain. In practice, the
process is completely characterized by a set of parameters.
Now, to take full advantage of the quadratic nature of the
SURE, we choose to consider only denoising processes that
can be expressed as a linear combination of “elementary”
denoising processes—linear expansion of thresholds (LET).
This “SURE-LET” stategy is computationally very efficient
because minimizing the SURE for the unknown weights gives
rise to a mere linear system of equations, which in turn allows to

2Available at http://telin.ugent.be/~sanja/.
3Available at http://taco.poly.edu/WaveletSoftware/denoise2.html.
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consider processes described by quite a few parameters. There
is, however, a tradeoff between the sharpness of the description
of the process which increases with the number of parameters,
and the predictability of the MSE estimate, which is inversely
related to the number of parameters. We have already applied
our approach within a nonredundant, orthonormal wavelet
framework, and showed that a simple thresholding function that
takes interscale dependences into account is very efficient, both
in terms of computation time and image denoising quality4 [5].

SURE-related literature—Despite its simple MSE justifica-
tion (a mere integration by parts), the SURE does not belong to
the toolbox of the standard signal processing practitioner—al-
though it is, of course, much better established among statisti-
cians. The best-known use of the SURE in image denoising is
Donoho’s SureShrink algorithm [6] in which a soft-threshold
is applied to the orthonormal wavelet coefficients, and where
the threshold parameter is optimized separately in each sub-
band through the minimization of the SURE. Otherwise, the
approach that is most closely related to SURE-LET—but for a
multichannel image denoising application—is the contribution
by Pesquet and his collaborators [7]–[9] which perform sepa-
rate in-band minimization of the SURE applied to a denoising
process that contains both nonlinear and linear parameters.

Yet, the specificity of SURE-LET for redundant or
nonorthonormal transforms lies in the fact that this minimiza-
tion is performed in the image domain. While it is true that,
due to some Parseval-like MSE conservation, image domain
MSE/SURE minimization is equivalent to separate in-band
MSE/SURE minimization whenever the analysis transforma-
tion is—nonredundant—orthonormal [5], this is grossly wrong
as soon as the transformation is, either redundant (even when
it is a “tight frame”) or nonorthonormal. This is actually the
observation made by those who apply soft-thresholding to an
undecimated wavelet transform: the SureShrink threshold de-
termination yields substantially worse results than an empirical
choice (see Fig. 3). Unfortunately, this may lead practitioners
to wrongly conclude that the SURE approach is unsuitable for
redundant transforms, whereas a correct diagnosis should be
that it is the independent subband approach that is flawed.

Organization of the paper—In Section II, we expose the mul-
tivariate SURE theory for vector functions, and sketch the prin-
ciples of our linear parametrization strategy; we also address
practical issues like how the SURE is modified depending on
the choice for boundary conditions, and provide explicit SURE
formulæ for pointwise thresholding. In Section III, because we
want to exemplify the power of the SURE-LET approach, we re-
strict the processing to simple pointwise thresholds in the trans-
formed domain and show that, by using an undecimated Haar
wavelet transform, a SURE image-domain minimization yields
very competitive results with the best up-to-date algorithms [1],
[2], [4] (Section IV-C). In comparison, without any optimiza-
tion attempts in our implementation, the SURE-LET method is
quite CPU-time friendly. Yet, a huge margin of improvement
can be envisioned if intrascale and interscale dependencies are
taken into account. Both the competitiveness and robustness of
our method validate our new approach as an attractive solution
for image denoising.

4See our demo http://bigwww.epfl.ch/demo/suredenoising/.

II. THEORETICAL BACKGROUND

We consider the standard simplified denoising problem: given
noisy data , for where is a white
Gaussian noise of variance , find a reasonably good estimate

of . Our goal is, thus, to find a function of
the noisy data alone which will
minimize the MSE defined by

(1)

A. Unbiased Estimate of the MSE

Since we do not have access to the original signal , we
cannot compute —the Oracle MSE. However,
without any assumptions on the noise-free data, we will see that
it is possible to replace this quantity by an unbiased estimate
which is a function of only. This has an important conse-
quence: contrary to what is frequently done in the literature,
the noise-free signal is not modeled as a random process in our
framework—we do not even require to belong to a specific
class of signals. Thus, the observed randomness of the noisy
data originates only from the Gaussian white noise .

The following lemma which states a version of Stein’s lemma
[10], shows how it is possible to replace an expression that con-
tains the unknown data by another one with the same expec-
tation, but containing the known data only.

Lemma 1: Let be an -dimensional vector function
such that for . Then,
under the additive white Gaussian noise assumption, the expres-
sions and have the same ex-
pectation

(2)
where stands for the mathematical expectation operator.

Proof: We use the fact that a Gaussian white probability
density satisfies . Thus, denoting
by the partial expectation over the th component of the
noise, we have the following sequence of equalities:5

5To be fully rigorous, we need to assume that f (y)q(y �x ) tends to zero
with jy j, which is very broadly ensured whenever f (y) is bounded by some
fastly increasing function, like exp(kyk =2� ) where � > �.
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TABLE I
COMPARISON OF SOME OF THE MOST EFFICIENT DENOISING METHODS

Note: Output PSNRs have been averaged over eight noise realizations.

Now, taking the expectation over the remaining components of
the noise, we get

Since the expectation is a linear operator, (2) follows directly.
By applying Lemma 1 to the expression of the MSE, we then

get Stein’s unbiased risk—or MSE—estimate (SURE).
Theorem 1: Under the same hypotheses as Lemma 1, the

random variable

(3)

is an unbiased estimator of the MSE, i.e.,

Proof: By expanding the expectation of the MSE, we have

where we have applied Lemma 1. Since the noise has zero
mean, we can replace by . A re-
arrangement of the terms then provides the result of Theorem
1.

We want to emphasize here the fact that in image denoising
applications the number of samples is usually large—typically

—and, thus, the estimate has a small variance—typically
. This estimate is, thus, close to its expectation, which is

indeed the true MSE of the denoising process.

B. SURE-LET Approach

Our general denoising strategy consists in expressing the de-
noising process, , as a linear combination (LET: linear ex-
pansion of thresholds) of given elementary processes,

(4)

Here, the unknown weights are specified by minimizing the
SURE given by (3). It is also possible, in order to evaluate the
performance of the algorithm, to compare the result with what
the minimization of the MSE would provide—i.e., the Oracle
optimization (see Table I). A limitation of the LET approach
is that the elementary denoising functions have to fulfill
the hypothesis of Lemma 1 (differentiability); moreover, the
number of parameters must not be “too large” compared to
the number of pixels (typically, less than 100 for usual 256
256 images), in order for the variance of the SURE to remain
small.

The linearity of the expansion (4) is a crucial advantage
for solving the minimization problem, because the SURE is
quadratic in . The coefficients are, thus, the solution of
a linear system of equations

for

(5)

Note that, since the minimum of always exists, we are en-
sured that there will always be a solution to this system. When
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, the function is over-parameterized and con-
sequently, several sets of parameters yield equivalent results;
in that case, we may simply consider the solution provided by
the pseudoinverse of . Of course, it is also possible to reduce
the parametrization order so as to make the matrix full
rank—at no quality loss.

What this approach suggests is that the practitioner may
choose at will (restricted only by the differentiability constraint
of Theorem 1) a set of different denoising algorithms—ide-
ally with complementary denoising behaviors—and optimize a
weighting of these algorithms to get the best of them at once.

Among the potentially interesting algorithms are those that
work in a transformed domain such as:

• the nonredundant wavelet transforms, either orthogonal or
bi-orthogonal [11];

• the classical undecimated wavelet transform [12];
• the curvelet [13] transform;
• the contourlet [14] transform;
• the steerable pyramids [15], [16];

as well as the discrete cosine transform (DCT) or its overcom-
plete variant: the block discrete cosine transform (B-DCT). In
the remainder of this paper, we will consider only pointwise
thresholding in such transform domains.

C. Pointwise SURE-LET Transform Denoising

Transform domain denoising consists in first defining a
couple of linear transformations —decomposition—and

—reconstruction—such that : typically, is
a bank of decimated or undecimated filters. Once the size of the
input and output data are frozen, these linear operators are char-
acterized by matrices, respectively
and that satisfy the perfect re-
construction property . Then, the whole denoising
process boils down to the following steps.

1) Apply to the noisy signal to get the trans-
formed noisy coefficients .

2) Apply a pointwise thresholding function
.

3) Revert to the original domain by applying to the thresh-
olded coefficients , yielding the denoised estimate

.
This algorithm can be summarized as a function of the noisy

input coefficients

(6)

The SURE-LET approach suggests to express as a linear
expansion of denoising algorithms , according to

(7)

where are elementary pointwise thresholding functions.
As we have noticed in the previous subsection [see (5)], re-

trieving the parameters boils down to the resolution of a
linear system of equations. Note that this linear parametrization
does not imply a linear denoising; indeed, the thresholding func-
tions can be chosen nonlinear.

In the SURE-LET framework, Theorem 1 can be reformu-
lated in the following way.

Corollary 1: Let be defined according to (6) where de-
notes pointwise thresholding. Then the MSE between the orig-
inal and the denoised signal can be unbiasedly estimated by the
following random variable:

(8)

where
• is

a vector made of the diagonal elements of the matrix ;
• .

In particular, when and
where , are and ma-

trices, then where .
Proof: By applying Theorem 1, we only have to prove that

in the SURE-LET framework

(9)

By using the reconstruction formula , i.e.,
, and the decomposition formula

, i.e., , we can successively write the fol-
lowing equalities:

(10)

and, finally, conclude that
.

As it appears in this corollary, the computation of the diver-
gence term—i.e., of —is a crucial point.

1) Evaluation of the Divergence Term— : In the general
case where and are known only by their action on vectors,
and not explicitly by their matrix coefficients—typically, when
only and are specified—the analytical expression for
is quite painful to compute: in order to build , for each

it is necessary to compute the reconstruction
(where is the canonical basis of ), then

the decomposition and keep the th component. Given that
is of the order of —and even much more in the case of

redundant transforms—this process may be extremely costly,
even considering that it has to be done only once. Fortunately,
we can always compute a very good approximation of it using
the following numerical algorithm.

For
1) Generate a normalized Gaussian white noise .
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2) Apply the reconstruction matrix to to get the vector
of size .

3) Apply the decomposition matrix to to get the vector
of size .

4) Compute the element-by-element product of with
to get a vector of coefficients ,

which can be viewed as a realization of the random vector
.

end

An approximate value for is finally obtained by
averaging the realizations over runs (typically,
provides great accuracy)

(11)

The above algorithm is justified by the following lemma.
Lemma 2: Let be a normalized Gaussian white noise with
components. Then, we have the following equality:

(12)

Proof:

The numerical computation of can be performed
offline for various image sizes, since it does not depend specif-
ically on the image—but for its size—nor on the noise level.

2) Influence of the Boundary Extensions: One of the main
drawbacks of any transform-domain denoising algorithm is the
potential generation of boundary artifacts by the transform it-
self. Decreasing these effects is routinely done by performing
boundary extensions, the most popular choice being symmetric
extension and periodic extension. Thus, the effect of these ex-
tensions boils down to replacing the transformation by an-
other transformation, .

Indeed, usual boundary extensions are linear preprocessing
applied to the available data and can, therefore, be expressed
in a matrix form. In particular, for a given boundary extension
of length , i.e., characterized by an matrix , the
denoising process becomes

where (resp., ) is the matrix corresponding to the
linear transformation (resp., ) when the input signal is of
size . Any boundary handling can, therefore, be seen
as a modification of the decomposition matrix that must be
taken into account when computing the divergence term, namely

. This is where Lemma 2 is particularly useful: al-
though the implementation of the transformations and with
the adequate boundary extensions may be straightforward, the

explicit computation of the coefficients of the matrices and
is tedious—and Lemma 2 avoids this computation.

3) Applications to Standard Linear Transforms: In some par-
ticular cases of linear transforms, it is possible to easily compute

analytically, as shown in the following.
a) Nonredundant transforms: Here, we assume that the

number of samples is preserved in the transform domain, and
more precisely:

• is a full rank matrix of size ;
• is also a full rank matrix of size .

Then, the following lemma shows how to compute the diver-
gence term of Corollary 1.

Lemma 3: When is nonredundant, the divergence term
in (8) is given by

(13)

Proof: Because , we have
.

Note that, when additionally the transformation is or-
thonormal, the reconstruction matrix is simply the transpose
of the decomposition matrix, i.e., . Consequently, in
corollary 1, the SURE becomes

(14)

where is the th component of ; i.e., it is a sum of the spe-
cific MSE estimates for each transformed coefficient . The
optimization procedure can, thus, be performed separately in
the transform domain [5]. This is specific to orthonormal trans-
forms: nonredundant biorthogonal transforms do not enjoy this
property; i.e., the optimization in the transform domain is not
equivalent to the optimization in the image domain. Yet, Lemma
3 still applies and is actually particularly useful for applying our
SURE minimization strategy.

b) Undecimated filterbank transforms: Here, we will con-
sider linear redundant transforms characterized by analysis
filters and synthesis filters

as shown in Fig. 1.
A periodic boundary extension implementation of this struc-

ture gives rise to decomposition and reconstruction matrices
and made of circulant submatrices—i.e., diagonalized with
an -point DFT matrix— and of size each, with
coefficients

We then have the following lemma to be used in Corollary 1:



BLU AND LUISIER: SURE-LET APPROACH TO IMAGE DENOISING 2783

Fig. 1. Undecimated J-band analysis-synthesis filterbank.

Lemma 4: When and are periodically extended imple-
mentations of the analysis-synthesis filterbank of Fig. 1, the di-
vergence term in (8) is given by where

(15)

and where is the th coefficient of the filter .
The extension to filterbanks in higher dimensions is straightfor-
ward—the summation in (15) running over a multidimensional
index .

Proof: According to Corollary 1, we have to compute
. Since and are circulant matrices the

product is also circulant and is built using the -peri-
odized coefficients of the filter , i.e.,

the diagonal of which yields (15).
It is often assumed that and satisfy the biorthogonality

condition

(16)

where is a divisor of , because undecimated filterbanks
are usually obtained from critically sampled filterbanks—for
which (16) holds with . In this case, since (16)
actually specifies the coefficients , we find that

.
An example of such a transform is the standard undecimated

wavelet transform (UWT) which uses ( in two
dimensions) orthonormal filters (see Fig. 2). In that case, the
equivalent filters are given by

They satisfy (16) for . This shows that
for all and

. In a 2-D separable framework, these values
are extended straightforwardly, taking into account that the 2-D

filters still satisfy (16) for : the general result is, thus,
that is given by the (2-D) downsampling factor .

III. EXAMPLE OF A SURE-LET DENOISING ALGORITHM

In Section II-C, we have proposed a general form of denoising
function (7), which involves several degrees of freedom: the
linear transformation, the number of linear parameters, and
the thresholding functions . This section studies a possible
choice. The denoising performance of the resulting algorithm
will be evaluated in the next section.

First, we will restrict ourselves to the undecimated wavelet
transform,6 although other linear transforms may in some cases
be more advisable—e.g., the undecimated DCT, the curvelet
transform, etc

A. Choosing an Efficient Thresholding Function

A pointwise thresholding function is likely to be efficient if it
satisfies the following minimal properties:

• differentiability: required to apply Theorem 1—this rules
out pure hard-thresholds;

• anti-symmetry: we assume that the coefficients are not ex-
pected to exhibit a sign preference;

• linear behavior for large coefficients: because when a coef-
ficient is large, it can be kept unmodified—noise corruption
is negligible.

A good choice has been experimentally found to be of the form

where and (17)

in each band . The nonlinear term, , can be seen as a
regular approximation of a Hard-threshold.

Similarly to what was observed empirically in other set-
tings [5], [17], adding more thresholding functions only bring
marginal ( 0.1–0.2 dB) improvement to the overall denoising
quality.

B. Solving for the Linear Parameters

Finding the parameters that minimize the MSE estimate
amounts to solving the linear system of (5) in which it is nec-

essary to replace by

lowpass

where is the image obtained by zeroing all the bands
and processing the subband with the thresholding function

. Note that, as usual in denoising algorithms, the th
band, lowpass, is not processed.

As shown in Section II-C3b, the divergence term in
(5) has an exact expression, namely

. Alternatively, in particular, in the case of
nonperiodic boundary image extensions, it is possible to use
the approximate algorithm presented in Section II-C2.

C. Summary of the Algorithm

1) Perform a boundary extension on the noisy image.

6In our tests, the best performer was the Haar wavelet.
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Fig. 2. Classical undecimated wavelet filterbank for 1-D signal.

2) Perform an UWT on the extended noisy image.
3) For (number of bandpass subbands), For

1, 2:
a) Apply the pointwise thresholding functions defined

in (17) to the current subband .
b) Reconstruct the processed subband by setting all the

other subbands to zero to obtain .
c) Compute the first derivative of for each coefficient

of the current subband and build the corresponding
coordinate of as exemplified by (5).

end
end

4) Compute the matrix and deduce the optimal—in the
minimum SURE sense—linear parameters ’s using the
matrix formulation of (5).

5) The noise-free image is finally estimated by the sum of
each weighted by its corresponding SURE-optimized

.

IV. RESULTS

A. Wavelet-Domain Versus Image-Domain Optimization

Before comparing our SURE-LET approach with the best
state-of-the-art algorithms, we demonstrate here that, in order
to optimize the denoising process, it is essential to perform
the minimization in the image-domain. Instead, an indepen-
dent wavelet subband processing is suboptimal, often by a
significant margin, even in a “tight” frame representation.
This is because we usually do not have energy preservation
between the denoised “tight” frame coefficients and the
reconstructed image . This is not
in contradiction with the well-known energy conservation
between the “tight” frame coefficients and the noisy
image .

In Fig. 3, we compare a classical wavelet domain SURE-
based optimization of our thresholding function (17) with the
image domain optimization based on Lemma 4 in the frame-
work of the undecimated Haar wavelet transform. We notice
that the rigorous image domain optimization provides large im-
provements—up to 1 dB—over the independent in-band op-
timization. A closer examination of the “optimal” thresholds in
both cases indicates that this difference may be related to the dif-
ference between the slopes of these functions around zero: the
image-domain solution is actually much flatter, making it able
to suppress small coefficients almost exactly.

Fig. 3. Comparison of the proposed SURE-LET denoising procedure with a
SURE-based denoising algorithm optimized in the wavelet domain when using
the undecimated wavelet (Haar) transform: (a) House; (b) Al.

Fig. 4. Influence of the boundary extensions when using the undecimated
wavelet (Haar) transform: (a) Peppers; (b) House.

B. Periodic Versus Symmetric Boundary Extensions

It is also worth quantifying the effects of particular boundary
extensions. In Fig. 4, we compare symmetric boundary
extensions (rigorous SURE computation, as described in Sec-
tion II-C-2) with the periodic ones. As it can be observed, the
symmetric boundary extension can lead to up to 0.5 dB of
PSNR improvements over the periodic one.

C. Comparison With State-of-the-Art Denoising Schemes

We have compared our Haar wavelet SURE-LET denoising
algorithm with some of the best state-of-the-art techniques for
which the code is freely distributed by the authors: BiShrink [4]
(dual tree complex wavelet decomposition), ProbShrink [2] (un-
decimated Daubechies symlets) and BLS-GSM [1] (full steer-
able—eight orientations per scale—pyramidal decomposition).
Depending on the size of the images, 256 256 or 512 512,
we have performed 4 or 5 decomposition levels.

For a reliable comparison, we have run all the algorithms7

on a comprehensive set of standard grayscale8 images of size

7We have used the same parameters as those suggested by the authors in their
respective papers and softwares.

88-bit images with pixels values between 0 and 255.
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Fig. 5. (a) Part of the noise-free Boat image. (b) A noisy version of it:PSNR =

22:11 dB. (c) BiShrink denoising result: PSNR = 29:99 dB. (d) ProbShrink
denoising result:PSNR = 29:97 dB. (e) BLS-GSM denoising result:PSNR =

30:36 dB. (f) UWT SURE-LET denoising result: PSNR = 30:24 dB.

256 256 (Peppers, House, Bridge) and of size 512 512
(Al, Barbara, Boat, Crowd, Goldhill), each one corrupted with
additive Gaussian white noise at eight different power levels

[5,10,15,20,25,30,50,100], which corresponds to PSNR
decibel values [34.15,28.13,24.61,22.11,20.17,18.59,14.15,8.
13]. We have then averaged the output PSNRs over eight noise
realizations (the different algorithms are applied to the same
noise realizations).

Table I reports the PSNR results we have obtained with the
various denoising methods, the best results being shown in
boldface. As we can notice, our algorithm (UWT SURE-LET)
matches the best state-of-the-art results for most of the images,
except for Barbara where it may be argued that, either a finer
subband decomposition, or a more sophisticated, multivariate,
thresholding function should be used in order to capture the
texture information that characterizes this image. Note also
how the SURE minimization is close to the MSE one (Oracle
in Table I), which is an evidence of the robustness of the
SURE-LET approach.

We want to stress that the denoising algorithm we propose in
this section is limited to a pointwise thresholding, contrary to the
above mentioned algorithms which involve some kind of multi-
variate thresholding. Because it simply boils down to solving a

Fig. 6. (a) Noise-free House image. (b) A noisy version of it: PSNR =

18:59 dB. (c) BiShrink denoising result: PSNR = 29:77 dB. (d)ProbShrink
denoising result: PSNR = 30:33 dB. (e) BLS-GSM denoising result:
PSNR = 30:50 dB. (f) UWT SURE-LET denoising result: PSNR =

30:90 dB.

linear system of equations, our algoritm is quite fast compared to
BLS-GSM which has the best denoising results. More precisely,
the execution of our current un-optimized Matlab implementa-
tion of the whole denoising task lasts on average 3.5 s for 256

256 images and about 26 s for 512 512 on a Power Mac
G5 with CPU speed of 1.8 GHz and 1 GB of memory, whereas
Portilla et al. BLS-GSM lasts, respectively, 25 and 100 s on the
same workstation. Note that the main part of our computational
time is dedicated to the independent reconstruction of all the
subbands.

Other preliminary tests indicate that if, for images like
Barbara, we choose transforms that have more subbands (such
as the undecimated DCT), our simple pointwise thresholding
strategy may provide slightly better results than BLS-GSM (typ-
ically, 0.2 dB); moreover, it is possible to select a transform
or the other based only on the SURE values. We may also envi-
sion that thresholding schemes that involve inter and intrascale
dependences substantially improve the denoising performance,
as this is the case with orthonormal wavelet transforms [5].

We can finally notice in Figs. 5 and 6 that our SURE-LET de-
noising procedure gives quite a decent visual quality compared
to the best state-of-the-art spatially adaptive method.
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V. CONCLUSION

We have presented a new approach to image denoising that is
especially useful when redundant or nonorthonormal transforms
are involved. In this paper, we have emphasized the theoretical
part of our approach and its implementation aspects, in order
to make the SURE-LET principle easily applicable for others.
Accordingly, we did not try to take advantage of all the de-
grees of freedom (multivariate thresholding, increased number
of parameters, more sophisticated transforms) to make our ex-
ample of algorithm optimal. And yet, the obtained results are
quite competitive with the best state-of-the-art denoising algo-
rithms—which require involved statistical image models. This
indicates that there is a substantial margin of improvement of
SURE-LET type algorithms.
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[2] A. Pižurica and W. Philips, “Estimating the probability of the presence
of a signal of interest in multiresolution single- and multiband image
denoising,” IEEE Trans. Image Process., vol. 15, no. 3, pp. 654–665,
Mar. 2006.

[3] L. Sendur and I. W. Selesnick, “Bivariate shrinkage functions for
wavelet-based denoising exploiting interscale dependency,” IEEE
Trans. Signal Process., vol. 50, no. 11, pp. 2744–2756, Nov. 2002.

[4] L. Sendur and I. W. Selesnick, “Bivariate shrinkage with local variance
estimation,” IEEE Signal Process. Lett., vol. 9, no. 12, pp. 438–441,
Dec. 2002.

[5] F. Luisier, T. Blu, and M. Unser, “A new SURE approach to image
denoising: Inter-scale orthonormal wavelet thresholding,” IEEE Trans.
Image Process., vol. 16, no. 3, pp. 593–606, Mar. 2007.

[6] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness
via wavelet shrinkage,” J. Amer. Statist. Assoc., vol. 90, no. 432, pp.
1200–1224, Dec. 1995.

[7] J.-C. Pesquet and D. Leporini, “A new wavelet estimator for image de-
noising,” in Proc. 6th Int. Conf. Image Processing and Its Applications,
Jul. 14–17, 1997, vol. 1, pp. 249–253.

[8] A. Benazza-Benyahia and J.-C. Pesquet, “Building robust wavelet es-
timators for multicomponent images using Stein’s principle,” IEEE
Trans. Image Process., vol. 14, no. 11, pp. 1814–1830, Nov. 2005.

[9] C. Chaux, L. Duval, A. Benazza-Benyahia, and J.-C. Pequet, “A non-
linear Stein based estimator for multichannel image denoising,” IEEE
Trans. Signal Process., to be published.

[10] C. Stein, “Estimation of the mean of a multivariate normal distribution,”
Ann. Statist., vol. 9, pp. 1135–1151, 1981.

[11] I. Daubechies, “Ten lectures on wavelets,” presented at the CBMS-NSF
Regional Conf. Ser. Applied Mathematics, Mar. 1992.

[12] G. Nason and B. W. Silverman, The Stationary Wavelet Transform and
Some Statistical Applications. New York: Springer-Verlag, 1995, vol.
103.

[13] J.-L. Starck, E. J. Candès, and D. L. Donoho, “The curvelet transform
for image denoising,” IEEE Trans. Image Process., vol. 11, no. 6, pp.
670–684, Jun. 2002.

[14] M. N. Do and M. Vetterli, “The Contourlet transform: An efficient
directional multiresolution image representation,” IEEE Trans. Image
Process., vol. 14, no. 12, Dec. 2005.

[15] W. T. Freeman and E. H. Adelson, “The design and use of steerable
filters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 9, pp.
891–906, Sep. 1991.

[16] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger,
“Shiftable multi-scale transforms,” IEEE Trans. Inf. Theory, vol. 38,
no. 2, pp. 587–607, Mar. 1992.

[17] M. Raphan and E. P. Simoncelli, “Learning to be Bayesian without
supervision,” presented at the NIPS Conf., Dec. 2006.

[18] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based
signal processing using hidden Markov models,” IEEE Trans. Signal
Process., vol. 46, no. 4, pp. 886–902, Apr. 1998.

[19] M. K. Mihçak, Kozintsev, K. Ramchandran, and P. Moulin, “Low-com-
plexity image denoising based on statistical modeling of wavelet coef-
ficients,” IEEE Signal Process. Lett., vol. 6, no. 12, pp. 300–303, Dec.
1999.

[20] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding
for image denoising and compression,” IEEE Trans. Image Process.,
vol. 9, no. 9, pp. 1532–1546, Sep. 2000.

[21] S. G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresh-
olding with context modeling for image denoising,” IEEE Trans. Image
Process., vol. 9, no. 9, pp. 1522–1531, Sep. 2000.

[22] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation via wavelet
shrinkage,” Biometrika, vol. 81, pp. 425–455, 1994.

[23] X.-P. Zhang and M. D. Desai, “Adaptive denoising based on SURE
risk,” IEEE Signal Process. Lett., vol. 5, no. 10, pp. 265–267, Oct. 1998.

[24] N. G. Kingsbury, “Image processing with complex wavelets,” Phil.
Trans. Roy. Soc. A, Sep. 1999.

[25] N. G. Kingsbury, “Complex wavelets for shift invariant analysis and
filtering of signals,” J. Appl. Comput. Harmon. Anal., vol. 10, no. 3,
pp. 234–253, May 2001.

[26] F. Abramovitch, T. Sapatinas, and B. W. Silverman, “Wavelet thresh-
olding via a Bayesian approach,” J. Roy. Statist. Soc., ser. B, vol. 60,
no. 4, pp. 725–749, 1998.

[27] E. P. Simoncelli, Bayesian Denoising of Visual Images in the Wavelet
Domain, ser. Lecture Notes in Statistics. New York: Springer-Verlag,
Mar. 1999, vol. 141.

[28] B. Vidakovic, Statistical Modeling by Wavelets. New York: Wiley-
Interscience, Apr. 1999.

[29] P. L. Combettes and J.-C. Pesquet, “Wavelet-constrained image
restoration,” Int. J. Wavelets, Multires. Inf. Process., vol. 2, no. 4, pp.
371–389, Dec. 2004.

Thierry Blu (M’96–SM’06) was born in Orléans,
France, in 1964. He received the “Diplôme d’in-
génieur” from École Polytechnique, France, in
1986 and from Télécom Paris (ENST), France, in
1988, and the Ph.D. degree in electrical engineering
from ENST in 1996 for a study on iterated rational
filterbanks, applied to wideband audio coding.

He is with the Biomedical Imaging Group at
the Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland, on leave from the France
Telecom R&D center in Issy-les-Moulineaux. At

EPFL, he teaches the theory of signals and systems for microengineering
and Life Science students. His research interests include (multi)wavelets,
multiresolution analysis, multirate filterbanks, interpolation, approximation
and sampling theory, image denoising, psychoacoustics, optics, and wave
propagation.

Dr. Blu was the recipient of two best paper awards from the IEEE Signal Pro-
cessing Society (2003 and 2006). From 2002 and 2006, he was an Associate Ed-
itor for the IEEE TRANSACTIONS ON IMAGE PROCESSING and, since 2006, he has
been an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING.

Florian Luisier was born in Switzerland in 1981.
In 2005, he received his M.S. degree in micro-
engineering from the Swiss Federal Institute of
Technology (EPFL), Lausanne, Swizerland. He
is currently pursuing the Ph.D. degree with the
Biomedical Imaging Group (BIG), EPFL.

His research interests mainly include multiresolu-
tion analysis and the restoration of biomedical im-
ages.


	BluLuisierTutorialHandouts
	luisier0701
	blu0702



