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ABSTRACT

We focus on a specific class of curves that can be parametrized
using a finite number of variables in two dimensions. The cor-
responding indicator plane, which is a binary image, has infinite
bandwidth and can not be sampled and perfectly reconstructed
with classical sampling theory. In this paper, we illustrate that it
is possible to recover parameters from finite samples of the in-
dicator plane and have a perfect reconstruction of the indicator
plane. The algorithm presented here extends the application of
FRI signals to multi-dimensional cases and may find its appli-
cation in field, like super-resolution.

Keywords— Finite rate of innovation, annihilation, sam-
pling, super resolution

1. INTRODUCTION

Sampling plays an essential role in signal processing and data
acquisition. Perfect reconstruction from uniform samples for
bandlimited signals is guaranteed by Shannon’s theory [5],
which requires the sampling rate to be at least twice the band-
with of the signal. However, difficulties arise for signals that
are infinitely supported in Fourier domain. From Shannon’s
perspective, such signals cannot be measured precisely in time
domain.

A sampling scheme has recently been developed by Vetterli
et al. [7] that enables perfect reconstruction from samples of
signals that are not bandlimited but that can be parametrized
with finite number of variables. Those signals are known to
have finite rate of innovation (FRI). Examples of such signals
are streams of Diracs, piecewise polynomials [2] [7], piecewise
sinusoidals [1] for 1-D cases, and 2-D Diracs [4], lines of finite
length [4], and polygons [3] [4] [6] for multi-dimensional cases.
In this paper, we consider a specific class of parametric curves
in two dimensions that have finite degrees of freedom. It can
be further generalized to approximate closed simple curves that
does not satisfy the parametric model exactly. For noiseless
cases, the algorithm achieves perfect reconstruction.
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The paper is organized as follows. We first define the curves
that can be represented with a few parameters in Section 2.
Its relationship with more general curves is also discussed. A
closely related concept, interior indicator function, is defined in
Section 3 before we start with the sampling scheme in Section 4.
Finally, simulation results for the noiseless cases are presented
in Section 5.

2. ANNIHILABLE CURVES

We consider a specific class of curves that can be expressed with
K × L complex exponentials with amplitudes ck,l:

p(x, y) =

K∑
k=1

L∑
l=1

ck,le
−j2πkx/M−j2πly/N = 0 (1)

which characterizes curves in an equation form implicitly. The
curves defined in (1) are periodic functions with the period
τx = M and τy = N along x and y-axis respectively. A closer
look at (1) suggests that the coefficients ck,l annihilate com-
plex exponentials located at (ωx, ωy) =

(
− 2πk

M ,− 2πl
N

)
. This is

why we denote the curves defined in (1) as “annihilable curves”.
In principle we would like (1) to characterize a full curve un-
der certain constraints. For instance, if we take the complex
conjugate of p(x, y), then the set of equations define another
curve. However, we want both the complex conjugate p∗(x, y)
and p(x, y) to define the same curve:∑

k,l

ck,le
−j2πkx/M−j2πly/N =

∑
k,l

c∗k,le
j2πkx/M+j2πly/N

(2)
which corresponds to the Hermitian symmetry requirement of
p(x, y). It is equivalent to say p(x, y) is real-valued. We will use
this assumption on the curves that interest us throughout this pa-
per. Observe that the curves defined in (1) are completely char-
acterized by its annihilation coefficients ck,l. The curves hence
belong to a more general category of signals that are known to
have finite rate of innovation (FRI) [7] [2].

Here comes the question: how is the specific class of curves
investigated here related to some very general curves q(x, y) =
0, where q(x, y) may not be of the form (1)? It is possible to ap-



proximate it with an annihilable curve by introducing two com-
plex variables: u = 1 − e−j2πx/M and v = 1 − e−j2πy/N , i.e.
x = jM/2π log(1− u) and y = jN/2π log(1− v). If we take
the Taylor development of q(jM/2π log(1−u), jN/2π log(1−
v)) around (u, v) = (0, 0), then we are able to approximate the
curve with a polynomial in the power of u and v. Hence, the
polynomial can be expressed with weighted complex exponen-
tials as in (1), i.e. we find its annihilable curve approximation.
The residue between q(x, y) and its annihilable curve approxi-
mation is treated as noise which can be easily coped with. Since
our primary focus in this paper is on perfect reconstruction from
samples, the model mismatch situation is beyond our scope and
we will not discuss it here.

3. 2D INDICATOR PLANE

Consider a closed simple curve Γ that contains no holes or
loops, the 2D plane is separated into two regions: the interior
and exterior of the curve Γ. Define an interior plane indicator
function as:

χΓ(x, y) =

{
1 for (x, y) inside Γ
0 otherwise

which is a binary image with the boundary defined by the curve
Γ. Here we do not limit ourselves to specific Γ that satisfies
certain properties as long as it is a simple curve. We treat the
2D plane as a complex plane where the (x, y) coordinates corre-
spond to the real part and imaginary part of the complex variable
z = x + jy respectively. Then by applying Cauchy’s integral
formula, the indicator function is equivalent to a line integration
along Γ counterclockwise :

χΓ(x, y) =
1

2jπ

∫
Γ

dz0

z0 − x− jy

where z0 = x0 +jy0 is the integration variable that corresponds
to the point positions along Γ in the complex plane. Another
consequence of such interpretation is that we can express the
Fourier transform of the indicator plane with an integration of
exponential functions:

χ̂Γ(ωx, ωy) =
1

ωx + jωy

∫
Γ

e−jx0ωx−jy0ωydz0 (3)

which resembles the annihilable curve defined in (1). As we
will demonstrate in the following section, such similarity links
the annihilable curve with the interior indicator function and
plays a key role in the annihilation algorithm.

4. ANNIHILATION OF INDICATOR FUNCTION

Consider an interior indicator function χΓ where Γ is the anni-
hilable curve specified in (1), then for any value of ωx and ωy ,

g(x, y)

Tx, Ty

gk,lχΓ(x, y)
ϕ(x, y)

sampling kernel

Fig. 1. Sampling of FRI signal

we have:∑
k,l

ck,l

(
ωx + jωy +

2πk

M
+ j

2πl

N

)
χ̂Γ

(
ωx +

2πk

M
,ωy +

2πl

N

)
=

∫
Γ

e−jx0ωx−jy0ωy
∑
k,l

ck,le
−j2πkx0/M−j2πly0/N

︸ ︷︷ ︸
=0 from (1)

dz0 = 0 (4)

It suggests that any ck,l that annihilates the curve Γ is auto-
matically the annihilator of its corresponding interior indicator
function. In particular, if we take ωx = − 2πk0

M , ωy = − 2πl0
N for

k0, l0 ∈ Z, then (4) can be treated as the convolution between
the annihilation coefficients ck,l and hk,l:

ck,l ∗ hk,l = 0 (5)

where

hk,l = −
(

2πk

M
+ j

2πl

N

)
χ̂Γ

(
−2πk

M
,−2πl

N

)
(6)

is the annihilation filter. Such equivalence between the indicator
plane and its samples is mutual: for a given annihilable curve
Γ, its characteristics are completely defined by finite number of
samples (which is related to its signal innovation) of the indica-
tor function at discrete grids

(
− 2πk

M ,− 2πl
N

)
in Fourier domain.

Conversely, if enough frequency samples of the indicator func-
tion are available, then we can perfectly reconstruct the indica-
tor function, even though the function itself is not bandlimited
as is in most cases for FRI signals [1] [2] [4] [6] [7]. The sam-
ples contain all necessary information to reconstruct the original
function.

Assume the function with period τx = M and τy = N is
convolved with a 2D sinc window of bandwidth Bx and By ,
where Bxτx, Byτy are odd integers for the consideration of the
convergence of sinc function summation. The signal g(x, y) is
then uniformly sampled along both x, y-directions with Tx =
τx/Nx and Ty = τy/Ny (Fig 1). Therefore the goal of the
algorithm is to reconstruct the annihilable curve Γ, which has
K × L nonzero coefficients ck,l, from the Nx ×Ny samples of
the indicator plane image:

gk,l = 〈χ(x, y), sinc(Bx(kTx − x))sinc(By(lTy − y))〉

=

∫ τx

0

∫ τy

0

χ(x, y)ϕ(kTx − x, lTy − y)dxdy (7)

where k = 1, 2, . . . , Nx, l = 1, 2, . . . , Ny and

ϕ(x, y) =
sin(πBxx) sin(πByy)

BxByτxτy sin(πx/τx) sin(πy/τy)



Algorithm 1: Annihilation of indicator function
1. Compute Fourier transform of the indicator plane χ
evaluated at uniformly sampled frequency grids(

2πk
M , 2πl

N

)
;

2. Create annihilation filter according to (6) where the
elements are rearranged lexicographically;

3. Solve the annihilation coefficients ck,l based on (5)
under the Hermitian symmetry constraint on the
coefficients in (2).

is the 2D Dirichlet kernel. The annihilation algorithm is sum-
marized in Algorithm 1.

Thus the annihilation algorithm consists of two key aspects:
evaluation of Fourier transform of the indicator plane and re-
trieval of signal innovation with annihilation filter method.

4.1. Fourier Transform of Indicator Plane

In order to apply the annihilation Algorithm 1, Fourier trans-
form of the annihilable curve Γ has to be evaluated exactly. FRI
signals investigated previously in 1-D cases, are either streams
of Diracs [7] [2] or piecewise polynomials [1] whose Fourier
transform can be computed exactly. However, in the case of
annihilable curves here, no explicit expression of the Fourier
transform χ̂Γ is available in general. And we can not use DFT
of χΓ directly either. Because the indicator plane χΓ has infi-
nite bandwith, results obtained from DFT suffers from server
aliasing effect. But we can relate the Fourier transform χ̂Γ with
its samples gk,l and calculate the Fourier transform exactly. As
is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.

4.2. Retrieval of Signal Innovation

Once the exact Fourier transform χ̂ is evaluated, the annihilat-
ing filter is constructed according to (5), from which we can
retrieve the coefficients ck,l with annihilation filter method, a
well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:

HC = 0 (8)

where H is a block circulant matrix built from frequency sam-
ples of χ̂ and C is the vector that corresponds to ck,l rearranged
column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with

(a) Original indicator plane (b) Reconstructed indicator plane

(c) Difference image (d) Samples of indicator plane

Fig. 2. Annihilation results for noiseless case

the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
least square approach with e.g. Cadzow’s method [2] for the
robustness of the annihilation algorithm against noise perturba-
tion.

Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
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Fig. 3. Robustness of annihilation algorithm

as:

% error =
total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-
merical integration control points are 2500×2500 and the sam-
ples gk,l are 11 × 11. Fig 2 are the results obtained from the
experiment. The reconstructed indicator plane is almost iden-
tical to the original one with the percentile error being 0.3499.
Fig 2(c) is the difference between the reconstructed and original
indicator plane.

Observe that the samples gk,l and the indicator plane χΓ are
not displayed to scale. In reality, χΓ is 2500/11 ≈ 227 times
larger than gk,l! Thus the annihilation algorithm investigated
here has huge implication for image super-resolution. Such no-
table results are only possible because we have an exact knowl-
edge on how the signal is modeled (1), which may not be sat-
isfied by general curves in 2-D. But as we have discussed in
Section 2, we can have an annihilable curve approximation for
any simple closed curve with Taylor development before apply-
ing the annihilation algorithm.

Ideally, in the absence of noise, the reconstructed indicator
plane should perfectly match the original one. But the algorithm
accuracy is limited by the computational error due to numerical
integration. Results shown in Fig 3 further support the belief
that with increasing number of integration control points, the
system is closer to exact annihilation. Here we use both the
minimum eigenvalue of HTH and the mean square error (MSE)
between annihilation output HC and 0 as the measurements.

6. CONCLUSIONS

In this paper, we have shown that particular classes of curves,
which are annihilable, can be sampled and perfectly recon-
structed. Further we have shown that we can have an annihilable
curve approximation for general curves with Taylor expansion.
The sampling scheme developed here have many potential ap-
plications, including image super resolution, segmentation and
data compression.
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