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Abstract

We consider the approximation (either interpolation, or least-squares) of L?
functions in the shift-invariant space Vp = spany,{¢(4 —n)} that is gener-
ated by the single shifted function ¢. We measure the approximation error
in an L? sense and evaluate the asymptotic equivalent of this error as the
sampling step T tends to zero. Let f € L2 and fr be its approximation in
Vr. It is well-known that, if ¢ satisfies the Strang-Fix conditions of order L,
and under mild technical constraints, ||f — fr|t2 = O(TF) [4].

In this presentation however, we want to be more accurate and concen-
trate on the constant C, which is such that

If = Frlie = Coll F9 e T™ + o(T™).

We showed previously how to compute this constant [2, 3, 5, 6. We showed
that the numerical values associated to specific, widely-used kernels ¢ exhibit
substantial variations. This important observation motivates our presenta-
tion, because the asymptotic approximation constant is a very good indicator
of performance. Letting ¢; and @5 be two generators of order L, we define
the “sampling gain” of p; over @9 by

Co
Yer/p2 = (é) .

This quantity is interpreted as the factor by which the approximation using
o has to be over/down-sampled in order to exhibit the same asymptotic
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error as that using ;. For instance, we will prove that, when the approxi-
mation order tends to oo, Daubechies’ scaling functions require m-times more
coefficients than the same-order spline-approximation, asymptotically [3].

Given an approximation order L, we will also give explicit expressions
of the smallest-support kernels whose approximation constant is minimal.
These functions are called “OMOMS” [1]. We will see that our new kernels
bring a huge gain over splines of same order, and, typically, that this gain
increases linearly as the order increases: Yomowms/spline = %L.

Finally, we will shift the kernel ¢(t) ~ ¢, (t) = ¢(t—7) which yields a new
interpolation space that has the same least-squares approximation constant
C’S%TS = C’;S, but a different interpolation constant C’SIDT > C;TS. We will prove
that it is always possible to choose 7 so that C}, = min, C}, , = CLS. For

example, we will see that, for the linear spline, one has 7 = £(1— \%) ~ 0.21,
and that this optimal value gets closer to % as higher-order splines of odd
degree are considered.

All our theoretical claims will be substantiated with computer experi-

ments, some of which are already available as Java demos on our web site [7].
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