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Abstract—The performance of a generic pedestrian detector may drop significantly when it is applied to a specific scene due to the

mismatch between the source training set and samples from the target scene. We propose a new approach of automatically

transferring a generic pedestrian detector to a scene-specific detector in static video surveillance without manually labeling samples

from the target scene. The proposed transfer learning framework consists of four steps. 1) Through exploring the indegrees from target

samples to source samples on a visual affinity graph, the source samples are weighted to match the distribution of target samples. 2) It

explores a set of context cues to automatically select samples from the target scene, predicts their labels, and computes confidence

scores to guide transfer learning. 3) The confidence scores propagate among target samples according to their underlying visual

structures. 4) Target samples with higher confidence scores have larger influence on training scene-specific detectors. All these

considerations are formulated under a single objective function called confidence-encoded SVM, which avoids hard thresholding on

confidence scores. During test, only the appearance-based detector is used without context cues. The effectiveness is demonstrated

through experiments on two video surveillance data sets. Compared with a generic detector, it improves the detection rates by 48 and

36 percent at one false positive per image (FPPI) on the two data sets, respectively. The training process converges after one or two

iterations on the data sets in experiments.

Index Terms—Pedestrian detection, transfer learning, confidence-encoded SVM, domain adaptation, video surveillance

Ç

1 INTRODUCTION

PEDESTRIAN detection is of great interest in video
surveillance. Many existing works [1], [2], [3] are based

on background subtraction, which is sensitive to lighting
variations and scene clutters, and has difficulty in handling
the grouping and fragmentation problems [2]. In recent
years, appearance-based pedestrian detectors [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20] trained on large-scale data sets have become popular.
But it is still a big challenge to train a generic pedestrian
detector working reliably on all kinds of scenes. It not only
requires a huge training set to cover a large variety of
viewpoints, resolutions, lighting conditions, motion blur
effects, and backgrounds under numerous conditions, but
also a very complex classifier to handle so many variations.
It is observed that the performance of state-of-the-art
pedestrian detectors trained on a general data set drops
significantly when they are applied to videos taken from
specific scenes [20]. A generic pedestrian detector is often
trained from the INRIA pedestrian data set [4] in the
literature. When it is applied to the MIT Traffic data set [21]
and our CUHK Square data set, the results have many false
alarms and miss detections. This is due to the mismatch

between the training samples in the INRIA data set and the
samples from the target scenes on camera settings, view-
points, resolutions, illuminations, and backgrounds. See
examples in Fig. 1.

Most surveillance cameras are stationary. If a scene is
fixed, the variations of positive and negative samples will
be significantly reduced, since videos captured with a
single camera only have limited variations on viewpoints,
resolutions, lighting conditions, and backgrounds. It is
easier to train a pedestrian detector with high accuracy
using samples from the target scene. A straightforward
way is to train the detector with manually labeled samples
from the target scene. But repeating the manually labeling
work for every camera view is costly and not scalable. A
practical way is to automatically adapt a generic detector to
a target scene given a batch of video frames collected from
that scene for training, with little or a very small amount of
labeling effort. Some efforts [22], [23], [24], [25], [26] have
been made in this direction. Many of them are based on
ad hoc rules. Their detectors have the risk of drifting
during training and it takes the training process multiple
rounds to converge.

We tackle this problem by proposing a transfer learning
framework and exploring a set of context cues to auto-
matically select scene-specific training samples. Our process
of training a scene-specific pedestrian detector is shown in
Fig. 2. It starts with a generic pedestrian detector, which is
applied to unlabeled samples in videos collected from the
target scene. Based on detection results and context cues,
some positive and negative samples from the target scene
are automatically selected. Since the labels of the selected
samples are predicted by detection scores and context cues
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and could be wrong, their confidence scores are estimated.
The selected samples and their confidence scores are used
to retrain the scene-specific detector by transfer learning.
The updated scene-specific detector is applied to the
samples from the target scene again to select more samples
for the next round of training. It repeats until convergence.
The preliminary result was published in [27].

Transfer learning has been used to solve many domain
adaptation problems. However, there is only very limited
work [28] studying it in pedestrian detection and some
important issues regarding this problem are not well
studied yet. For example, how to adapt the distribution of
a source training set to a target scene? Many samples
selected from the same target scene share visual similarities,
and form clusters or manifold structures. How to incorpo-
rate such visual structures into transfer learning? Predicting
sample labels in a target scene with motion alone is not
reliable. Then what are the effective context cues for label
prediction and how to combine them? How to integrate
training scene-specific detectors and predicting labels of
target samples in a principled way, such that transfer
learning is robust to wrongly predicted labels and have
good learning efficiency in the meanwhile? These issues
will be studied in this paper.

1.1 Related Work

Compared with extensive research on generic pedestrian
detectors, existing works on scene-specific pedestrian
detectors are limited. They typically design a labeler which
automatically selects positive and negative samples from
the target scene to retrain the generic detector. To effectively
improve the performance, the training samples selected by
the automatic labeler must be reliable and informative to

the original detector. Self-training has been used in [23].
Samples confidently classified by the detector are used to
retrain the detector. Since the detector itself is the labeler
and not reliable, the selected samples are not informative
and are likely to have wrong labels, which make the
detector drift. Nair and Clark [29] have used background
subtraction results to label training samples for an
appearance-based pedestrian detector. The accuracy of the
background subtraction labeler is low and it introduces
biased labeling which misleads the learning of the detector.
For example, static pedestrians may be labeled as non-
pedestrian samples. It is unlikely for pedestrians with
clothes of similar color to the background to be labeled as
pedestrian samples. To make the automatic labeler reliable,
Wang and Wang [26] have integrated multiple cues of
motions, path models, locations, sizes and appearance to
select confident positive and negative samples from the
target scene.

Some automatic labelers are designed under the co-
training framework [22], [24], [30], [31]. Two detectors
based on different types of features are trained iteratively.
The prediction of one detector on unlabeled samples is used
to enlarge the training set of the other. Levin et al. [22] have
built two car detectors using gray images and background
subtracted images. Javed et al. [30] have used Haar features
and PCA global features to classify blobs into pedestrians,
vehicles, and background. They all require manually
labeling a small training set from the target scene for
initialization. In order for co-training to be effective, the two
detectors need to be independent, which is difficult. Dalal
et al. [32] have shown that the appearance-based and
motion-based pedestrian detectors are highly correlated.

Besides our early work [26], only motion has been used
as the context cue and the visual structures of samples
from the same target scene have not been considered. In
these approaches discussed above, target samples are
selected by hard-thresholding confidence scores obtained
from the appearance-based detectors or context cues.
Hard-thresholding is unreliable and discards useful in-
formation. An aggressive threshold makes the detector
drift, while a conservative threshold makes the training
inefficient and results in many rounds of retraining to
converge. Transfer learning provides a principled way to
solve domain adaptation problems. It has been successfully
applied to object recognition [33], scene categorization [34],
action recognition [35], retrieval [36], [37], and visual
concept classification [38]. In cross-domain SVM [39] and
TrAdaBoost [40], samples in the source data set and the
target data set are reweighted differently. Wu and Srihari
[41] have introduced a weighted soft margin SVM to
incorporate prior knowledge in the training process. Pang
et al. [28] have proposed a transfer learning approach to
adapt weights of weak classifiers learned from a source
data set to a target data set to handle the variation of
viewpoints. It assumes that some samples in the target set
are manually labeled and does not consider context cues.

When cameras are stationary, the distributions of
negative samples are region-specific. Roth et al. [25], [31]
have trained a separate detector for each local region.
Stalder and Grabner [42] have used tracking and manually
input scene geometry to assist labeling. Ali et al. [43] have
proposed FlowBoost to learn a scene-specific detector from
a sparsely labeled training video assisted by tracking,
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Fig. 1. (a) Positive (first row) and negative (second row) samples from
the INRIA data set [4]. (b) Detection results on the MIT Traffic data set
and (c) the CUHK Square data set. The left is the results of a generic
detector (HOG-SVM [4]) trained on the INRIA data set. The right is the
results of a scene-specific detector (also HOG-SVM) automatically
trained by our approach.



when small labeling effort is allowed. Without retraining

the detector, Jain and Learned-Miller [44] have adapted

a generic detector to a new test domain using label

propagation.

1.2 Motivations and Contributions

Our motivations can be explained from three aspects:

1. Indegree-based weighting. The distribution of a source
data set used to train a generic detector usually
does not match that of samples from a target scene.
Some source samples are more similar to target
samples, because they are taken with similar view-
points, resolutions and lighting conditions, or
negative samples come from the same background
categories (trees, streets, and buildings). It is
desirable to assign larger weights to such samples
for training. We build a graph according to visual
similarities between source and target samples, and
weight source samples according to their indegrees
from target samples. The indegrees detect the
boundary between the distributions of source and
target samples.

2. Multiple context cues. Besides the motion cue com-
monly used in existing works, we explore a rich set

of context cues including scene structures, locations,
and sizes to guide transfer learning. They are used to
select confident positive/negative samples from the
target scene to train the appearance-based scene-
specific detector. The context cues are complemen-
tary to image appearance and are also used to
compute confidence scores of target samples.

3. Confidence-encoded SVM. The confidence scores are
well incorporated into our proposed confidence-
encoded SVM, in which target samples with small
confidence scores have little influence on the
training of the scene-specific detector. Confidence-
encoded SVM provides a more principled and
reliable way to utilize the context information than
existing approaches [22], [26], [29], which selected
target samples by hard-thresholding confidence
scores and caused the problems of drifting and
inefficient training. Using context cues alone, only a
small portion of target samples have high con-
fidence scores and they may predict wrong labels.
Confidence-encoded SVM propagates confidence
scores among target samples along a graph and
correct wrong labels according to underlying visual
structures of samples. It improves the efficiency of
transfer learning.
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Fig. 2. Diagram of the proposed transfer learning framework. It has three modules: (a) detecting and selecting samples from the target scene,
(b) labeling target samples and estimating their initial confidence scores with context cues, and (c) training the scene-specific detectors. Please see
the detailed descriptions in Section 1.2.



All these considerations are integrated under a single
objective function in confidence-encoded SVM. The effec-
tiveness of the proposed framework is demonstrated
through experiments on two video surveillance data sets.
It significantly outperforms the generic pedestrian detector
and other domain adaptation methods. A new CUHK
Square data set with labeled ground truth is introduced to
evaluate pedestrian detection in video surveillance. This
framework can also be generalized to some other pedestrian
detectors such as the deformable part-based model (DPM)
[45]. The context cues in our approach assume static camera
views. If other context cues can be extracted from moving
camera views, confidence-encoded SVM can also be applied.

2 APPROACH OVERVIEW

The diagram of the proposed transfer learning framework is

shown in Fig. 2 and its algorithm is summarized in

Algorithm 1. Some mathematical notations are summarized

in Table 1. The scene-specific pedestrian detector is trained

with both a source data set and a target data set whose

samples are automatically selected from the target scene.

Algorithm 1. The Proposed Transfer Learning Framework
Input:

The generic detector ðw0; b0Þ
The source data set Ds
A video sequence V from the target scene

The target data set Dt  ;
Output:

The scene-specific detector ðw; bÞ
for r ¼ 1; . . . ; R do

ðwr; brÞ  ðwr�1; br�1Þ
fxtig  �ðwr; br;VÞ
fytig  �ðfxtigÞ
Dtr ¼ fðxti; ytiÞg
if jDtr \ �Dtj=jDtj < 0:005 then

/* Convergence condition is reached */

break;

end if

Dt  Dt [ Dtr
c0  �ðDtÞ
ðwr; brÞ  �ðDs;Dt; c0; ðwr; brÞÞ

end for

ðw; bÞ  ðwR; bRÞ

The scene-specific detector is retrained iteratively. It
starts with a generic detector � using HOG-SVM [4] trained
on the source data set Ds ¼ fðxsi ; ysi Þg

ns
i¼1.1 xsi is a source

sample and ysi 2 f�1; 1g is its label. 1 and �1 indicates
positive and negative samples. � ¼ ðw0; b0Þ is parameter-
ized by the weights and the bias term of linear SVM. As
shown in Fig. 2a, an unlabeled video V is captured from the
target scene. Once � is applied to V, a target data set Dt ¼
fðxti; ytiÞj�ðxtiÞ > 0gnti¼1 is obtained by selecting target sam-
ples xti with positive detection scores.

Since the generic detector is far from perfect, there are a
significant portion of false positives in Dt. In Fig. 2b, context
cues help to assign a label yti and an initial confidence score
c0i 2 ½�1; 1� to each target sample xti. c0i ¼ 1 or c0i ¼ �1
indicates the highest confidence on the predicted label yti
and c0i ¼ 0 indicates no confidence. The target data set
includes positive samples of pedestrians, negative samples
from the background, and negative samples from moving
vehicles. Their initial confidence scores are computed with
different context cues in different ways. The details are
given in Section 3. Positive samples are selected from
detection windows inside pedestrian paths and with
positive detection scores (�ðxtiÞ > 0). Their confidence
scores are estimated by integrating the context cues of
object sizes, path models, and motions (see Section 3.1). The
negative samples from the background are selected through
clustering detection windows in the location-size space (see
Section 3.2). We only consider detection windows mis-
classified by the current detector and close to the decision
boundary as candidates (0 < �ðxtiÞ < 0:5). To find false
alarms on moving vehicles, vehicle motions are detected by
clustering the trajectories of feature points on vehicle paths.
Vehicles and pedestrians are separated with the size cue
(see Section 3.3). Detection windows (�ðxtiÞ > 0) are
selected as confident negative samples if they are on large
trajectory clusters and on vehicle paths. If a detection
window does not hit any of the above conditions, it is not
used to train the detector at the current iteration but could
be selected in later rounds when the detector is updated.

In Fig. 2c, a new scene-specific detector ðwr; brÞ is trained
on Ds, Dt, and c0 ¼ fc0ig with confidence-encoded SVM,
whose details are given in Section 4. Once updated with
ðwr; brÞ, the detector � is applied to V again to start the next
round of training. The target data set is enlarged by adding
new target samples whose detection scores change to
positive with the updated detector. The retraining process
stops when there are few target samples added or the
maximum number of iterations is reached. Experiments on
two different data sets show that our approach quickly
converges after one or two rounds of training.

3 CONTEXT CUES

This section gives the details of selecting target samples and
computing initial confidence scores. Positive samples
selected according to Section 3.1 have labels yti ¼ 1, and
negative samples selected according to Sections 3.2 and 3.3
have labels yti ¼ �1. The initial confidence scores c0 are
estimated according to context cues. If yti ¼ 1, c0 is
estimated with (1) and (5) in Section 3.1; otherwise, with
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TABLE 1
Notations Used in This Paper

1. The INRIA data set [4] is used in this work. At initialization, the scene-
specific detector is equivalent to the generic detector.



(6) and (7) in Section 3.4. A detection window is denoted
with ðx; y; sÞ, where x and y are the coordinates of its center,
s is the height. The aspect ratio of detection windows is 2:1.
Normally, the back-end of a detector clusters detection
windows based on sizes and locations, yielding merged
windows at the final result. Instead, we select training
samples from unmerged windows and this leads to a more
robust scene specific detector. The sampled video frames
are scanned with the detector at multiple scales.

3.1 Positive Samples of Pedestrians

Scene structures: path models of pedestrians. The motions of

pedestrians and vehicles are regularized by scene structures

and follow certain patterns. The models of pedestrian and

vehicle paths can increase the reliability of the automatic

labeler. It is more reliable to select positive samples on

pedestrian paths (see Fig. 3b). It is rare for vehicles to move
on pedestrian paths. Since samples on a pedestrian path are
either pedestrians or negative samples from the back-
ground, the automatic labeling task becomes easier. Because
the models of paths are distributions over locations, they
are less correlated with appearance and can select more
informative samples for retraining. After being retrained,
the detector can detect more pedestrians outside pedestrian
paths based on appearance.

This information has not been widely used partially
because obtaining scene structures requires manual seg-
mentation or reliable detectors as prerequisites. Manual
segmentation is costly and inaccurate. In Figs. 3d and 3e, it
is difficult to manually draw the boundaries of paths to
accurately match motion patterns, because the view is not
top-down. Some paths cannot be recognized from back-
ground images. Our previous work [21] has proposed an
approach of automatically learning motion patterns from
local motions (see examples in Figs. 3d and 3e). Without
object detection or tracking, it detects moving pixels by
computing the intensity differences between successive
frames. Path models are unsupervised learned by exploring
the cooccurrence of moving pixels with a Bayesian model.
Instead of outputting binary segmentation maps, the path
models learned from videos have probabilistic distributions
over space and can be used to compute confidence scores in
(1). Therefore, we use the models of pedestrians and
vehicles paths learned by [21] as a context cue.2

To obtain confident positive samples, we only select
detection windows, which fall in the regions of pedestrian
paths (see Fig. 3d) and whose detection scores are positive.
Using path models alone is not reliable. As shown in Fig. 4a,
these candidates include a lot of negative samples to be
purified with other context cues including sizes, locations,
and motions. The initial confidence scores c0 of the
candidates are assigned according to context cues through
c0  �ðDtÞ shown in Algorithm 1.
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Fig. 3. (a) MIT Traffic scene [21]. (b) Distribution of manually labeled pedestrian windows. (c) Spatial distributions of pedestrian paths unsupervisedly
learned in [21]. (d) and (e) Models of vehicle and pedestrian paths. They are distributions over locations and moving directions. Colors indicate
moving directions: red (! ), cyan ( ), magenta (" ), and green (# ).

2. Given the output of [21], the user needs to label a path model to be a
pedestrian path or a vehicle path. But this workload is light.

Fig. 4. (a) Examples detected by the generic detector, with positive
scores and within the regions of pedestrian paths. They include false
alarms (left) to be purified (see Section 3.1). (b) A background false
alarm cluster (left) obtained by clustering on locations and sizes includes
a few pedestrians accidentally passing by. The false alarms are
clustered in appearance and the true positives are removed as outliers
(right) (see Section 3.2). (c) Examples detected on vehicle paths. Some
true positives are included (left).



Sizes: estimating distributions of pedestrian sizes. To esti-
mate the size range of pedestrians in the target scene, we
construct the histograms of the sizes of detected windows.
The mode s of the histogram is found by mean shift [46] and
the variance (�) of the mode is also estimated. Pedestrians
appear in different sizes because of perspective distortions.
Their size variation is modeled as a Gaussian distribution
Gðs; �Þ to be integrated with other cues later. Size variation
could be better modeled through estimating the perspective
transformation [47] or estimating different Gaussian dis-
tributions in different local regions.

Locations: hierarchical clustering detection windows. It is
uncommon for pedestrians to stay at the same location for a
long time. If a background patch is misclassified as a
pedestrian, similar false alarm patterns tend to repeatedly
appear at the same location over a long period. By
hierarchical clustering in Fig. 5, we find such samples and
exclude them from confident positive samples. Hierarchical
clustering on locations and sizes of detection windows has
two stages, clustering within a frame and across frames.
Clustering within a frame is similar to window merging
used in sliding-window-based detection [4]. A sliding-
window-based detector gives multiple detections around
the location of one pedestrian. Mean shift based on locations
and sizes of windows ðx; y; sÞ clusters and merges these
windows into one window ðxm; ym; smÞ. The bandwidth is
chosen as �s=3, tuned on the INRIA data set. The merged
windows are further clustered across frames using mean
shift based on ðxm; ym; smÞ. Large clusters across more than
3 minutes are removed from confident positive samples and
selected as candidates of confident negative samples from
the background. They are not necessarily true negative
samples and will be further processed in Section 3.2.

Motions. A detection window on a pedestrian often
contains more moving pixels than that on the background.
Denote the current frame as It. Two reference frames It�50

and Itþ50 50 frames are selected. By calculating the frame
difference as 0:5ðjIt � It�50j þ jIt � Itþ50jÞ, moving pixels
inside a detection window are thresholded and counted.

Filtering with multicues. Confident positive samples are
selected by integrating multiple cues of motions, models of
pedestrian paths, and sizes of detection windows in a
probabilistic way. Let z ¼ ðx; y; s; n;NÞ be a detected
window, where n is the number of moving pixels in the
window and N is the total number of pixels. The likelihood
of this detected window being a pedestrian is given by

LpðzÞ ¼ psðsj�s; �Þ � p‘ððx; y; sÞj�kÞ � pmðn;NÞ: ð1Þ

ps models pedestrian sizes as a Gaussian distribution

psðsj�s; �Þ ¼
1ffiffiffiffiffiffi
2�
p

�
exp �ðs� �sÞ2

2�2

 !
: ð2Þ

p‘ððx; y; sÞj�kÞ is the likelihood based on the models of
pedestrian paths. Suppose the locations of pixels inside the
detection window are fðxj; yjÞgNj¼1. �k ¼ ð�k1; . . . ; �kW Þ (W is
the number of discretized cells in the target scene) is the
discrete spatial distribution of the pedestrian path k where
the window is detected. Then,

log p‘ððx; y; sÞj�kÞ ¼
1

N

XN
j¼1

log pððxj; yjÞj�kÞ: ð3Þ

pmðn;NÞ is the likelihood based on the motion cue

pmðn;NÞ ¼
n

N
: ð4Þ

The initial confidence score c0pðzÞ for a detection window
z is computed from LpðzÞ and normalized to ½0; 1�,

c0pðzÞ ¼
LpðzÞ �minz0Lpðz0Þ

maxz0Lpðz0Þ �minz0Lpðz0Þ
: ð5Þ

3.2 Negative Samples from the Background

To select confident negative samples, we only consider
detection windows whose scores satisfy 0 < �ðxtiÞ < 0:5 as
candidates. They are misclassified by the detector and close
to the decision boundary. They are informative to the
detector and known as hard samples [4], [8]. As explained
in Section 3.1, false alarms on the background tend to repeat
over time at the same location with similar appearance
patterns. Their samples tend to be highly clustered in both
the location-size space and the appearance space. After
hierarchical clustering on sizes and locations as described in
Section 3.1, clusters of detection windows observed at the
same locations over long periods are selected as negative
samples. As shown in Fig. 4b, they may include a small
number of pedestrians who accidentally pass by the same
locations. The effect of wrongly labeled samples is reduced
by transfer learning introduced in Section 4.

3.3 Negative Samples from Vehicles

It is unreliable to directly count windows detected on vehicle
paths as negative samples, since some pedestrians and
bicycles also move on vehicle paths (see Fig. 4c). To select
confident negative samples, the existence of moving vehicles
need to be first detected. It is achieved by feature point
tracking and clustering. Feature points are detected and
tracked using the KLT tracker [48]. Stationary points and
short trajectories are removed. Then trajectories are clus-
tered based on temporal and spatial proximity by mean
shift. Each trajectory cluster is assigned to a vehicle path or
removed3 based on the spatial overlap between the cluster
and the path. The remaining trajectory clusters mainly
correspond to vehicles. The size range of vehicles along each
vehicle path is estimated using mean shift in a similar way as
in Section 3.1. The trajectory clusters of pedestrians on
vehicle paths are removed using the size evidence. If a
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Fig. 5. Hierarchical clustering detection windows in the location-size
space. Detection windows in the same frame are first clustered and
merged. Merged windows are further clustered across frames. Clusters
of detection windows at the same location over a long period are
selected as negative samples from the background.

3. The removed clusters are from pedestrians or background clutters.



detection window is on a trajectory cluster which is on a
vehicle path and whose size is large enough, the detection
window is selected as a confident negative sample.

3.4 Initial Confidence for Negative Samples

For a selected negative sample z from the background or
vehicles, its likelihood of being a negative sample is

LnðzÞ ¼ ð1� psÞð1� pmÞð1� plÞ; ð6Þ

where ps, pm, and pl are computed in the same way as (2),
(3), and (4). The initial confidence score of z is computed
from LnðzÞ and normalized to the range of ½�1; 0�,

c0nðzÞ ¼ �
LnðzÞ �minz0Lnðz0Þ

maxz0Lnðz0Þ �minz0Lnðz0Þ
: ð7Þ

4 TRAINING SCENE-SPECIFIC DETECTORS

Given the source data set Ds, the selected target data set Dt
and its initial confidence scores c0 ¼ fc0ig computed in
Section 3,4 the remaining challenge is how to retrain the
scene-specific detector. Since Dt has included wrongly
labeled target samples, the retraining process needs to be
carefully designed to avoid drifting. Some ad hoc rules have
been adopted in [26]. It only selects target samples with
high confidence scores using hard thresholding and
removes outlier target samples using mean shift clustering.
This approach has certain drawbacks. Both the threshold
and the bandwidth of mean shift need to be carefully
chosen. An aggressive threshold or bandwidth makes the
detector drift, while a conservative threshold or bandwidth
makes the training inefficient and results in more rounds of
retraining to converge. It discards some useful samples and
ignores the confidence scores after thresholding.

Algorithm 2. Confidence-Encoded SVM

Input:

The current detector ðw0; b0Þ
The source data set Ds
The target data set Dt
The initial confidence scores of target samples c0

Output:

The scene-specific detector ðwu; buÞ
��  �ðDs;Dt; c0Þ
k ¼ 0

repeat

k kþ 1

ck  argmin
c

Gðc;wk�1; bk�1; c0; ��;Ds;DtÞ
ðwk; bkÞ  argmin

w;b
Gðck;w; b; c0; ��r;Ds;DtÞ

until Converge

ðwu; buÞ  ðwk; bkÞ
We propose a transfer learning approach to update the

detector as summarized in Algorithm 2. A source sample xsi
is reweighted by �i according to its visual distance to target
samples. A new scene-specific detector ðwu; buÞ is trained on
both Ds and Dt given the current detector ðw0; b0Þ, �� ¼ f�ig,
and c0 ¼ fc0ig under the proposed confidence-encode SVM
in (11). In confidence-encoded SVM, initial confidence

estimation c0 propagates to confidence scores c which are

jointly estimated with ðwu; buÞ. It does not require any

thresholding or clustering step to remove unreliable target

samples or outliers, since confidence-encoded SVM is robust

to wrongly labeled target samples. It does not require tuning

parameters and is convenient to use. The details are given in

the following sections.

4.1 Reweighting Source Samples

As shown in Fig. 6, some source samples better match the
target data set and should gain larger weights in training.
To weight source samples, a graph between Dt and Ds is
built. Nodes are samples and edges are created based on K-
nearest-neighbors (KNNs). Under the L2 distance,

dj;i ¼
��xtj � xsi

��2
; ð8Þ

there is an edge pointing from a target sample xtj to each of

its KNNs in Ds as shown in Fig. 6a with weight
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4. c0i is set as c0pðzÞ in (5) if a target sample is labeled as positive
according to context cues and as c0nðzÞ in (7) if labeled as negative.

Fig. 6. (a) Red squares indicate target samples and blue points
indicate source samples. Each target sample has K (K ¼ 3) directed
edges pointing toward it K nearest neighbors in the source set. If a
source sample is an outlier of the target set, it has a small indegree.
(b) The sizes of points indicate the indegrees of source samples.
Some source samples have zero indegree and they are denoted as
dashed circles. (c) Positive target samples (first row), positive source
samples with large indegrees (second row), and positive source
samples with zero indegree (third row). (d) Negative target samples
(first row), negative source samples with large indegrees (second
row), and negative source samples with zero indegree (third row).
The source set is the INRIA data set and the target set is the MIT
Traffic data set.



wj;i ¼ exp �
d2
j;i

�2

 !
; j ¼ 1; . . . ; nt; i ¼ 1; . . . ; ns: ð9Þ

The indegree of a source sample is defined as

indegree
�
xsi
�
¼

X
xsi2KNN

�
xtj

�wj;i: ð10Þ

As shown in Fig. 6, if a source sample is an inlier of the target
set, there are a large number of edges pointing toward it and
it has a large indegree. Otherwise, its indegree is small.
Indegree is widely studied in complex network [49]. It is very
effective on detecting the boundary between distributions.
Transfer learning is to match the distribution of source
samples to that of target samples by reweighting. It is
important to detect the boundary between the distributions
of target and source data sets, and assign large weights to
samples in their overlapping regions. Indegree has not been
studied in transfer learning yet. Most transfer learning
algorithms [39] directly use KNNs to estimate the distance
between a source sample and the target data set.

In Figs. 6c and 6d, it is observed that positive source
samples with large indegrees have similar viewpoints as the
target samples, and negative source samples with large
indegrees are from the same background categories (trees,
buildings, roads, and poles) as the target samples.

The confidence score �i of a source sample is computed
as a sum of indegrees weighted by the initial confidence
scores of the target samples, �i ¼

P
xsi2KNNðxtjÞ

wj;ic0j. �i is
further normalized to the range of ½�1; 1�.

In this work, HOG is used to compute the distance
between source and target samples in (8), because the
detector is based on HOG and we need to make the two sets
of features consistent. The point of transfer learning for
domain adaptation is to weight source samples such that
their distribution in the feature space is similar to that of
target samples at the classification stage. If features to
weight source samples are different than those used for
classification, we cannot justify the distributions of source
and target samples become more similar in the feature space
for classification after weighting. Fig. 7 compares matching

source and target samples with HOG and raw pixels. The
matching result with raw pixels is much worse, since it is
easily affected by lightings, misalignment, and intensity
distributions. We choose L2 distance to match HOG, since
it is commonly used and works well in our experiments.
Other metrics could also be effective.

4.2 Confidence-Encoded SVM

Confidence-encoded SVM is an extended version of L2-
regularized L2-loss SVM, with objective function G:

min
c;w;b

1

2
kwk2 þ C

Xns
i¼1

�
�i�

s
i

�2 þ C
Xnt
j¼1

�
cj�

t
j

�2

þ �
2

cTLcþ �
2
ðc� c0ÞTAðc� c0Þ

s:t: ysi
�
wTxsi þ b

�
� 1� �si ; i ¼ 1; . . . ; ns;

ytj
�
wTxtj þ b

�
� 1� �tj; j ¼ 1; . . . ; nt;

�si � 0; i ¼ 1; . . . ; ns;

�tj � 0; j ¼ 1; . . . ; nt;

ð11Þ

where C, �, and � are preset parameters. c ¼ ðc1; . . . ; cntÞ are
the propagated confidence scores on the target data set. They
are jointly estimated with SVM parameters. The slack penalty
of misclassifying a source (target) sample xsi (x

t
j) is propor-

tional to its confidence score �i (cj). The lower confidence a
sample has, the smaller influence it has on training SVM.
Some approaches [22], [23], [24], [26], [30] selected positive/
negative target samples by hard-thresholding confidence
scores and treated them equally when training SVM. It is
special case of ours, considering cj can only be 1,�1, or 0. Our
approach does not require thresholding which causes errors.
If the threshold is aggressive, some wrongly labeled samples
are used to train SVM and cause the drifting problem. If the
threshold is conservative, not enough samples are selected
and the performance of the detector improves slowly after
many rounds of training. It also does not make sense to treat
all the training samples with different confidence equally
after thresholding.

4.2.1 Confidence Propagation

Using context cues alone, only a small portion of target
samples have high confidence scores and some predicted
labels are wrong (see examples in Fig. 8). Image patches
from the same scene form clusters and manifolds based on
their visual similarities. If two image patches are visually
similar, they should have the same label because they
are captured under the same condition.5 We propagate
confidence scores to obtain more samples with high
confidence and reduce the confidence of samples with
wrong labels.

Estimation of confidence scores c depends on three terms
in (11). cTLc comes from graph Laplacian and requires that
visually similar samples have similar confidence scores.
A pairwise weight matrix W is calculated from Dt by

wi;j ¼ exp �
��xti � xtj

��2

�2

 !
: ð12Þ
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Fig. 7. (a) Positive and negative query examples from the target set (MIT
Traffic data set). (b) Top five matched samples from the source set
(INTIA) for each query with HOG features and L2 distance. The top
matched positive samples have similar poses as queries. When
buildings and trees are selected as negative queries from the target
set, similar buildings and trees are selected from the source set by HOG.
(c) Top five matched samples from the source set for each query with
raw pixels and L2 distance. They have different poses and semantic
categories than the queries.

5. This assumption may not hold if image patches are from different
scenes. Scene variations may make two image patches of different
categories similar in appearance.



It is sparsified by setting wij ¼ 0, if xi and xj are not the

KNNs of each other. A diagonal matrix D is defined by
Dii ¼

Pnt
j¼1 wij. Then the graph Laplacian is L ¼ D�W.

Although our work only considers visual distances, other
cues which characterize the structures of samples can also
be used to compute L. For example, temporal consistency of

samples can be exploited if tracking is available.
A is a diagonal matrix, where Ajj ¼ jc0jj. Therefore,

ðc� c0ÞTAðc� c0Þ ¼
Xnt
j¼1

ðcj � c0jÞ2jc0jj ð13Þ

is used to regularize c from its initial estimation c0. If cj0 is
low, which means that the context information does not has
a strong opinion on the label of xtj, then its confidence score
can be easily influenced by other samples with less penalty.
Otherwise, its confidence score can be changed only when
there is strong evidence from other samples.

The third term
Pnt

j¼1ðcj�tjÞ
2 tends to assign small

confidence scores to samples misclassified by SVM (with
large �tj), since the context information and appearance-
based classifier have disagreement on them.

4.2.2 Optimization

We optimize (11) iteratively. Denote the objective function
by Gðc;w; bÞ. Optimization starts with an initial model
ðw0; b0Þ. At each iteration k, let ck minimize Gðc;wk�1; bk�1Þ.
Since it is a convex quadratic function, the optimal ck can be
found by setting its derivative to be 0. We obtain the
parameters ðwk; bkÞ of a new model by minimizing
Gðck;w; bÞ using a modified version of LIBLINEAR [50],
which is based on the trust region Newton method. This
algorithm converges since the objective function monotoni-
cally decreases after each step. According to our experi-
mental results, it usually converges within five iterations.
Fig. 9 shows an example of how the confidence scores and
detection scores by SVM change after three iterations. After
convergence, the detection scores and confidence scores tend
to agree with each other.

Confidence-encoded SVM is a latent variable model and

its objective function is nonconvex. Other optimization

methods [51], [52] could be adopted to obtain a better local

minimum. For example, Kumar et al. [52] proposed self-

paced learning. Instead of considering all the training

samples simultaneously, its learning first only uses easy

samples and then includes harder ones. More advanced

optimization strategies could be studied in the future work.

4.3 Final Scene-Specific Pedestrian Detector

Once the scene-specific detector is trained on sampled

video frames, it can be used to detect pedestrians in new

frames purely based on appearance without other cues.

Although the context cues are effective on selecting training

samples, they cannot guarantee high detection accuracy

when being used alone in the final detector.6 If the detector

relies on path models, pedestrians walking on vehicle paths

may be missed. Replying on motions or sizes, stationary or

small pedestrians may be missed. The final detector could

be improved by integrating the outputs of the appearance-

based detector and context cues. But it is hard to decide

combination weights, since manually labeled training

samples from target scenes are unavailable. If automatically

selected and labeled target samples are used to train

combination weights, bias would be introduced since those

samples have high confidence scores according to context

cues. In this paper, our final detector only considers

appearance in the following experimental evaluation.
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Fig. 8. Left: A pedestrian is stationary for a long period and therefore is
labeled as a negative sample with an initial high confidence score
according to the motion cue. Its confidence score gets close to zero after
confidence propagation because a large number of other samples with
similar visual appearance to it are labeled as positive samples with high
confidence scores. Therefore it will not have a bad influence on training.
Right: A background patch is labeled as a negative sample with a low
initial confidence score because a vehicle happens to pass by and
causes motions. Its confidence score becomes high after confidence
propagation because some similar background patches are labeled as
negative samples with high confidence scores.

Fig. 9. (a) Confidence scores and (b) detection scores by SVM change
after three iterations when optimizing confidence-encoded SVM.
Windows are image patches in Dt. A bright window indicates a score
close to 1 and a dark one indicates a score close to �1. At initialization,
there are large differences between confidence and detection scores.
After three iterations, they look more consistent and correct. Experiment
is on the MIT Traffic data set.

6. The purpose of using these cues is to find some confident samples
without introducing bias on appearance but not to detect all the samples.



5 GENERALIZATION TO OTHER PEDESTRIAN

DETECTORS

Our approach can also be applied to some other detectors

such as the deformable part-based model (DPM) [8]. Similar

to (11), we encode the confidence scores and the smoothing

term into the objective function:

min
c;		

1

2
k		k2 þ C

Xns
i¼1

�
�i�

s
i

�2 þ C
Xnt
j¼1

�
cj�

t
j

�2

þ �
2

cTLcþ �
2
ðc� c0ÞTAðc� c0Þ

s:t: ysi f		
�
xsi
�
� 1� �si ; i ¼ 1; . . . ; ns;

ytjf		
�
xtj
�
� 1� �tj; j ¼ 1; . . . ; nt;

�si � 0; i ¼ 1; . . . ; ns;

�tj � 0; j ¼ 1; . . . ; nt:

ð14Þ

where 		 is the composite model parameter including both

the root filter and part filters, as well as the placement

deviation penalties. The classification score f		ðxÞ is obtained

by an optimal placement z, which is a latent variable:

f		ðxÞ ¼ max
z2ZðxÞ

		 � ��ðx; zÞ:

Optimization can be done in the fashion as in Section 4.2.
The computation cost of DPM is about three times higher

than HOG-SVM. This is a major concern in real-time

surveillance applications. DPM also requires higher resolu-

tions while many pedestrians are small in surveillance

videos. The typical pedestrian size is 40� 20 in the MIT

Traffic data set and 24� 12 in the CUHK Square data set.

6 EXPERIMENTAL RESULTS

Experiments are conducted on the MIT Traffic data set [26]

and the CUHK Square data set which is constructed by us.7

The two scenes are shown in Fig. 10. We adopt the PASCAL

“50 percent rule,” i.e., the overlapping region between the

detection window and the ground truth must be at least

50 percent of the union area. Recall rate versus false positive

per image (FPPI) is used as the evaluation metric.

6.1 Data Sets

MIT Traffic data set is a 90-minute long video at 30 fps. It

captured a street intersection with an eagle-eye perspective

and was recorded with a stationary camera. Occlusions and

varying illumination conditions apply. Four hundred

twenty frames are uniformly sampled from the first
45 minutes video to train the scene-specific detector.
Hundred frames are uniformly sampled from the last 45
minutes video for testing.

CUHK Square data set is also captured by a stationary
camera from a bird-view. It is a 60-minutes long video at
25 fps. Since the camera was much lower than that in the
MIT Traffic data set, perspective deformation is more
challenging. Three hundred fifty frames are uniformly
sampled from the first 30 minutes video for training.
Hundred frames uniformly sampled from the last
30 minutes video for testing.

In both data sets, the bounding boxes of pedestrians are
manually labeled as ground truth. Note that when our
approach trains the scene-specific detector, it does not use
any labeled samples from the videos. An the test stage, only
the appearance-based detector without context cues is used.

6.2 Parameter Setting

In (11), C ¼ 1=ð 1
nsþnt ð

Pns
i¼1 kxsik þ

Pnt
i¼1 kxtikÞÞ

2, and � ¼
� ¼ 1. The performance of our approach is stable when �
and � change in a relatively large range. � in (9) is defined
by �2 ¼ 1

nt�ns
Pnt

i¼1

Pnt
j¼1 d

2
ji, where dji is given by the L2

distance between a source sample xsi and a target sample xtj.
In (12), � is given by �2 ¼ 1

ðnt�1Þ2
Pnt

j¼1

Pnt
i¼1 d

2
ij. The experi-

ments on the two data sets use the same fixed-value
parameters for � and �, and compute parameters in the
same way.

6.3 Results

6.3.1 Comparison of Scene-Specific Detectors

We compare with the following approaches. When we talk
about detection rates, it is assumed that FPPI ¼ 1.

. A generic HOG+SVM detector trained on the INRIA
data set (Generic).

. Adapting a generic detector to the target scene by
integrating multiple context cues with hard thresh-
olding and clustering as proposed in [26]. It used
exactly the same context cues as ours.

. Adapting a generic detector to the target scene using
background subtraction to select samples (similar to
[29], but its detector is HOG-SVM not boosting).

. A HOG-SVM detector is trained on the INRIA
data set and all the manually labeled frames from
the target training set, and then bootstrapped on
target samples (INRIA+manual). Bootstrap is the
same as [4].

. Several transfer learning approaches including
transfer boosting [28], easy semi-supervised domain
adaptation [53] (EasyAdapt), adaptive SVM [36]
(AdaptSVM), and cross domain SVM [39] (CDSVM).
These transfer learning approaches all require
manually labeled target samples. We assume the
INRIA data set and 50 manually labeled frames from
the target scene are available for training.

Figs. 11a and 11b compare with two automatic scene
adaptation approaches [26] and [29]). They do not require
manually labeled target samples. Their training time was
reported in Table 2. Although the training time of [29] is
comparable with ours, its accuracy is significantly lower.
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7. http://www.ee.cuhk.edu.hk/~xgwang/CUHK_square.html.

Fig. 10. (a) MIT Traffic data set and (b) CUHK Square data set.



Compared with [26], our approach converges with fewer
rounds, and leads to a higher performance (7 percent
improvement on detection rate). Although our approach
takes slightly longer time at each round of training than
[26], its total training time is much lower, because [26] is
based on ad hoc rules and hard-thresholding, which reduce
its efficiency. Another point of achieving good efficiency is
to extract useful information as much as possible from
fewer target training samples. At the first round of training,
both [26] and ours have the same target set and initial
confidence scores c0, since they utilize the same context
cues. Confident-encoded SVM achieves a 48 percent
detection rate after the first round training, while [26] only
achieves 30 percent. It shows that our approach makes
better use of the same target training data.

Figs. 11c and 11d show that the adapted detector
obtained by our approach significantly outperforms the
generic detector. On the MIT Traffic and CUHK Square test
sets, it improves the detection rates from 21 to 69 percent,
and from 15 to 51 percent. In the literature [15], people have
observed improvement when a detector is bootstrapped
with additional negative samples even from a different data
set. We bootstrap our adapted detector and the generic
detector with negative samples from the Caltech training set
[54], denoted as “OursþCaltech Neg” and “Gener-
icþCaltech Neg.” Both detectors are slightly improved only
on the MIT Traffic data set, because the scenes of the Caltch

data set are similar to the MIT Traffic data set, but quite
different than the CUHK Square data set. Additional source
samples are helpful only when they are similar to target
samples. “GenericþCaltech Neg” is much worse than our
adapted detector. It shows that collecting training samples
from the target scene is important. We also compare with
the HOG-SVM detectors trained on manually annotated
frames from the target scenes. All the 420 and 350 training
frames of the two data sets are used.8 If the detectors are
only bootstrapped on the target set (denoted as “Manual”),
their detection rates (66 and 45 percent, respectively) are
lower than our adapted detector. If the INRIA data set is
included as the source data (denoted as “INRIAþManual”),
it outperforms our adapted detector by 10 and 3 percent on
the two data sets. It shows that source data is important
especially when the target set is not large enough. The
performance of “INRIAþManual” can be viewed as an
upper bound that our approach targets on, because it has all
the data that our approach has and additional manual labels
of all the target samples. Bootstrapped on additional
negative samples (denoted as “INRIAþManualþCaltech
Neg”), the performance gets improved only on the MIT
Traffic data set.

Figs. 11e and 11f compare with several transfer
learning algorithms. All these algorithms assume that a
small portion of the target set is manually labeled, and
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Fig. 11. (a) and (b) compare with [26] and [29], which do not require manually labeled target samples for training. For our approach and [26], the
results after the first round of training are also reported. (c) and (d) compare with the generic detector and the scene-specific detector trained with
manually labeled frames from the target scene. MIT Traffic and CUHK Square data set have 420 and 350 frames in the target training set. They are
all labeled for training the scene-specific detector. (e) and (f) compare with transfer learning approaches which require both source samples and
manually labeled target samples for training. The INRIA data set and 50 manually labeled frames from the target scene are used by them.

8. The numbers of positive samples are 1,573 and 956, respectively.

TABLE 2
Efficiency and Accuracy of Different Methods

All tested on a machine with Intel Xeon W5580 3.2G CPU.



weight source training samples during the learning

process. However, they do not utilize contextual informa-

tion from the target scene. EasyAdaptSVM [53],

AdaptSVM [36], and CDSVM [39] are general transfer

learning algorithms and Transfer Boosting [28] is specially

designed for pedestrian detection. But all have big gaps

with our approach, even though they have additional

manual labels of target samples.

6.3.2 Different Factors in Transfer Learning

Fig. 12 reports the result of our approach when using the
Caltech data set [54] instead of INRIA [4] as the source set.
Caltech has a much larger number of positive training
samples than INRIA (4,640 versus 1,517). It leads to a better
generic detector and a better adapted detector. The big
improvement caused by our approach still can be observed.

Figs. 13a and 13b investigate the effectiveness of
1) including target samples for training, 2) confidence
propagation, and 3) weighting source samples using
indegrees, on the two data sets. Only weighting source

samples without including target samples (“Source Only”),
the detection rates drops by 43 and 15 percent on the MIT
Traffic and CUHK Square data sets, respectively. Without
confidence propagation (“No Propagation”), it takes two
more rounds to converge on the MIT Traffic data set and the
detection rate drops by 11 percent. On the CUHK Square
data set, it takes one more round to converge and the
detection rate drops by 13 percent. If source samples are not
weighted (“No Source Weighting”), the detection rates drop
by 6 and 7 percent on two data sets. If source samples are
weighted using KNNs as [39] (“KNN”), which is commonly
used in transfer learning, the detection rates drop by
5 percent on both data sets.

6.3.3 Effectiveness of Context Cues

Figs. 13c and 13d investigate the effectiveness of different
context cues by removing each of them separately.
The models of pedestrian paths are the most effective in
the traffic scene, where pedestrians and vehicles are the
two major classes of moving objects to be distinguished
and their motions are strongly regularized by path
models. The cue of sizes is least effective on the MIT
Traffic data set, because there is large projective distortion
in that scene.

6.3.4 Design of the Final Detector

Our final detector only considers the appearance cue.
Table 3 evaluates the effectiveness of incorporating context
cues in the final scene-specific detector as discussed in
Section 4.3. The output of the adapted appearance-based
detector is combined with the output of a context cue with
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Fig. 12. Performance of our approach when Caltech instead of INRIA
data set is used as the source set.

Fig. 13. (a) and (b) investigate the effectiveness of different factors in the transfer learning framework. (c) and (d) investigate the effectiveness of
different context cues. (e) and (f) improvement of adapting the deformable part model [45] to target scenes with our framework.

TABLE 3
Improvements on Detection Rates by Combining Context Cues in the Final Scene-Specific Detector

Compared with Using the Appearance-Based Detector Alone (69 Percent) on the MIT Traffic Data Set

sa, sp, and sm are the outputs of the appearance-based detector, path models, and motion cue. wp and wm are the weights of path models and
motion cue.



a weight. Since the ranges of the two outputs could be
very different, we change the weight from 0.1 to 10. No
significant improvement is observed compared with using
the appearance-based detector alone. When the context cue
has a large weight, the detection rate drops significantly.

6.3.5 Extension to DPM

Our approach can be generalized to other detectors. Figs. 13e
and 13f show the result of applying our framework to the
deformable part model [45] described in Section 5. The
adapted PDM has a huge improvement over the generic
DPM, and outperforms the adapted HOG-SVM.

7 DISCUSSIONS

Our training process converges after one or two rounds on
the two data sets. Convergence means that few target
samples are added and the performance changes little. It
can be proved that our approach converges, but without
guarantee on the number of iterations. If unlimited memory
and computing power are assumed, it may work by taking
all the target samples at one round and (11) is only
optimized once. In practice, we keep adding new samples
crossing the margin to the target set at each round.
Therefore, it must converge; otherwise, all the samples
would be eventually selected and it stops. Our approach is
related to the bootstrapping strategy [4], [15], [45], [55] of
mining hard samples iteratively. Both approaches keep
adding hard negative samples close to the margin. Boot-
strapping includes all the positive samples at the initial
step, while our approach incrementally adds positive
samples. Bootstrapping knows the labels of all the samples
as ground truth, while ours relies on context cues to predict
labels and estimate confidence scores. In order for our
approach to converge quickly, context cues and confidence
scores must be effectively used such that classification plane
moves fast in a right direction at each round. The fast
convergence on the two data sets shows the effectiveness of
our approach.

We will work on the online version in the future work. A
dynamically updated detector can better handle the varia-
tion of illumination and background. Our approach can also
be improved by training different detectors for different
regions. In each region, pedestrians appear in similar sizes
and the background is homogeneous in texture. Region-
based context cues are more reliable, and a region-based
detector can better classify positive and negative samples in
the same region, whose distributions are simpler.

8 CONCLUSIONS

In this paper, we propose a new transfer learning
framework to automatically adapt a generic pedestrian
detector to a specific scene with the minimum annotation
requirement. The source data set, multiple context cues,
and the visual structures of target samples are well
integrated under the proposed confidence-encoded SVM.
It quickly converges after one or two rounds of training
on the two data sets. The whole system has only two free
parameters (� and �). When they are fixed as 1 on both
data sets, our approach significantly improves the detec-
tion rates by 48 and 36 percent at 1 FPPI on compared
with the generic detector.
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