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ABSTRACT
This paper presents a framework for semantically segmenting a tar-
get image without tags by searching for references in an image
database, where all the images are unsegmented but annotated with
tags. We jointly segment the target image and its references by op-
timizing both semantic consistencies within individual images and
correspondences between the target image and each of its refer-
ences. In our framework, we first retrieve two types of references
with a semantic-driven scheme: i) the compatible references which
share similar global appearance with the target image; and ii) the
competitive references which have distinct appearance to the tar-
get image but similar tags with one of the compatible references.
The two types of references have complementary information for
assisting the segmentation of the target image. Then we construct a
novel graphical representation, in which the vertices are superpixels
extracted from the target image and its references. The segmenta-
tion problem is posed as labeling all the vertices with the seman-
tic tags obtained from the references. The method is able to label
images without the pixel-level annotation and classifier training,
and it outperforms the state-of-the-arts approaches on the MSRC-
21 database.
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Figure 1: Given a target image without tags, our framework
retrieves several compatible-competitive images with tags as
references and jointly segments all these images. In (a), each
compatible reference has similar global appearances with the
target image, while the competitive references vary in appear-
ance but share similar semantic concepts with the compatible
references. (b) shows the ground truth label map of the target
image. (c) and (d) are the joint segmentation results of using
only the compatible references and using both of them respec-
tively. This figure is encouraged to be view in electronic version.

1. INTRODUCTION
With the massive explosion of tagged images on the Internet

(e.g., Flickr, Google), an interesting question arises recently: How
to segment them together with untagged images and simultaneous-
ly assign semantic tags to the regions of all the images? This prob-
lem is very challenging due to the fact that no pixel-level annotation
is available to train a classifier. A few works have been proposed to
address this problem [10, 8, 9], and they mainly rely on an assump-
tion that images with similar global appearance tend to share the
same semantic concepts. This assumption is not always true due
to object/scene variances and ambiguities. As an example shown
in Fig. 1, the found reference images with similar global appear-
ance as the target image have different sets of tags and may lead to
segmentation errors.

We investigate a novel approach in this paper to make use of
conflicting (competitive) relations based on the inconsistency of ap-
pearances and semantics. Our idea is illustrated in Fig.1. Given an
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Figure 2: Illustration of cc-MIG. All the superpixels of the tar-
get image as well as those of its references are extracted as
graph vertices, of which the class labels are inferred. The se-
mantic consistency of each image is represented by the unary
and pairwise potentials, i.e.the statistical image priors. The im-
age correspondences between the target image and each com-
patible (or competitive) image are represented by the compati-
ble edges (or competitive edges).

untagged target image shown in the middle, we search for both the
compatible and competitive references, and jointly segment them
with the target image to achieve superior performance. Specifically,
the compatible references share similar global appearances with the
target image, while the competitive references have distinct appear-
ance to the target image but similar tags with one of the compatible
references. The correspondences between the superpixels in the
target image and in the reference images are established consider-
ing the locations and appearance of superpixels. If a superpixel in
the target image has similar appearance with its corresponding su-
perpixel in a compatible reference image, they are encouraged to
have to same label. This introduces errors if the compatible im-
age and the target image actually have different semantic concepts.
Therefore, we further pose a constraint that if a superpixel in the
target image has different appearance with its corresponding super-
pixel in a competitive reference image, they are encouraged to have
different labels.

Our framework contains the off-line and on-line phases. During
the off-line phase, each image in the database is over-segmented
into superpixels, for each of which we compute a 119-dimensional
feature vector as described in [4]. Several image priors are then
adopted over these superpixels (sec.2.2). During the on-line phase,
given an target image, we first search for its compatible references
using GIST and HOG. Each of the compatible image is then asso-
ciated with a competitive reference by a semantic-driven retrieval
scheme (sec.2.3). Furthermore, we propose a compatible/competitive
multi-image graph (cc-MIG), with which the class label of each
superpixel is inferred, as Fig.2 illustrates. The cc-MIG is a com-
binatorial representation constructed with the target image as well
as its references. In this representation, each image creates a sin-
gle graph, where the unary and pairwise potentials are modeled by
the statistical image priors; the correspondences between superpix-
els in the target image and those in each compatible (or competi-
tive) image are modeled by the compatible edges (or competitive
edges). Each compatible edge, connecting two superpixels from
two respective graphs, encourages the superpixels to have the same
label, supposing they have similar appearances and spatial loca-
tions. By contrast, each competitive edge indicates two connected
superpixels with different appearances yet similar locations to be
assigned with distinct labels. With the cc-MIG representation, the
task of class label assignment can be efficiently solved via a linear
programming relaxation (sec.2.1).

Related Work. The jointly semantic segmentation in literature
can be divided into two categories: (i) tag propagation and (ii) pix-
elwise label propagation. The former transfers the tags of train-
ing data into unseen images. It requires less labeling effort but is
limited by their accuracy. The latter makes use of the full supervi-
sion (i.e., pixelwise label map) [5] and achieves the state-of-the-arts
performance. Its disadvantage lies in expensive annotations and ex-
pansibility.

2. OUR FRAMEWORK
We first present our formulation for the cc-MIG, where the op-

timizing semantic consistencies and image correspondences of su-
perpixels can be solved as a linear programming problem. Then, we
introduce the image priors to model the potential functions of cc-
MIG. The semantic-driven scheme of searching references is dis-
cussed at the end.

2.1 A Linear Programming Formulation
The objective function can be formulated as summing the scores

of semantic consistencies and image correspondences together

max
∑

∀I∈It∪{I+i ,I−i }
sem(I) +

∑

∀<I+/−,It>

corr(I+/−, It), (1)

where It, I+, I− denote the target image, compatible reference,
and the competitive reference respectively.

Semantic consistency. For all (s, ls) ∈ I , where s and ls in-
dicate a superpixel and its label respectively. In our method, we
constrain that each superpixel can be assigned only one label. We
introduce a binary indicator xs ∈ R

|Ls| for each superpixel, where∑|Ls|
i=1 xs(i) = 1 and xs(i) = 1 if i = ls. Ls is the set of possible

labels of s1. Also, for every two connected superpixels s1 and s2 in
image I , we present a binary indicator ys12 ∈ R

|Ls1 |×|Ls2 |, which

is a matrix and can be defined as
∑|Ls1 |

i=1

∑|Ls2 |
j=1 ys12(i, j) = 1,

and ys12(i, j) = 1 if i = ls1 and j = ls2 .
sem(I) can be then defined as

|Ls|∑

∀s,i=1

θs(i)xs(i) +

Ls1×Ls2∑

∀<s1,s2>,i,j

φs12(i, j)ys12(i, j), (2)

where θ(·) and φ(·, ·) are the unary and pairwise potentials respec-
tively, which are modeled by statistical image priors and will be
discussed in sec.2.2. Note that Eq.(2) is a relaxation of Markov
Random Field (MRF). Beside the original constraints for xs and
ys12 , we also ensure the solution stability among them as

|Ls1 |∑

i

ys12(i, j) = xs2(j),

|Ls2 |∑

j

ys12(i, j) = xs1(i). (3)

Therefore, the first summation of Eq.(1) along with its constraints
can be expressed in the following matrix notation

ΘT x +ΦT y (4)

s.t. Hx = e, Ax = By, and x, y ∈ {0, 1},
where x is a long vector, containing all binary vectors of all super-
pixels from all the images. In the same manner, we concatenate
all binary matrices into y. Moreover, e is an all one vector, and
H,A,B are the coefficient matrices. In fact, Eq.(4) couples all the
MRF relaxations.

1Ls is determined based on apriori knowledge. For example, for
the superpixels of a reference, the possible labels are the given tags.
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Image correspondence. Correspondences between images are
modeled by compatible and competitive edges in the cc-MIG. For
each compatible edge that connects two superpixels s+ and s2, we
introduce a binary indicator z+, which is also a matrix and is de-

fined to be
∑|L

s+
|

i=1

∑|Ls|
j=1 z+(i, j) = 1, and z+(i, j) = 1 if

i = ls+ and j = ls. Moreover, a binary matrix z− can be es-
tablished in the same way for each competitive edge. The second
summation of Eq.(1) can be decomposed as

∑

∀(I+,It)

L
s+

×Ls∑

∀(s+,s),(i,j)

ψs+(i, j)z
+(i, j) + (5)

∑

∀(I−,It)

L
s−×Ls∑

∀(s−,s),(i,j)

γs−(i, j)z−(i, j),

Here, ψs+(i, j) = exp{− ‖ fs+−fs ‖2} if i = j and ψs+(i, j) =
0 otherwise, and γs−(i, j) = exp{− ‖ fs− − fs ‖2} if i �= j and
γs−(i, j) = 0 otherwise. f denotes the feature of the superpixel.
Imposing Eq.(5) with the constraints similar to Eq.(3), we can also
formulate image correspondences in matrix form

ΨT z+ + ΓT z− (6)

s.t. Cz+ = Dx, C′z− = D′x, and x, z+, z− ∈ {0, 1},
where z+, z− denote two long vectors by concatenating all binary
matrices, and C,C′, D,D′ are the coefficient matrices. The con-
straints of Eq.(6) are to guarantee solution stability between vari-
ables z+, z− and x respectively.

Combining Eq.(4) and Eq.(6) leads to the complete formulation
for cc-MIG:

max
x,y,z+,z−

ΘT x +ΦT y +ΨT z+ + ΓT z− (7)

s.t. Hx = e, Ax = By, Cz+ = Dx, C′z− = D′x
and x, y, z+, z− ∈ {0, 1},

If we let 0 ≤ x ≤ 1, x ∈ x, y, z+, z−, this integer program is
relaxed to a linear one, which is sparse and can be efficiently solved
using interior point method.

2.2 Image Priors
Now we describe the potential functions in Eq.(4). The pairwise

potential φs12(·, ·) is modeled with the first-order density prior in-
troduced in [6]. The unary potential θs(·) is modeled with the linear
combination of three statistical image priors: semantics-based su-
perpixel density prior, objectness, and saliency. We will explain
the first one, which is proposed by us. The second and the third are
discussed in [1] and [2] respectively.

Given a superpixel from the input image, we estimate its class
label distribution by the semantics-based superpixel density prior,
which is found on the basic observation that if a superpixel possess
high density in an image, it should probably be assigned one of
the tags of this image. Therefore, this prior is computed in the
following three steps. i) For each superpixel s from the input image,
we first estimate its density on every image I in the database by

dIs ∝ 1

k

k∑

i

exp{− ‖ fs − fsi ‖2}, ∀si ∈ I. (8)

2We don’t attempt to connect all the superpixels between images,
since this would produce an over-complex graph. Inspired by [10],
only the top k similar/dissimilar superpixel pairs are connected by
compatible/competitive edges. k = 5 in our experiments.

Eq.(8) considers the density as the average similarities between su-
perpixel s and its k-nearest neighbors in image I . ii) We then rank
the images in a descent order according to their densities of s. iii)
At last, we select the first 1/20 of the total images to calculate the
class label distribution of superpixel s.

We verify the above prior on the MSRC-21 dataset, which is s-
plit into training and testing sets in the standard way. The class
distribution of each testing superpixel is estimated from the train-
ing data. We let k = 50 and achieve overall 57% classification
accuracy given 21 classes in total.

2.3 Semantic Search
We propose a semantic-driven scheme to retrieve the compatible

and competitive references from the database. Each compatible
reference has small distance in global appearance space to the target
image, while the competitive references vary in appearances but
share similar semantic concepts with the compatible ones. We first
introduce two distance metrics, then discuss our semantic-driven
scheme.

The distance metrics for global appearances and semantic simi-
larities are defined as

distapp(I+, I−) =‖ fI+ − fI− ‖2 (9a)

distsem(I+, I−) = 1− |T (I+)∩T (I−)|
|T (I+)∪T (I−)| , (9b)

where f is the feature of combining HOG and GIST, and T (·) de-
notes the set of the image’s tags. Our scheme has two steps. First,
using the target image as query, we search its nearest neighbors ac-
cording to Eq.(9a). The nearest neighbors are treated as compatible
references. Second, for each compatible image, we retrieve 1/10 of
the total images in the database in a descent order based on Eq.(9a).
Therewith, we apply greedy search to find a competitive image with
the smallest value of Eq.(9b). Note that this process is fast due to
all the distances can be computed off-line in the database.

3. EXPERIMENTS
Data. We evaluate our method on the MSRC-21 dataset [7],

including 591 images with ground truth label maps of 21 classes.
I. Analysis of competitiveness. We validate the effectiveness

of utilizing the competitive references and use the default split of
training and testing data defined in [7]. The results are shown in
Fig.3, where the x − axis indicates how many reference pairs (as
explained in sec.2.3, one compatible image is associated with one
competitive image) are retrieved, and the y− axis shows the aver-
age accuracy of semantic segmentation on the test images. The blue
(left) and red (right) bars are the results of only using compatible
references and using both types of references.
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Figure 3: Segmentation accuracies of the experiment I and III.

II. Comparisons. We compare the proposed method with the
following state-of-the-art algorithms: MIM [10], PLSA-MRF [8],
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Figure 4: Top: we summarize the results of experiment II compared with the state-of-the-arts. Classes on which we perform better
than other methods are shown in bold. Note that our approach works well on several very hard classes such as bird, cat, and dog.
Bottom: we illustrate segmentation examples on the MSRC-21 test set. The original image and its ground truth are shown on the
left, and we plot the semantic segmentation result on the right . This figure is encouraged to be view in electronic version.

and MTL-RF [9]. The data is the same as experiment I. For each
test image, our approach retrieves 4 pairs of compatible-competitive
references. The performance comparisons are given at the top of
Fig.4, from which we clearly see that our algorithm works better
than the state-of-the-arts. With the help of competitive informa-
tion, we are able to distinguish the highly confusing classes (e.g.,
cat, dog and sheep). With an unoptimized Matlab implementation,
the joint segmentation task takes 6 seconds (computing features:
1s, image retrieval: 1s, jointly segmenting 9 images: 4s) on a 64-
bit system with Core-2 3.6 GHz CPU, 4 GB Memory. Several seg-
mentations are illustrated at the bottom of Fig.4.

III. Size of the database. We conduct an experiment to test
our approach with different sizes of training sets. The test set
is the same as experiment I and II using the MSRC-21 test data.
The training images come from three sources: the training data
of MSRC-21, images of six classes of “building”, “grass”, “tree”,
“sky”, “water”, and “road” from the Stanford Background Dataset
(SBD) [4], and images of the other 15 classes from the segmen-
tation data of PASCAL VOC 2011 [3]. The training sets of dif-
ferent sizes includes all the training data of MSRC-21, and their
remaining images are randomly selected from SBD and PASCAL
VOC 2011. For each test image, we retrieve 4 pairs of compatible-
competitive references. The results are shown in Fig.3 and show
that our method gets better results when the size of the database is
increased.

4. CONCLUSION
In this paper a new framework is proposed to jointly segment an

untagged target image with a few pairs of compatible-competitive
references searched from a tagged image database. We construct
cc-MIG to infer the class labels of all the superpixels of these im-
ages. The cc-MIG problem can be solved efficiently by a linear
programming relaxation. Three experiments are conducted and our
approach outperforms the state-of-the-arts.
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