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Abstract. We propose a novel whole brain fiber-to-DTI registration
method and apply it to a clinical study of small vessel diseases. It deforms
a manually annotated fiber model to diffusion tensor images of new sub-
jects. Fiber trajectories and anatomically meaningful fiber bundles are
automatically obtained by this registration. The free-form deformations
are used to regularize the transformations at the whole brain level and
across fiber bundles. Fiber curvatures are penalized as the intra-fiber reg-
ularization to encourage the smoothness of transformed fibers. A Laplace
along-fiber regional prior learned from healthy subjects is proposed to
evaluate the match between fibers and tensors in patients. It effectively
improves the registration performance in the presence of white matter
lesions. Experimental results show successful registration on 55 subjects
and the DTI measurement computed from registered anatomical fiber
bundles have significant correlation with cognitive functions.

1 Introduction

Diffusion Tensor Imaging (DTI) can characterize properties of white matter
(WM) tissue in the brain and has great potentials in both clinical and neurosci-
entific studies. In many cases, scalar measures such as the fractional anisotropy
(FA) are directly computed from diffusion tensors in the whole brain or in regions
of interest for clinical and neuroscientific studies [1], whereas more advanced DTI
measures with stronger statistical power require tractography [2, 3] or even trac-
tography segmentation [4, 5]. However, tractography suffers from the problems
of noise, partial volume effects, and early termination of fibers, especially when
patients have white matter lesions. In tractography segmentation, it is difficult
to obtain anatomically meaningful fiber bundles without human intervention.



Fig. 1: Full brain fiber model. Different colors indicate different anatomical bundles.

Establishing the correspondences between fiber bundles and the pointwise cor-
respondences along fibers in different subjects is also challenging.

We circumvent these challenges by directly registering a manually annotated
whole brain fiber model to diffusion tensor images of new subjects. In the fiber
model, outlier fibers are removed and the remaining fibers are labeled into well-
known anatomical structures. This fiber-to-DTI registration scheme is attractive
because it simultaneously achieves tractography and tractography segmentation
after registration. The correspondences between fiber bundles and the pointwise
correspondences along fibers across subjects are also automatically established.
Moreover, it enforces the integrity of fibers and is robust to aforementioned DTI
defects by using inter- and intra-fiber regularization. Additionally, DTI is fixed
in fiber-to-DTI registration and thus the well-known problems of re-orientations
and partial volume effects in DTI-to-DTI registration are avoided. Furthermore,
fiber-to-DTI registration focuses on anatomical structures of interest and is less
affected by other regions such as gray matter (GM).

This work is related to the active fibers approach [6], which deforms a chosen
fiber bundle to match the diffusion tensor images by using the active contour
model. Our work is distinct from [6] mainly in three aspects. Firstly, our fiber-to-
DTI registration algorithm is able to register whole brain fibers simultaneously,
whereas the active fibers method [6] only deals with a single bundle and is hence
theoretically prone to local optima and may lead to physically impossible fiber
bundle topology. Secondly, we model the deformations by free-form deformations
(FFD) [7, 8], whose parameter number is independent of the number of fibers.
On the contrary, the parameter number of [6] is proportional to the number of
fibers, and therefore the regularization is much more complicated. Thirdly, we
propose an along-fiber regional prior learned from healthy subjects to improve
the performance of registration in the presence of WM lesions, and our algorithm
has been applied to 31 healthy subjects and 24 patient subjects. In contrast, the
similarity measure in [6] is purely the fiber-tensor fit measurement, which is very
local and unreliable in the presence of WM lesions. Besides, the validation of [6]
is only performed on 5 healthy subjects.



2 Free-Form Fibers (FFFs) Model

Our expert-annotated fiber model comprises of 20,000 tracts which are evenly
sampled into 1,000,000 fiber points with a step of 0.5mm. The fiber model is ob-
tained by first automatically clustering fibers into a large number of small bun-
dles, then manually removing outlier bundles and merging bundles into anatom-
ical structures (called anatomical fiber bundles). Finally there are 21 anatomical
fiber bundles. The fiber model is shown in Fig. 1.

Let FTi denote a serial of fiber points along the fiber tract i. The whole brain
fiber model is construted by stacking all the fiber tracts:
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where T is the total number of tracts, and ni represents the number of points of
tract i.

Given a mesh grid of control points Φ with uniform spacing (nx, ny, nz), the
B-spline FFD maps a fiber point (x, y, z) to:

p(x, y, z) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n , (2)

where i = �x/nx� − 1, j = �y/ny� − 1, k = �z/nz� − 1, u = x/nx − �x/nx�,
v = y/ny − �y/ny�, w = z/nz − �z/nz� and B is the B-spline basis function.

In FFFs, these B-spline coefficients represent the fiber points in the mesh
coordinate system and are static during the evolution of Φ. Let BN×M denote
the B-spline basis coefficient matrix. Equation (2) can be written as:

PN×3(Φ) = BN×M ×ΦM×3, (3)

where N and M are numbers of fiber points and control points respectively.
Having this parametric model of the whole brain fibers, we find the defor-

mations from the fiber model to the target brain DTI by optimizing the energy
functional (4) with respect to Φ.

E(Φ) = Edata(P (Φ)) + winterEinter(Φ) + wintraEintra(P (Φ))

= Edata(BΦ) + winterEinter(Φ) + wintraEintra(BΦ), (4)

where Edata is the data term which will be specified in Section 3; Einter and
Eintra are the inter- and intra-fiber regularization terms; wintra and winter are
experimentally chosen term weights. In [6], inter-fiber regularization is obtained
by penalizing transformation difference of local connected fiber points while ig-
noring distances between fiber points. By contrast, we want to have control of
the elasticity of the whole brain volume rather than only for the fiber points. So
we penalize the bending energy term on the mesh as

Einter(Φ) =
∑
i

∑
j

∑
k

‖∇2Φ‖2F , (5)



where ‖·‖F is the Frobenius norm. Note that Φ here is a 3D vector field, whereas
in (3) is the stacked version.

Although warping brain fibers with regularized deformations does not change
the curvatures of fibers significantly, it is uncertain whether this change will
compensate the curvatures of the input fibers or amplify them because the FFD
models a solid volume [7] and is blind to fibers. Since low curvature is a common
assumption on the brain fibers in most tractography approaches, we introduce
the intra-fiber regularization term to encourage FFD to move towards the direc-
tion that will result in smooth fibers. We define

Eintra =
∑
s

‖Λ∇2P ‖2, (6)

where Λ is a diagonal matrix that Λss = 0 if point ps is an end fiber point, and
Λss = 1 otherwise.

We minimized the energy functional by a quasi-Newton approach. The gra-
dient is calculated as below:

∇ΦE = BT (∇PEdata +∇PEintra) +∇ΦEinter. (7)

3 Similarity Measures

The fiber-DTI similarity measure is defined by the data term

Edata(P ) = wDTIEDTI(P ) + (1− wDTI)Eregion(P ), (8)

where EDTI measures whether the majority of the principal diffusion directions
of tensors are aligned with the tangents of fibers, and Eregion is based on a
regional prior that will be elaborated later in this section. Let vs denote the
unit tangent vector of point ps on the deformed fiber tracts and Ds denote the
tensor at ps. We define the data term as the normalized Fiber-Tensor-fit(nFiT)

EDTI = −
∑
s

vT
s Dsvs

tr(Ds)
. (9)

When applied to patient subjects, using only the nFiT measurement is insuffi-
cient. On one hand, WM lesions may alter the microstructure of fiber tracts [9],
making the nFiT measure unreliable. On the other hand, the tensor directions in
a local area may be highly inconsistent due to the complexity of fiber structures.
For instance, superior cingulum is perpendicular to corpus callosum but they are
very close to each other. This complexity of fiber structures poses difficulty on
quasi-Newton optimization. Owing to the inter- and intra-fiber regularization,
the FFFs framework is able to overcome these limitations when used on most
healthy subjects, but often fails on patient subjects due to the contamination
of fiber tracts. Therefore, we enrich the data term by incorporating a regional
prior learned from healthy subjects.
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Fig. 2: Baseline (a) and FA (b) images for a patient subject (upper) and a healthy
subject (lower); and similarity map for the ‘×’ point obtained by diffused FA (c) and
our region descriptor (d). ‘+’ shows the correspondence of ‘×’. The lower row is the
close up of the upper row for (c) and (d).

Extract regional features To learn the regional prior, we need a feature
that does not vary much between healthy and patient subjects. However, most
DTI features are not invariant to lesions, which is not surprising because the
microstructure is altered. Nevertheless, boundaries between WM and GM are
still clear in FA images despite the WM is darkened by lesions (see Fig. 2(b)).
This observation motivates us to use a region descriptor to extract the regional
FA feature for every fiber point.

The descriptor is defined as the correlation coefficients for a local window
between FA and three positional features (κ1 = −y + z, κ2 = x + y + z, κ3 =
−x+ y + z):

RCC(FA, κk) = cov(FA, κk)/
√
cov(FA,FA)cov(κk, κk), (10)

where cov(A,B) is the covariance of A and B in a local window.
We choose these three positional features because they are fairly simple and

fit the principal axis of the lateral ventricle of the majority of our data. Note
that it is not necessary for the features to be exactly orthogonal.

As shown in Fig. 2, diffused (blurred) FA leads to low similarity at the cor-
responding point due to the reduction of FA value. On the contrary, our region
descriptor generates high similarity at the corresponding point.

Actually, our 3-channel descriptor performs similar to edge detector but has
the following three advantages. (1) Unlike the simple gradient which is computed
from neighboring voxels, the region correlation is the statistics of a local region
and is thus robust to noise; it is also invariant to the local average and variance
of FA, the reduction of which is a common result of WM lesions. (2) Due to



the large overlap of neighboring windows, it diffuses the WM surface to its
neighborhood which enlarges the capture range of the model. (3) These features
can be computed very efficiently by using the integral image representation [10]
whose complexity is independent of the window size.

Learn the features for patient subject registration After registration of
healthy subjects using (9), we respectively learn the three features for every fiber
point by Laplace distributions. This statistical along-fiber prior is very different
from the conventional atlas which is based on a single reference image. The con-
ventional atlas method deforms fibers according to image-to-image registration
and accordingly any misalignment in the atlas will be propagated to the final re-
sult. Contrarily, in our framework, registration errors of a single training sample
are regarded as outliers and will not affect the Laplace priors much.

We define the regional data term as

Eregion(P ) = − log p(P ;κ1, κ2, κ3) ≈ −
∑
s

log p(ps;κ1)p(ps;κ2)p(ps;κ3)

= −
∑
s

∑
k

( |RCCk
s − μk

s |
bks

+ C(bks )

)
, (11)

where μs and bs are the location and scale parameters of Laplace distribu-
tions learned from registration results of healthy subjects. RCCk

s is short for
RCC(FA, κk). C(bks ) is a constant value independent of P .

For healthy subjects, regional prior is not available and we set wDTI = 1. For
patient subjects, since the B-spline grid is optimized in a coarse-to-fine manner,
we set wDTI = 0 at coarse grid levels because the regional term is more robust,
and wDTI = 0.5 at the finest grid level, to balance the two terms and refine the
registration results.

4 Results

24 elderly patients in various stages of Small Vessel Desease (SVD) are recruited
for an experimental treatment. 31 healthy subjects are enrolled for reference.
Diffusion weighted images (DWI) are acquired on a 3-T Philips Achieva MRI
scanner (Philips, Netherlands) in 16 gradient orientations with field of view equal
to 220 × 220 × 165 mm3 at the b-value of 750 s/mm2. Pixel spacing equals to
0.86× 0.86 mm2 and the slice thickness is 3 mm. The repetition time/echo time
equals to 10900/84.5. The finest B-spline control point spacing is about 7×7×6
mm3. Based on the visual validation of the major fiber bundles, the fiber-to-DTI
registration is successful for all the 55 subjects.

Fig. 3 compares the corpus callosum constructed by manual seeded tractog-
raphy (a) with three fiber-to-DTI registration approaches: (b) affine alignment;
(c) FFFs with nFiT alone as the similarity measure (“nFiT” for short); and (d)
FFFs with nFiT and the regional prior (“RCC-nFiT” for short). As shown in
the upper row, due to WM lesions, the tractography approach (a) fails to recon-
struct the middle part of the corpus callosum (CC), whereas integrity of the CC
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Fig. 3: The corpus callosum reconstructed by using manual seeding(a), affine align-
ment(b), nFiT(c), and RCC-nFiT(d). The lower figure of (a) shows the seed region.

is maintained in the fiber-to-DTI registration approaches (b-d). The lower row
compares the tractography (white) and registration results (gray) in close-up
view. If registration does well, the registered fiber template should match the
fibers reconstructed from manually seeded tractography. After affine alignment,
there is still shape mismatch between the tensor and the corresponding anatom-
ical structure, i.e., the tractography result. The nFiT approach deformed the
fiber in wrong direction while the residue mismatch was successfully corrected
by RCC-nFiT.

The upper row of Fig. 4 displays the patient registration results in differ-
ent depths. As shown, the registered fiber bundles well fitted the anatomical
structures on the DTI data and the fiber bundles were able to go through the
lesion regions (highlighted in white squares). It is important to note that by
using an annotated fiber model, we are able to simultaneously segment multiple
regions, e.g., inferior cerebellar peduncle in green, corpus callosum in magenta,
and superior cingulum in blue. The lower row of Fig. 4 compares affine align-
ment, nFiT, and RCC-nFiT results. Anatomically, the corpus callosum (in cyan
squares) should not cross the lateral ventricle (the central bright region). It is
clearly shown that the RCC-nFiT approach outperformed the other two.

Since the key contribution of the work is to achieve fiber-to-DTI registra-
tion at whole brain scale which is too complex to synthesize, we are currently
unable to validate the registration with ground truth. Alternatively, previous
clinical studies [1] suggested that DTI measures should have strong correlations
with cognitive impairment. We therefore validate our results by testing whether
it is coherent with the clinical finding. Specifically, we test the partial corre-
lation coefficients between the along-fiber nFiT and two widely used cognitive
scores: the Mini-Mental State Examination (MMSE) and the Montreal Cogni-
tive Assessment (MoCA), based on 24 patients with control for age, gender,



Fig. 4: Upper row: RCC-nFiT results of a patient subject in axial view. Lower row: com-
parison of results from affine alignment (left), nFiT (center), and RCC-nFiT (right).
Points within the slice space are overlayed. View in color for fibers.

and education. As shown in Table 1, the correlation is remarkably improved by
incorporating regional prior for both MMSE and MoCA. The p-value of the cor-
relation between RCC-nFiT results and MoCA scores is 0.001, indicating that
the along-fiber nFiT measure obtained by our fiber-to-DTI registration could be
used as predictors of cognitive impairment.

Affine nFiT RCC-nFiT

Correlation with MMSE 0.373 0.487 0.561
Correlation with MoCA 0.462 0.657 0.725

Table 1: Correlation coefficients between cognitive scores and along fiber measurements.

5 Conclusion

A novel whole brain fiber-to-DTI registration method, named free-form fibers
(FFFs), is proposed and demonstrated to be able to automatically obtain whole
brain fiber trajectories and annotation. Using a unique whole brain fiber model
to match multiple subjects, the method provides inter-subject correspondence
by nature, thus allowing for group analysis. Meanwhile, by using intra- and inter-
fiber regularization, the method can avoid early termination of fibers, which is
a vital limitation of the conventional tractography method. We also propose
a Laplace regional prior that is learned from healthy subjects and makes the
registration for SVD patients robust towards WM lesions. Experimental results
showed successful registration for both healthy subjects and SVD patients and
demonstrated improvement by using regional prior. Similar conclusion is con-


