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Quantitative Fourier Analysis of Approximation
Techniques: Part |—Interpolators and Projectors

Thierry Blu, Member, IEEE and Michael UnserFellow, IEEE

Abstract—We present a general Fourier-based method that aliasing artifacts. The standard remedy is to prefilter the data
provides an accurate prediction of the approximation error as prior to sampling. This is done implicitly in the theory of
a function of the sampling step". Our formalism applies 10 o \wayelet transform, when a signal is projected onto some

an extended class of convolution-based signal approximation . . S
techniques, which includes interpolation, generalized sampling multiresolution subspace [10]-[13]. Indeed, the combination of

with prefiltering, and the projectors encountered in wavelet Prefiltering and sampling is equivalent to forming a sequence
theory. We claim that we can predict theL*-approximation error  of inner products between the inpsttz) and some translated

by integrating the spectrum of the function to approximate—not yersions of an analysis functiog. This type of Hilbert
necessarily bandlimited—against a frequency kernelE(w) that o500 formulation has been the basis for various extensions

characterizes the approximation operator. This prediction is eas- , . .
ier yet more precise than was previously available. Our approach Of Shannon’s sampling theory for splines [14], [15] and other

has the remarkable property of providing a global error estimate  wavelet-like expansions [16], [17]. The principle behind these
that is the average of the true approximation error over all sampling theories is that the prefilter has to be tuned to the
possible shifts of the input function. Our error prediction is exact approximation space defined by the interpolation function
e s o Sommoon o i esnaion. I paricular, his means that applying an ideal lowpass fiter
and ‘approximation techniques. is not necessarily the best solution.

Our method has interesting implications for approximation These methods can all be studied from the general per-
theory. In particular, we use our results to obtain some new spective of approximation theory [18]-[22]. The most relevant
asymptotic expansions of the error ag” — 0, as well as to derive  agpect js the behavior of the approximation error as the
improved upper bounds of the kind found in the Strang-Fix sampling stepl’ gets sufficiently small. Although there are
theory. We finally show how we can design quasi-interpolators X o
that are near optimal in the least-squares sense. many error bounds available, they tend to be rather qualitative
and not sharp enough to be of direct use to signal processors.
What is desirable in this context is a simple and accurate way
of predicting the error so that we can compare algorithms and

ESAMPLING and interpolation play a central role inselect the interpolation function and sampling step accordingly.

image processing [1]-[3]. These operations are requirdtius far, this goal has been achieved only partially with an
to rescale or rotate images or to correct for spatial diexact computation of the error in the asymptotic regime, that
tortions. Those are also standard tools in signal processisg whenT is small or when the signal to approximate is
for performing sampling rate conversions or implementingufficiently smooth. Specific results have been published for
time delays [4], [5]. Shannon’s theory [6] provides an exaetavelets [21], [23], [24] and other types of convolution-based
sampling/interpolation system for bandlimited signals. Howapproximation operators [22].
ever, his method is rarely used in practice—especially for The main purpose of this paper is to introduce a Fourier-
images—because of the slow decay of &irjc Instead, prac- based method that will simplify the analysis of thé-error,
titioners rely on more localized methods such as bilinear addition to producing more accurate estimates with a much
interpolation, short kernel convolution [7], and polynomialider range of applicability. This technique is based on a
spline interpolation [8], [9], which are much more efficienpowerful approximation theorem that we have presented in
to implement, especially in higher dimensions. [25] in the more general case of multiple generators. What

Although interpolation techniques are widely used in pragnakes it very attractive for signal processing is its very
tice, it should be realized that they often constitute a rathestural frequency domain formulation: It involves nothing but
crude approach to the problem of approximating a functiapweighting kernelE(w) that characterizes the error behavior
or a signals(z) that is continuously defined. For instancepf an algorithm entirely. This error kernel can be readily
it is well understood that interpolation is not appropriat@omputed for any given algorithm; it can also be used to
for sampling rate reduction because it usually gives rise ¢ptimize the approximation technique. The simplicity of the

_ _ _ concept should appeal to practitioners. The method is quite
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approximation theoretic ramifications. In particular, we wilA. Notations
show that it can be the basis for obtaining a whole variety Tha conventional inner

of error bounds that are sharper than what has been avaiquS L? functionss, , s» is denoted’s; s»), and the associated
before. . . i Euclidean norm i - ||pz.

The_p_aper is organized as fqllows. In Se_ctlor_l I, we start The Fourier transform 0f(x) is 3(w). Let  be a positive
by defining a general class of linear approximation operatqig,| number; the Sobolev spavé; is defined as the collection
that falls within the classical signal processing acquisition paks t,nctions satisfying/ (1+w?)"|3(w)|? dw < oc. By analogy
adigm: prefiltering, sampling, and postfiltering. This relativelyO this definition of regularity, we exterjfs||z.. to noninte-

broad family includes most commonly used interpolation | i b . 1 o1l 1 h
algorithms, as well as many kinds of projectors that have be@fi Values o by equating it t0\/5 J1wl?7[3(w)[? dw. The

used recently to obtain spline and wavelet approximations gnoothness of a functios(z) can thus be characterized by the
signals. In Section IlI, we will introduce the frequency kernghaximums such thats € W; this regularity exponentmasx
E(w) that provides a simple, convenient characterization of tifdicates thak(x) has|r | derivatives inL? for all r < 7.
performance of a given approximation operator. Specificallyhere is also a direct connection wiloint-wisesmoothness:
we will show that we can make a very accurate predictidh s € W5 with » > 3, then s(z) has at leastr — 3]

of the approximation error by integrating the spectrum of tHeontinuous derivatives [26].

function to approximate against this kernel; this is a property The infinite normsup,.g | f(z)| of a function f will be
that will be justified theoretically. We will then use thosé;/enOtEd byl f1]o-

results to compare the performance of various interpolation The Riemann zeta function is defined@s) = >~ n .
and approximation algorithms. In Section 1V, we will turn to Discrete filters are either described by their impulse re-
more theoretical issues and determine the asymptotic formSfonseh,, or by their »-transform H(z) = 3, hnz", for

the error as the sampling step tends to zero, adding higher or4Bich we use upper-case symbols.

terms to what has been published before. We will also deriveMost of the asymptotic expansions are presented with
improved error bounds, including one that is asymptotical§nd “O(-)" terms, which allows us to give a more compact
sharp; these should be of interest to approximation theorigfdd understandable form to the results: Writif{g:) = o(z™)
and signal processors alike because of the way in whith equivalent to writinglimsup,_, |f(z)/2"| = 0. In the
the bound constants are directly relatedH6w). Finally, in Same spirit, writingf(z) = O(«™) is equivalent to writing
Section V, we will use our results to design quasi-interpolatidi sup, .o | f(z)/z"| < oo (i.e., not necessarily 0).
algorithms that are near optimal in the least-squares sense.

These should provide essentially the same performance asBheSignal Subspaces

more sophisticated projection operators but at a lower coSiye want our interpolation/approximation algorithms to have
since no analog prefiltering is necessary. a simple “shift-invariant” structure that is well adapted to

Most of our present results are directly applicable to th@gnal processing. For this purpose, we consider the generic
characterization of the approximation error of wavelet expapsconstruction formula

sions [21], [23], [24]. This is an aspect that will be further z

investigated in a companion paper. In particular, we will se(x) = ch‘p(f —n) 1)
show how the use of the two-scale relation can simplify the n

determination of many of the bounds constants that are defi%ﬁere thec
in Section IV. "

producf s;(x)s2(x) dz between

's are some signal coefficients, and whergr)
is a user-specified “interpolation” function. The coarseness of
this representation is controlled through the scale parameter
T (sampling step); this gives the expansion formula (1) a
wavelet-like flavor. If we allow thec,’s to take arbitrary
) ) values, then (1) defines a vector spage= span,,{¢(+ —

In this paper, we consider the general problem of the) Ajthough we want to have as much freedom as possible
reconstruction of a functios(x) of the continuous variable ¢o, selecting the functions(z), it is important thatV be a
x from a discrete set of measurements (e.g., sample valugg)l-defined subspace di? and that each of its functions
collected on a uniform grid with step siZ&. In general, ¢ (.)€ Vi have a unique and stable representation in terms
the reconstructiorQrs(z) will only be an approximation of of the coefficientse,. In other words, we want (1) to be
s(z) in some signal subspacer; Qr is a linear operator ynambiguous. This turns out to be the case if the functions
that depends explicitly on the sampling stép Our main {¢(. = n)}nez constitute a Riesz basis df. Mathematically,

interest here will be to quantify the difference betwegm) this means that there exist two positive constaiits A > 0
and its approximated versio@rs(z). In principle, we should gych that for alle € ¢2

expect the approximation to improve as the sampling step gets
smaller. In the limit, asl’ approaches zero, we want it to be Zc ol — n)
exact for any “reasonable” input functiefiz). In this section, s

we define all the relevant signal spaces and specify our class "

of approximation operator®r. We also review some basicThis constraint is equivalent tol < a.(w) < B almost
concepts from approximation theory. everywhere (cf. [16]), where th&r-periodic functiona(w)

Il. PRELIMINARIES: SIGNAL
REPRESENTATION AND APPROXIMATION

Allelle < <Blde. @

L2
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analysis . synthesis The most critical choice in the design of approximation
s(2) —— sampling e . Qrs(z)  operators is the selection ap because it determines the
— t¢(=7) 7P(T) g approximation spacé/;. A key concept is the order of

approximation that requires thagt has some very specific
properties (cf. Section II-D). Once this choice is made, we
. have some freedom in selectiggsuch that the approximation
287 —mn) scheme performs appropriately. A design constraint found
o1 Block d on of th o 2 in many recent approximation schemes is thaimust be
1g. 1. oC lagram representation of the approximation operaior. H H ~ _ _ H
The boxes represent continuous-time filters characterized by their impu_@e—?rt_hon_ormaI t0<.p, Le., (¢(x . n),¢(x)) = én. The d_lreCt
response. Sampling is modeled by a multiplication with a train of Dirac funéMplication of this property is that the operat@r is a
tions. Wheng(x) = &(x) (identity operator), the system is an interpolatorprojector for it can be verified tha@r Qr = Qy. This means
The operator is a projector if and only @ and¢ are biorthonormal. that the operato©y has the desirable property of reproducing
is defined by exactly any functionf € Vr. The biorthonormality property
A A ) is central to the construction of wavelet bases and all the
Gp(w) = Z |¢(w + 2nm)|". (3) associated multiresolution approximation operators [11], [28],
oo . ) [29]. It has also been used to formulate generalized sampling
From now on, we will use the terrgenerating functionto  heories [16], [17].
indicate thaty satisfies this hypothesis. Note that the Riesz |nterestingly, the standard interpolation schemes (which use
condition is not restrictive at all: It is satisfied by virtuallyng prefiltering at all) can also be interpreted from this newer
any interpolation function used in practice. In particulaperspective. In this case, we have thatr) = 6(z). The
there is no requirement that be compactly supported. Thispigrthonormality property is then equivalent to the standard
admissibility property is also necessarily satisfied by all scalifgterpolation conditionp(k) = 6, which ensures that the
wavelet transform [11], [27], [28], [29]. These latter functiongynction at the grid points.
are much more constrained because they must also be solutiofipe pest approximation scheme ¥ is the one that min-
of a two-scale relation: an assumption that is not made in thi§jizes the error (least-squares solution) [16]. In this case, the

paper. optimal prefilter is uniquely specified through the biorthonor-
mality condition, along with the additional constraigt €

o o V(¢). The corresponding functiop, is called the dual of
The next question is how to get the coefficieatsin (1) so  , and is defined as

that Qrs(z) = s.(«) is a reasonable representation of some .

desired signak(z). The natural signal processing answer is pa(w) = o(w) (6)
through sampling. However, we want our scheme to be more ap(w)

general than simple interpolation, and we want it to account

wavelet-like approximation methods that have been prOponprovide anorthonormal projection which we denote byPy

rece_r_1t|y [16], .[17]’ 271, [28.]' Therefore_, we |r_1clu<_je AMnstead ofQr. A special case that falls into this category is
addlt!onal prgfllterlng step prior to .Sa”.‘p"”g’ which |s_als% ) = pa(z) = sinc(z), which describes Shannon’s classical
consistent W|,th the stgndard d|scret|zqt|on procedure dlc_tatre onstruction formula for bandlimited signals [6].

by Shannon’s sampling theorem. This leads to the signal
processing system that is schematically represented in Fig. 1.

Mathematically, the combination of prefiltering and samplinB'

C. Interpolation and Approximation Operators

;%/rgere as(w) is given by (3). This optimal scheme will

Lth-Order Approximation Operators

is conveniently described by the inner product integral A crucial notion in approximation theory is the order of
(¢ ¢ approximation, which describes the rate of decay of the error
Cn I/S(€)<P<T —n> dr (4) as the sampling step goes to zero. Since this is primarily

a property of the approximation space, mathematicians have
Deen especially interested in characterizing what happens in

response of the prefilter in Fig. 1. Combining (1) and (4 fie best possible case (least-squares approximation and other

. . . o VPP norms) [18], [30], [31], [32], [33]. The basic result in this
\(')Vse?:grtg Y‘”th the following definition of the apprommaﬂonarea’ due to Strang and Fix [18], is that the minimum error
T

has anLth-order decay i.e]|s — Prs||p2 < T%, if and only if

A3 £ T

Qrs(x) z,,: [/s(§)<ﬁ<T n) dT}p(T n) (5) $(0)£0, and ¢®(2nm) =0 for {7137—&(()) Ly
Our last constraint is that its Fourier transfogmbe upper ©)
bounded [25]. This gives us the flexibility of considering
nonL? analysis functions such as the Dirac point distributiofihis last equation imposes some strong constraints on the
o(x). Fourier transform of. It is often referred to as the Strang—Fix

A classification and summary of the different linear, integeronditions of ordel. In [18], Strang and Fix had originally as-
shift-invariant, approximation methods is given in Table kumed thatp has compact support; their powerful equivalence

where¢ is the so-called analysis (or sampling) function—it i
simply the time-reversed version of the normalized impul
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TABLE |
LINEAR APPROXIMATION METHODS
approximation method analysis synthesis references
interpolation 2(z) = 8(z) w(n) =8, (6], [7], (38], [37]
quasi-interpolation _ . I
@(z) = é(z) ¢lw+2n7) =8, +O(w™) | [20], [22], [30], [19], [34]
of order L
L? optimal @ = g not specified [31], [18]
L? projection (@(z — n),p(z)) =06, not specified [21], [42]
quasi-biorthonormality N . L
By @+ 2nm) = 6, + Owh) (361, [251, (23]
of order L
general case not specified this paper

has since then been extended for noncompactly suppegrtedquasibiorthonormality conditions) that need to be satisfied
with suitable polynomial decay [34] or even less restrictiorfer Qr to have anLth order of approximation. This is much

[25], [31]. less restricting than the usual biorthonormality condition since
Another equivalent formulation of (7) is that all polynomialghe latter also implies thd.th-order property [21]. Quasi-
of degreen = L — 1 must be expressible as a lineabiorthonormality may therefore be a very relevant condition

combination of the translates @f. This connection can be for the design of simplified approximation algorithms such as
established with the help of Poisson’s summation formula; ftihe quasiprojectors in [36] that provide essentially the same
instance, the first-order Strang—Fix condition wiitd) = 1is type of performance as the least-squares solution (see also
equivalent to a partition of unity, namely,= > ¢(z —n), [23]). Note thatL = 1 is the minimum requirement for the
which plays a crucial role in wavelet theory. In this latteerror to vanish ag’ tends to zero.
context, the Strang—Fix conditions usually appear in a more
disguised form for the ordel relates to the number the
vanishing moments of the analysis wavelet [11]. IIl. FOURIER-DOMAIN CHARACTERIZATION
Although the bounds of the classical Strang—Fix theory OF THE APPROXIMATION ERROR
apply to the case of an orthonormal projection, it is not too The theoretical notion of order described in Section Il is still
difficult to conceive of suboptimal schemes that achieve thather qualitative. There are many applications (e.g., image
same rate of decay of the error. The better-known examplesirocessing) for which it would be very useful to have a more
approximation theory are interpolators and quasi-interpolatajaantitative way of estimatinfjs — Qrs||r.:. This would allow
[19], [20], [30], [35]. By extension, we can also characterizéor an objective comparison of the various approximation
the most general class of linear approximation opera@rs techniques available. It would also be convenient to have error
that are of orderL. The fundamental constraint is thélr formulee that are simple enough so that the determination of
must reproduce the polynomials of degree- L. —1 perfectly the optimalg can be carried out using standard optimization
[30], which is obviously possible only i¥; is an Lth-order techniques.
subspace. For the class of “integer shift-invariant” operatorswe will now present a new method that has the desired
considered here, this will be the case if and onlyifind¢  features. First, it has a very simple Fourier-domain formulation
arequasibiorthonormabf order L [25], which is equivalent to that should be appealing to signal processors. Second, it allows
the requirement that, in addition to the Strang—Fix conditiorisr a more accurate prediction of te approximation error
of order L on ¢, the moments ok and of ¢4 be equal than any of the approximation theoretic estimates that have
up to the orderL (i.e., [2*¢(x)dr = [zp4(z)dx for been available so far. This claim of increased accuracy will
k= 0...L —1). This condition can also be expressed in thee further justified in Section IV. Third, the proposed form of
condensed form of Table I. Specifically, wherand satisfy the error criterion is directly amenable to standard filter design
some additional mild conditions on their decrease (which ischniques: a possibility that is illustrated in Section V.
automatically the case whep, ¢ are compactly supported The key quantity used to characterize an approximation
[25]), we have the equivalence operatorQr is the frequency kernek(w), which is defined
as follows:
VieWs, |ls—Qrsle = O(T")
< ¢ andg are quasibiorthonormal of orddr (8) E(w)=]1-¢w) ¢w)] + |pw)|? Z |¢(w + 2nm)> (9)

n#0
which comes as a special case of [25, Th. 3 ]. 15(w)|? N R )
For a giveny, the implication of this result is that we still =l aw + 4, (W)p(w) = gaw)]” . (10)
have a large freedom in designing so that the operator — F"(m)

Qr is well behaved. There are onlg linear constraints Emin (@)
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Note that whenpy and¢ are exact duals (least-squares approxs intrinsic scalely, is large with respect to the sampling step

imation), this kernel reduces tB,,i,(w). T.
The approximation error is simply predicted from the inte- The regularity constraint > 1/2 in Theorem 1 is not
gral formula very restrictive. In particular, it is satisfied wheneVgr.)| <
1 Clw|~t~ for any « > 0, which implies thats(x) should be
n.(T) = [i / |3(w) P E(Tw) dw ’ (11) ot much more than continuous. Note, however, that this does
2m not mean thaany continuous function satisfies the constraint.

which involves the spectrum of the function to approximate A SPecial case of this result can also be found in [31].
and a rescaled version of the kernel. Relation (10) implies thH€Se authors examined the more restrictive least-squares case
the criterions,(T) with a given choice ofy is minimized ¢ = ¥d and identified a quantity that is the same as the first
when fﬁ(w) = $a(w), that is, wheng = ¢,. This solution error term in (13). Considering only the interpolating case
is precisely the orthonormal projectiofy, which is known #(%) = é(x), another version of the second part of Theorem
to minimize the true error approximation in the sense. We 1 (restricted to Shannon bandlimited functions) also appeared
will now present three arguments that justify the use of tHg [37] and [38].

criterion 77,(T) to characterize the behavior of any approx- AS We have shown in [25], Theorem 1 is a quite powerful
imation algorithm. The first one is approximation theoretifesult that has many interesting implications for approximation

[e.g., n,(T) is an excellent approximation dfs — Qzs||r.2 theory.. We will furt_her inve_stigate this aspect i_n Section V.
for smooth or bandlimited functions], whereas the two othel@ Particular, we will exploit Theorem 1 to derive a variety
are more pragmatic because they show thal’) defined of very accurate error estimates that can be directly applicable
by (11) represents an average measure of the error, Wh'parpract_ice. Our new results will include an exact asymptotic
is often better suited for signal processing than the exdgfPansion of the error &8 — 0, as well as some upper bounds
L2 measure||s — Qpsl|r-. We then conclude Section 11l by that are asymptotically sharp. The interest for signal processors

applying our methodology to the comparison of interpolatiof} that all the underlying bounds constants are directly tied to

and approximation algorithms. the kernel E{(w). .
Although we have just seen that the second error term

in (13) vanishes provided thatis sufficiently well-behaved

] o (smooth or bandlimited), we will now show that there is still
The primary justification for the use of (11) to represepother much less restrictive way to let it vanish, namely,

the error is given by the main approximation theorem in [25&,), averaging the error over all possible sampling phases or,

which we particularize here for the case of a single generatgrm”a”y, over all realizations of a stationary process.
To describe this result, it is useful to defiagT): the relative

out-of-band energy of al? function g

A. Approximation Theoretic Argument

B. Average Approximation Error

- 2
flulZ% 19(w)]* dw In signal processing, where we often characterize signals by
J 1g(w)|? dw their Fourier spectrum, the precise origin (i.e., starting point)
of the signal is usually irrelevant. It is, thus, of interest to find

This relative energy is always smaller than 1 and tends to zerg,, ...~ . :
; a shift-invariant version of Theorem 1 where the error would
as the sampling steff — 0. Thus, we have,(T) = o(1).

Theorem 1:Let s be in W5 with » > L: then, the be averaged over all possible shifts of the input signal.

aporoximation error is given by the equalit 2 Assume that we want to approximatedefined ass(. — &),
PP 9 y q y where the sampling phagas any real number. The amplitude
Is — Qrsl|l: = ns(T) + ve o (TYT" s (13) of the approximation error varies witft Obviously, it is7’

eg(T)Q =

(12)

e

periodic. Thus, we can obtain a delay-independent version of
where the approximation error by averagitig: — Qs¢||2. over the
2 period interval[0, 7.
<K =—+/((2r)||E]|eo- 14 e L o .
vl = 7T @l (14) The following result, which is remarkable for its simplicity,

In addition, the second term of (13) exhibits a double aliasi@S Proven in [25].

character (ins and iny). In other words, it vanishes whenever Theorem 2:Under the conditions of Theorem 1 on the input
one of the following conditions is met. signal s(x), the average approximation error éxactly the

« Eithers is bandlimited in[_(k?)ﬁ’ —"‘?’T]u["‘%, (k+T1)7T]' same as the quantity defined by (11)

wherek is some positive integer, or 1 /T

* ¢ and ¢ are bandlimited in—, x]. T/ llse — Qsellfs dé = n2(T). (15)

The first term in (13), namely;s(T), is thus the dominant 0
error contribution. The second term is afif’™") error correc-  This result thus provides the expected (in a probabilistic
tion that may take positive or negative values, depending sanse) value of the approximation error when the time of
the sign ofv, the absolute value of which is bounded by (14)presentation of the signal—the delay or slfift-is assumed
Thus, there are essentially two cases in which (11) provideEsbe random and uniformly distributed.
an exact measure of the error: i) when the input sigfa) is As a nontrivial application, we may use this result to
bandlimited and ii) whes(z) is sufficiently smooth, i.e., when quantify the lack of shift-invariance of the basic representation
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spaceV; = span,;{¢(x —n)}. For this purpose, we simply v ' ' ; .
consider the orthonormal projection @f: onto V(¢) and
average the square approximation erft@g — Py ¢||7. over
¢ € [0,1] (here, we havel’ = 1). Denoting this average by
a2, (11) yields

o2
o2 = % / |<ﬁ(w)|2<1 _ |§i(i|) ) dw. (16)

Note thatoi = 0 wheny is bandlimited; for instance, this is
the case wherp(x) = sinc(z).

Approximation error

C. Approximation Error for Random Processes

Let us now momentarily assume thatis a realization of
a zero-mean, wide-sense stationary process. Such a random g1 0.2 0.5 1 2 3 4
process is characterized by its autocorrelation functigft) Sampling step T
whose Fourier transform is the power spectrum density (PSD) B
P,(w). Under ergodicity hypothesis, the Wiener—Khinchifrig. 2. Least-squares approximation error of the functipn) = e~ "= by

: cypgc splines as a function of the sampling stEp The error estimate)s
theorem states that the PSD can also be obtained through( ashed line) is an unbiased smoothed version of the true error (solid line), as

following limit process: stated in Theorem 2; the dotted line is the first order asymygtates||y,= 7",
computed according to [21].

) 1 M »
Pw) = fim sl [ s(e=t g

frequency wo, i.e., Ps(w) = Pobd(w — wp), then we have
@ée: %E(on). Thus, we can predict the approximation error
& omputing the energy of the result of prefilteringvith an
analog filter whose response {g E(wT).

This expression leads us to foresee that an estimate of
approximation error for a random process will be obtain

o . .
merely by replacinds(w)|” by P (w) in (11). We give below ™ 1. interpretation is very useful since it shows how we
a formal proof of this fact.

n adapt the sampling/generating functions to the frequency
Although we have to make sure that (4) and (1) are Weggntent of the input process(t) or, even better, how we

defined for the approximation scheme to preserve a meaning, o them to obtain a desired accuracy within a given
we shall not examine in details the conditions under whic?n band. reqardless of the other parts of the spectrum
such a property holds. Note, however, that this is true when uency ' 1€9 P P '
@ and ¢ are compactly supported.

Sinces is not inL?, we use a time averaged fory of the

approximation error that is also averaged over all realizatioﬁgd Approximation Algorithms

D. Quantitative Assessment of Interpolation

of the process. We thus define We now illustrate the accuracy and efficiency of our theo-
o retical results by some examples. We also compare the merits
1 . o ;
2 . 2 of various approximation algorithms.
es={( lim — s(t) — Qrs(t)|* dt i .
s <J\l—>oo 2M /_M| (5) = Qrs(t) > 1) Comparison Between the Trli¢ Error and »,: First,

1 T we want to demonstrate experimentally thatis a very good
= T/ (|s(t) — Qrs(t)*) dt (17) indicator of the true approximation error. For this purpose, we
0 approximate the test functios(z) = ¢~ by cubic splines
where the second equality follows from the observation thafith step sizel’. The exact least-squares approximation error
{|s(t) — Qrs(t)|?) is T periodic. as a function ofT" is plotted in Fig. 2; it can be compared
With this definition, the following theorem, which is provenwith our calculated error estimatg. The two curves are very
in Appendix A, is the exact equivalent of the deterministiclose to each other and almost indistinguishablefox 1.

result (11). Moreover, forT > 1, the plot illustrates the average property
Theorem 3: For a stationary random procesg) with PSD  satisfied byn, (see Theorem 2).
P, (w), the approximation erros, is given by 2) Exact Expression of the Kern&l(w): For B-splines of
1 any order, the minimal kerndb(w) (i.e., whenyg = ¢,) and
€2 = py Py (WE(Tw)dw. (18) the interpolation one can be computed exactly. This is due

to the fact thaty(z) has a simple expression in the Fourier
This result sheds a new light on the error kerdglo). domain given byp(w) = ¢ (w) = [%]L, whereL is the

Indeed, if the process(¢) is convolved with an analog filter order of the B-spline (note that the spline order is one more

I(t), then the output procesg(t) has an average energythan the spline degree).

(?) = & [ Py(w)|h(w)]? dw; this value coincides withe? If we consider the least-squares error, we have that

(19) whenh is such thatli(w)|? = E(wT). In particular, if Epin(w) = 1 — % where dr(w) is the autocorrela-

the process is such that its PSD is concentrated at a gitem filter defined by (3). According to (10), the general
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TABLE 1l
APPROXIMATION KERNELS FOR THE FIRST SIX SPLINES
order L ar(2w) by (2w) Ermin(2w) Fres(20)
1 1 1
2 1 - 2sin?(w) 1
3 1 —sin?(w) + & sin*(w) 1 - 1sin?(w)
1 —3sin?(w) + Zsint(w . % (2w .
; A IR P R T | o Q=0
_ﬁgsins(w) L 7 (2w) w \/aL(QLu)
s 1- %sin2(w? + gSiIl4(w) 1- %sin2(w)
—% sin®(w) + ﬁ sin®(w) +% sin(w)
1—2sin?(w) + %sin“(w)
256 .- 6 62 . 8 1= sin*(w)
6 — 545 Sin-(w) + 5z sin”(w) o . 4
+ % sin® (w)
4 < 10 15
— 155975 Sin (W)

approximation kernel is obtained by adding a residual term os 1 . : ; , :
E,.s(w) to the least-squares error. In the interpolation case,

this extra term read®cs(w) = | Védi(‘;) — jf(‘;)) |2, where S o7
L{w ar (w =
the interpolation filtero;, is defined by £ 08)
S
b(w) =Y @r(w+ 2nn). (19) £ 05f
” 8
S 04f
By definition, a;, = bsz. One way of computing;, is to %
use the identitiesot(z) = >, (z +nm)~" when L is even 3 0.3
andsin *(z) = 3, (-1)*(z + nw)~* whenL is odd (fora o ozl
different computing method, see [39] and [40]. We thus find § ’
- L L—1 ® 0.1r
. sin“(w) d . .
L I_1 0 0.5 1 1.5 2 25 3
N d . .
br,(2w) = San—(“)'m(sm(w)—l), if Lis odd ®
( o 1)' w Fig. 3. Least-squares (solid lines) and interpolating (dotted lines) rooted

: . : proximation kernels for the B-splines of order 1 to 6. The kernel is all
The a,‘nalyt_lcal values of the kernels for the first six Ordelta#)e closer to thev-axis as the approximation order is higher.
are given in Table Il. The plots of these kernels are shown

in Fig. 3. We can verify that the interpolation is always worse | . . .
V\}ég}ﬁs functions have the interpolation property, they do not

than the least-squares scheme, although the difference bet . ) . . ) : .
both tends to become negligible as the order increases result in a faster algorithm in two dimensions if we take into
' account the whole interpolation process (a timed comparison

3) Comparison with Keys’ Interpolating KernelA family ) . ) .
of short piecewise polynomial kernels was proposed by Ke%gn be found in [41]). Quadratic or cubic spline interpolators

[7] in 1981. Unlike B-splines, these functions satisfy th re quite competitive computationally because the cost of

interpolation property, i.e(n) = 6,. The family that is made the additional prefiltering that is required is negligible; most

of piecewise cubic polynomials, depends on one paramete_ff_?]mputthat'ongl resm:rces aret stp))ent in the kefrnel ?valufatm_)n.
and can be defined in the Fourier domain by us, there does not appear to be any reason for not preferring

splines.
w(w) =12(a + 2 — 2cosw — acos 2w) 4) Oblique Projections:The best way to approximate a

— 4w((4a+ 3)sinw + asin2w).  (20) function f(z) in some subspacé7(y) is to compute its

least-squares approximation. Unfortunately, this requires the

As shown in Fig. 4, fora = —0.7, —0.5 and —0.3, Keys’ computation of inner products with the dual functign;
functions perform significantly worse than the interpolatinthose can be difficult to obtain in practice. Vrhetl al. [42]
splines of order 3 and 4 (i.e., quadratic and cubic splines). Tliave proposed to simplify the process by using the shortest
is also true asymptotically as — 0, although it is not visible first-order analysis function, namely, the Haar function (i.e.,
in Fig. 4. This is an important observation because Keys’ shartspline of order 1), while still performing a projection in
cubic kernel is still considered by many to be the state-of-tllee space ofV-(¢) (e.g., cubic splines). The key point is
art interpolation method in image processing. Even thoughat the inner products can be computed by straightforward
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0.8 : . . ; K — sharp estimates for the leading constants that appear in the
interpolating splines of order 1—4 : Strang—Fix theory of approximation. In addition to those new
5 07 -~ Keys:a=-03 ~ results, a worthwhile contribution is the simplicity of the
=  Kevs: ac- d argument, which does not involve much more than taking
2 o6t eys: a=-0.5 . J . - .
5 C Keve as07 Ry the Taylor series expansion of the symmetrical kerhiél)
% osf ye: a=0. R | around the originw = 0.
x
[]
% 0.4f A. Asymptotic Error
B os & From Theorem 1 we see that 8 — 0, we have|s —
3 Qrs|lrz = ns + o(T"). Sincen, has the closed form (11), it
2 0.2} is possible to expand the approximation error in power series
= of 7", which gives us the exact behavior of the error as the
® 01r sampling step becomes sufficiently small. Let us assume that
T 7o IS an integer lesser than the Sobolev regularity exponent
% os 1 1s > 25 3 of s. Then, under the assumption that the Fourier kernel can
o be developed up to the degreg in Taylor series, we have
. . I , . _ xro ECM0) o 2r
Fig. 4. Comparison between the approximation kernels of Keys’ function sz(w) = k=0 ~ (k) W + o(w 0) (only even powers of

different values of the parameterand interpolating splines of order 1 to 4. w are involved sinceE(w) is even) Recalling thabk§(w) is
the Fourier transform o) (z), which is thekth derivative

18 o ' ' ' ' ] of s(x), we can thus derive an asymptotic error formula
To_ p(2K)
1.7 : 2 EEV0) 1 o2 ek 27
lls — Qrs|liz = ;;:OWHS( )HLzT +o(T7). (21)

The first nonzero coefficient of the Taylor series expansion will
1.5 1 give the asymptotic rate of decay of the erfpr— Qrs||p2

as a function off". Specifically, if ¢ satisfies the Strang—Fix
conditions (7) of ordeL, and if ¢ is chosen appropriately (i.e.,
1.3} 1 quasibiorthonormal), then the error will have the characteristic

form

1.2r 1
|s — Qrs|lre = C||sV||.TF asT—0  (22)
tar

1 ‘ /A where the asymptotic error constant(is = 1/E((22LL>)(!0). This

0 0.5 1 1. 2 25 3 is precisely what is meant when we speak abouf#rorder
@ approximation scheme.
Fig. 5. Comparison between an oblique projection (solid line) and an in- The result given by (21) constitutes quite an improvement
terpolation (dotted line) in the space of cubic splines. The approximatigfy,ar the various specialized forms of (22) that can be found in
kernels E for both methods are plotted relative to the minimal kernel, i.e., . . .
E(w) the literature [21], [22], [36]. First, it is a more general formula
Fmin(w) with higher order terms up tey. Second, the Fourier domain

derivation made possible by Theorem 1 is easier and more

integration of f(z) between two bounds. The approximatiorﬁjireCt than the time domain approa_\ches that ha_ld been pr(_)posed
is then computed using modified synthesis functions; these 8gfore- Based on (21), we can retrieve all previously published
chosen biorthonormal te; = ¢ (oblique projection). These aSymptotic formulee of the form of (22). For instance if
authors found experimentally that this biorthonormal scheng@tisfies the Strang-Fix conditions of ordey and if ¢ is
results in no more than a very slight loss of performand¥orthonormal top and satisfiesy’, ¢(z —n) = 1 as in
when compared with the least-squares approximation. Thig24], then we find thatCy = % Zn#o |pL)(2n7)|2, as
confirmed by our Fourier analysis: In Fig. 5, the correspondingated in [21]. This result is, in fact, the general first-order
rooted approximation kernel appears to be off by less than 1@fymptotic equivalent for the minimum approximation error.
from the minimal approximation kernel. On the other hand.ikewise, if we are interested in the quasi-interpolation error
the performance is by far superior to that of the correspondiag defined by [22], [36] (i.e(x) = 6(x)), the definition (9)

square rooted relative approximation kernel
S

W =

interpolator. of E(w) easily provides the result [22, Prop. 5.1], i.e., (22)
with Cr, = %4/, |6 (2nm) 2.
IV. APPROXIMATION THEORETICAL RESULTS In particular, note that if s is bandlimited over

i 1 1 . __ Ymax “max (k) .
In this section, we will use Theorem 1 to characterize t nax @max] - then |[[s'*/||L= does not increase faster

“max Yk H H
behavior of the error as the sampling step gets sufficien n C( L2 )%, where C' s bou_nded. T*;jf’ means that
small. We will also derive new error bounds and provid ere exists a convergence radils = - such that
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(21) converges (uniformly, exponentially) for &' < 7y, leading constant in the reduced form of inequality (25) is the
wheneverE has a convergent MacLaurin series fof < 7.  best that can be achieved within the subclass of bandlimited

signals. This proves that the leading constant of a general upper
B. Improved Upper Bound for the Error bound of the error cannot be smaller th@g;,,. Thus, the only

The natural formulation of Theorem 1 is an upper bound félroSSibIe source of degradation in (25) is tifg term, which

the error. However, if we want to have sharper bounds, it ri‘gakes the inequality less sharp. In other words, (25) will be

better to rewrite (13) using the aliasing property shown in the"Y good as long ag(y, is small with respect (@ min.

second part of the theorem. This is actually the same techni ughere are other approaches for estimating the Strgng—le
as in [25] for the proof of Theorem 1, which amounts t ound. Depending on the hypotheses on the interpolation and

L e ; b ling functions, we can derive other accurate results that
decomposing into a set of bandlimited functions, satisfying samp . - : .
the condition of Theorem 1, i.e., are compatible with the ones provided in [22] and [36] by

- including higher order terms. Examples of such bounds, all
Su(w) = {§(w), if A < o] < BEb7 keN. (23) derived from Theorem 1, can be found in [25]

0, elsewhere ’ Here, we propose a new upper bound that is asymptotically
exact. To this end, consider the MacLaurin series expansion

In that case, due to Minkowski's inequality, we have that N .
. INKOWSKI's Inequatity, w v of E(w) up to the ordero — 1, yielding a remainde&,, (w)

Is — QrsllL: <> llsk — Qrsillee- defined by
k>0
_ N R~ E@(0) 4,
Thanks to the second part of Theorem 1, this decomposition E(w)= TR + E,, (w) (26)
gives a closed-form expression for each term of the right-hand k=0 (2k)!

side. Still, following the steps of [25], it is not difficult to find

—2r H
the following result, which is more suitable for deriving uppe®Nd Such that, " E,, (w) is bounded over—m,]. An
accurate upper bound for the expansion error is

bounds
orsli < | L [ 3B do| 2 [ B0 g2 en|
Is = Qrolee < |5 | ISPET)de Is = Qrslie <) 2 =5 1
+ Koy (T)T |57 1o (24) 3
s E, . i
. - . + sup 02()“')) —|—K30 HS(M)HLZTM

where K. = 77 "/||E||s¢(2r). The main difference with o< WO
(13) is that the first integral term is now bandlimited and that (27)
we have reduced the upper bound on the second term by a
factor of two. whererq is any positive integer strictly smaller thapwhich is

To see how this inequality can be exploited to improve clatie Sobolev regularity of. The accuracy we claim is justified
sical results, assume thatsatisfies the Strang—Fix conditionsby the fact that the first expression on the right-hand side is
of order L and thatp is chosen so that its firdt moments are exactly the asymptotic equivalent (21) of the approximation

identical to those of,. Then, Z(Z“L) is bounded ovef—w,n]. error asI’ — 0, whereas the second term is of higher order in
We chooser = L in (24) so that we can write T, implying that the accuracy of (27) improves Agends to

0. If, for instance, we seleaty = L + 1, whereL is the order
of ¢ and¢ is chosen so that its firdt moments are identical
to those ofyy, then the first term is precisely the asymptotic
. _ _ . error in (22). Thus, we end up with an improved bound of the
We have denvgd th!s expression by using thyrm ||s — Qps||: < Cp||s™||p2T" 4 C/||sT+D]|T 1.
Cauchy-Schwartz inequalityiz + by)? < (a?+b*)(2? +4?),
wherez, y are the energy of over |w|T < x and|w|T > ,
respectively. ] ) ) o
The qualitative form of this bound is known in approxi- e consider the example of a cubic spline approximation
mation theory, except that no satisfactory estimates for iR illustrate these various calculations. For S|mpI|C|ty_, we
leading constant were available. To illustrate the quality of tfgoncentrate on the case of the least-squares approximation

present formula, we recall that & is compactly supported [43]. The (;orresponding error kernel is_gjven in Table Il. Its
within [Z%, ], then the second term in (24) cancels, and wEaylor series expansion around the origin can be computed
end up with an equality as stated in Theorem 1. In this cag&actly. From (21), we get

we have the same inequality as (25) with the leading constant

1
s .T".  (25)

FElw
s — Qrslle < Lfllg)w w(zL) + K}

C. Cubic Spline Approximation

Cuin = P(2) For this particular setup, we can s =Prsl:
e = Pl VS Dt o [T | [s@57 | 691577
build a sequence dk” signals such that the integral formula = L L L
1209 600 1330560 3962 649 600

(24) comes as close as we wish to the right-hand side of the 2
reduced form of (25); this sequence is concentrated around the HS( )HLZ ™

frequencyw, at which £4

: ) . o(T*¢ 28
—sr~ achieves its supremum. Thus, the 43 545600 +0(T) (28)
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which confirms the well-known fact that cubic splines havé/e mention this second possibility because it corresponds to
a fourth order of approximatioQZ. = 4). In particular, this the more standard description of a quasi-interpolant. The term
yields the value of the constanf, = Wi/ﬁ’ which is “quasi-" is used to signify that the interpolation formula (32)
precisely the figure reported in [21]. Likewise, we can alsonly needs to be exact for the polynomials of degree L—1,

determine the supremum oS for |w| < =. A direct i.e.,z%=3 np,(z—n)ford=0...L—1. Note that the

application of (25) yields the standard error bound quasi-interpolant functiom, generates the same subspace as
@ . ¢, provided tha P(¢*)|? is essentially bounded from above
Is = PrsllLe < 0.0126 x [|s™| . 7% (29) " and below (nonvanishing), cf. [16, Prop. 6].

Note that the present value of the upper bound constant is . )

much better than the estimate reported in [22], namely 0.1¢», Optimal Filter

The present bound is reasonably sharp since a minimal valu&Ve will now consider the problem of finding the best filter

of the constant, which is obtained by settidg, = 0 in P(c™) so that the quasi-interpolator (32) is as close as possible

(25), is Cmin = 0.00726. In other words, our new boundto the original signak(x). The criterion that we will minimize

is only 73% larger than the minimal possible value over thie the mean square error given by (11). In general, once the

subclass of Shannon bandlimited functions. This percentagenerating function has been chosen, the optimal filter depends

may overestimate the difference with the minimal value fdyoth on the signak and the value off".

all functions. Since E(w) is a quadratic function of P, the optimization
Using (27), we obtain the asymptotically optimal bound of the criterion (11) yields a linear system of equations in

terms of the coefficients af. Such a system is not difficult

to solve, especially whe® is FIR.

The expression (10) aF(w) suggests that the optimd?

WhiCh.’ to the_ best of our knowleglge, has no previous eqUiPﬁinimizes the contribution of the second term of the right-hand
alent in the literature. We shall give more general bounds fgfde in (13), that is |3(w) 2, (wT)| P(cT) — Go(wT)|? dw.

splines of any order in the companion paper [44]. For example, if we assume thgd = 1 over its bandlimited
support, then the optimal filteP is given by

l|s = Prsllre < Cul|s™W || T* +0.00462 x ||s©]|,T°

V. QUASI-INTERPOLATION (QI) L A
omiw P 4 (34)

In its most general form, the approximation operadr Prn =50 - 2 (@)

requires an analog prefiltering of the data prior to sampling: an
operation that can be difficult to implement in practice. Most In other words,P(¢**) is chosen so that it matches;(w)
often in digital signal processing, we make the assumptiim the primary frequency banflo| < «. Thus, the system
that the sampling is ideal, in the sense that our discrete sigattempts to replicate the least-squares solution (orthonormal
values represent the true samplgs= s(nT’) of some signal projection).

s(t) that is typically assumed to be bandlimited. If we intend

to stay entirely discrete, the only sampling functions that ca Asymptotically Optimal Filter

be considered are a linear combination of Dirac masses For applications where most of the spectral energy of

o(z) = Zpk5($+k) (31) the signal is concentrated in the neighborhoodwof= 0
% (e.g., images), it may be sufficient that the quasiinterpolation

which is the continuous-time representation of the digital ﬁltéalrpprommatmn be optimal only in the limit & — 0. This

py. Inthe Fourier domain, we have tha) = P(c'=), where 0% SOV B ot T 8 e o0 some order
P(z) is the z-transform ofp,. With this particular setting, g y q P

we obtain a subclass of approximation algorithms that a%év : Note thqt th_e prospect of finding such an asymptotically
commonly referred to agquasi-interpolant436], [22]. ppt|mal solution IS new. Evgn th.OUQh there ha§ be_en a strong
Note that there are two equivalent ways of computing su%:%tereSt for quaS|—|_nt_e.rpoIat|on in the apprommaﬂoq theory
a quasiinterpolation operata@y: iterature, the possmmty that thg gsymptot|c expansion error

' can be arbitrarily close to the minimum error has never been

+ either by first prefiltering the discretized data= s(nT)  examined before, perhaps due to the absence of a formula
by P(z), which yields a sequence,, and then by ¢,ch as (21).

applying (1) (this is the approach that we recommend Thjs problem is mathematically translated into the condition

in practice); ‘ .
« simply by evaluating the interpolation formula P(e) = @a(w) = OW™). (35)
Qrs(z) = ZS(TLT)('OP('T — k) (32) We can obviously impose the constraint (35)f is rep-

& resented by a trigonometric polynomial of lengi¥, >
N. Note that apart fromVy, we have another free integer
parameter, namely, the highest powerzah the z-transform
op(x) = pr(x — k). (33) representation of. This parameter can be adjusted in such a
k way that the approximation kernel behaves well not only near
w = 0 but also in the whole Shannon bandwidth. Intuitively,

which uses the “quasi-interpolant” function
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this value should be chosen in practice so ti4t™) has 1.12 ; , : : : —
approximately the same phase behaviorzgéw). Moreover, o
if Ng > N, we can take advantage of té& — N additional £ 11k
free parameters to improve the filter response when one mové;s
away from the origin. kS
If we are interested in IIR (realizable) filters of the type % 1.08
described in [39] and [40], then it is possible to have ang
explicit expression for an admissible filté?(c’), provided 1.06¢

ve g

¢ has compact support. The idea is to choose a compact
supported fqnct[omﬁand to require that the developments ofg 1.04+
P(ci*) and 2425 around 0 agree up to. SinceP(ci)

()l

oote

is a2x-periodic function, we then periodize both the numeratorg , |
and the denominator of (=1 s
Y @lw + 2nm)i(w + 2nm)* Yo

P(c™) (36)

(@) 3, Ww + 2nm)"
Fig. 6. Optimal cubic splinéd L = 4) quasi-interpolants: reduction of the

; ; error as the orde of the windowing B-spline increases (the same convention
Of course, since: andy are compactly supported, the trIgonoas in Fig. 5 has been used for the plots of the kernels).

metric polynomials that appear in the numerator and in the
denominator have a finite length (using Poisson’s summation
formula). Now, we readily check thaP(c™) = @y(w) +
O(w™), if 4 is chosen such that(w + 2n7) = O(w™) for
n # 0. Moreover, the right-hand side of (36) is closegw) In this first paper of a series, we have introduced a Fourier
as i(w) is more selective in the Shannon bandwidth. Thimethod for the analysis of shift-invariant approximation
means that” is not only an optimal quasi-interpolator up toschemes. This method provides simple and direct tools for
the orderN—which is an asymptotic property—but that it alseevaluating the quality of a whole variety of approximation
remains close to thigleal analog sampling function within the algorithms. It shows in many details how to choose both the
sampling frequency interval. This suggests that the use of thigproximating and the sampling functions. We have applied
filter should offer a smaller approximation error than an exaetir theoretical results to the comparison of some commonly
interpolation scheme that usB§c™) = [>°, ¢(w+2nm)*]~L, used algorithms for the interpolation and approximation of
providedw is chosen selective enough. images (see Sections IlI-D and IV-C). In particular, we
In order to minimize the degree of the filter in (36), it ihave demonstrated that spline interpolators of a degree
advantageous to use a very short functioof order V. This greater than one are always superior to short kernel cubic
suggests the use of the B-spline of ordérin particular, if  convolution: a popular high-quality method used for image
is symmetrical around O—which implies thatis real—then interpolation. This is a result of practical relevance because

VI. CONCLUSION

the centered B-spline spline interpolation for degrees less than four is not more
expensive computationally. We have also used our error
) Sin(%) N formulee .to desigq a new type of quasi-interpolator that is
(W)= |——2—+ (37) asymptotically optimal.
2 In a second paper [44], we will restrict somewhat the range

) ) of admissible approximating functions by requiring that they
seems to be a good candidate. Note that if we ch@0sey,  garisty a two-scale relation. This further investigation will be

then we obtain a prefilter that corresponds to a standgffl,re oriented toward the wavelet community: in particular, we
interpolator [40]. will show how advantageous it can be to use spline wavelets

In Fig. 6, we plotted the (square root) approximation kemejqieaq of Daubechies’ in applications in which approximation
obtained using a prefilter built with (36) and (37) when power is the key factor.

is a cubic spline andV = 5,6,7 and 8, which means that
E(w) — Epin(w) = O(w!'01214@0d16) yaspectively. As can
be observed, even faW = 5, the kernel is very close to the
minimal kernel with an error less than 10%. As an example,
the filter for N = 5 is given in (38), shown at the bottom of We want to estimate? = j'0T<|s(t) — Qs()[*) L. For this,
the page. To obtain it, we used the induction formula and thee have to compute three terms singe(t) — Qs(t)|?) =
B-spline filters that appeared in [39] and [40]. (s()?) — 2(s(t)Qrs(t)) + (|Qs(t)|*). We shall need the

APPENDIX A
PROOF OF THEOREM 3

3 244 27+ 6552(23 + 273) +331612(27 + 27%) +2485288(2 + 27 1) + 4675014
T16 25 4+ 275 4 196(2% 4 2%) + 10 541(23 4+ 273) 4+ 120 608(22 + 22) 4 467 858(z 4+ 2~1) 4+ 736952

P(2) (38)
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following results, which are easy to obtain:

T T

(st0en) = [ ot =nT - n)p(7) dg, (@)

ot % (500 = % / Py()| G @) [2er=T gy
(40)
* We have that
T
| 6§ =00 =5 [P @
o {s(t)Qrs(t))y is computed as follows:
[ swarso)
0 ’ r
T t dt
=3 [ eee(g o) @
t\ /7N dtdr
://P(t_'f)SO(T)SO T)?
= o [ Ppteryben . @)

* (|Qrs(t)|?) is computed as follows:
Tt t )\ dt
(Qrst)P) :Zu/ e(g-n)e(z-7)F
= Zun/w(a: —n)p(z)dr
1 .
=5 [ X werlow) v

1

T o

Py(w)|¢wT)|?a,(wT) dw. (44)

(8]

El

[10]
[11]
[12]
(23]
[14]

(18]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Putting (41), (43), and (44) together, we find the announc%]

result (18).
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