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Quantitative Fourier Analysis of Approximation
Techniques: Part I—Interpolators and Projectors

Thierry Blu, Member, IEEE, and Michael Unser,Fellow, IEEE

Abstract—We present a general Fourier-based method that
provides an accurate prediction of the approximation error as
a function of the sampling step T . Our formalism applies to
an extended class of convolution-based signal approximation
techniques, which includes interpolation, generalized sampling
with prefiltering, and the projectors encountered in wavelet
theory. We claim that we can predict theL2-approximation error
by integrating the spectrum of the function to approximate—not
necessarily bandlimited—against a frequency kernelE(!) that
characterizes the approximation operator. This prediction is eas-
ier yet more precise than was previously available. Our approach
has the remarkable property of providing a global error estimate
that is the average of the true approximation error over all
possible shifts of the input function. Our error prediction is exact
for stationary processes, as well as for bandlimited signals. We
apply this method to the comparison of standard interpolation
and approximation techniques.

Our method has interesting implications for approximation
theory. In particular, we use our results to obtain some new
asymptotic expansions of the error asT ! 0, as well as to derive
improved upper bounds of the kind found in the Strang–Fix
theory. We finally show how we can design quasi-interpolators
that are near optimal in the least-squares sense.

I. INTRODUCTION

RESAMPLING and interpolation play a central role in
image processing [1]–[3]. These operations are required

to rescale or rotate images or to correct for spatial dis-
tortions. Those are also standard tools in signal processing
for performing sampling rate conversions or implementing
time delays [4], [5]. Shannon’s theory [6] provides an exact
sampling/interpolation system for bandlimited signals. How-
ever, his method is rarely used in practice—especially for
images—because of the slow decay of sinc. Instead, prac-
titioners rely on more localized methods such as bilinear
interpolation, short kernel convolution [7], and polynomial
spline interpolation [8], [9], which are much more efficient
to implement, especially in higher dimensions.

Although interpolation techniques are widely used in prac-
tice, it should be realized that they often constitute a rather
crude approach to the problem of approximating a function
or a signal that is continuously defined. For instance,
it is well understood that interpolation is not appropriate
for sampling rate reduction because it usually gives rise to
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aliasing artifacts. The standard remedy is to prefilter the data
prior to sampling. This is done implicitly in the theory of
the wavelet transform, when a signal is projected onto some
multiresolution subspace [10]–[13]. Indeed, the combination of
prefiltering and sampling is equivalent to forming a sequence
of inner products between the input and some translated
versions of an analysis function . This type of Hilbert
space formulation has been the basis for various extensions
of Shannon’s sampling theory for splines [14], [15] and other
wavelet-like expansions [16], [17]. The principle behind these
sampling theories is that the prefilter has to be tuned to the
approximation space defined by the interpolation function;
in particular, this means that applying an ideal lowpass filter
is not necessarily the best solution.

These methods can all be studied from the general per-
spective of approximation theory [18]–[22]. The most relevant
aspect is the behavior of the approximation error as the
sampling step gets sufficiently small. Although there are
many error bounds available, they tend to be rather qualitative
and not sharp enough to be of direct use to signal processors.
What is desirable in this context is a simple and accurate way
of predicting the error so that we can compare algorithms and
select the interpolation function and sampling step accordingly.
Thus far, this goal has been achieved only partially with an
exact computation of the error in the asymptotic regime, that
is, when is small or when the signal to approximate is
sufficiently smooth. Specific results have been published for
wavelets [21], [23], [24] and other types of convolution-based
approximation operators [22].

The main purpose of this paper is to introduce a Fourier-
based method that will simplify the analysis of the-error,
in addition to producing more accurate estimates with a much
wider range of applicability. This technique is based on a
powerful approximation theorem that we have presented in
[25] in the more general case of multiple generators. What
makes it very attractive for signal processing is its very
natural frequency domain formulation: It involves nothing but
a weighting kernel that characterizes the error behavior
of an algorithm entirely. This error kernel can be readily
computed for any given algorithm; it can also be used to
optimize the approximation technique. The simplicity of the
concept should appeal to practitioners. The method is quite
general and directly applicable to the evaluation of a large
variety of approximation techniques, including interpolators
and projectors. We will provide numerous examples to illus-
trate this point. Another important aspect is that despite its
apparent simplicity, the present technique has some important
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approximation theoretic ramifications. In particular, we will
show that it can be the basis for obtaining a whole variety
of error bounds that are sharper than what has been available
before.

The paper is organized as follows. In Section II, we start
by defining a general class of linear approximation operators
that falls within the classical signal processing acquisition par-
adigm: prefiltering, sampling, and postfiltering. This relatively
broad family includes most commonly used interpolation
algorithms, as well as many kinds of projectors that have been
used recently to obtain spline and wavelet approximations of
signals. In Section III, we will introduce the frequency kernel

that provides a simple, convenient characterization of the
performance of a given approximation operator. Specifically,
we will show that we can make a very accurate prediction
of the approximation error by integrating the spectrum of the
function to approximate against this kernel; this is a property
that will be justified theoretically. We will then use those
results to compare the performance of various interpolation
and approximation algorithms. In Section IV, we will turn to
more theoretical issues and determine the asymptotic form of
the error as the sampling step tends to zero, adding higher order
terms to what has been published before. We will also derive
improved error bounds, including one that is asymptotically
sharp; these should be of interest to approximation theorists
and signal processors alike because of the way in which
the bound constants are directly related to . Finally, in
Section V, we will use our results to design quasi-interpolation
algorithms that are near optimal in the least-squares sense.
These should provide essentially the same performance as the
more sophisticated projection operators but at a lower cost
since no analog prefiltering is necessary.

Most of our present results are directly applicable to the
characterization of the approximation error of wavelet expan-
sions [21], [23], [24]. This is an aspect that will be further
investigated in a companion paper. In particular, we will
show how the use of the two-scale relation can simplify the
determination of many of the bounds constants that are defined
in Section IV.

II. PRELIMINARIES: SIGNAL

REPRESENTATION AND APPROXIMATION

In this paper, we consider the general problem of the
reconstruction of a function of the continuous variable

from a discrete set of measurements (e.g., sample values)
collected on a uniform grid with step size. In general,
the reconstruction will only be an approximation of

in some signal subspace ; is a linear operator
that depends explicitly on the sampling step. Our main
interest here will be to quantify the difference between
and its approximated version . In principle, we should
expect the approximation to improve as the sampling step gets
smaller. In the limit, as approaches zero, we want it to be
exact for any “reasonable” input function . In this section,
we define all the relevant signal spaces and specify our class
of approximation operators . We also review some basic
concepts from approximation theory.

A. Notations

The conventional inner product between
two functions is denoted , and the associated
Euclidean norm is .

The Fourier transform of is . Let be a positive
real number; the Sobolev space is defined as the collection
of functions satisfying . By analogy
to this definition of regularity, we extend to noninte-

ger values of by equating it to . The
smoothness of a function can thus be characterized by the
maximum such that ; this regularity exponent
indicates that has derivatives in for all .
There is also a direct connection withpoint-wisesmoothness:
If with , then has at least
continuous derivatives [26].

The infinite norm of a function will be
denoted by .

The Riemann zeta function is defined as .
Discrete filters are either described by their impulse re-

sponse or by their -transform , for
which we use upper-case symbols.

Most of the asymptotic expansions are presented with “”
and “ ” terms, which allows us to give a more compact
and understandable form to the results: Writing
is equivalent to writing . In the
same spirit, writing is equivalent to writing

(i.e., not necessarily 0).

B. Signal Subspaces

We want our interpolation/approximation algorithms to have
a simple “shift-invariant” structure that is well adapted to
signal processing. For this purpose, we consider the generic
reconstruction formula

(1)

where the ’s are some signal coefficients, and where
is a user-specified “interpolation” function. The coarseness of
this representation is controlled through the scale parameter

(sampling step); this gives the expansion formula (1) a
wavelet-like flavor. If we allow the ’s to take arbitrary
values, then (1) defines a vector space span

. Although we want to have as much freedom as possible
for selecting the function , it is important that be a
well-defined subspace of and that each of its functions

have a unique and stable representation in terms
of the coefficients . In other words, we want (1) to be
unambiguous. This turns out to be the case if the functions

constitute a Riesz basis of . Mathematically,
this means that there exist two positive constants
such that for all

(2)

This constraint is equivalent to almost
everywhere (cf. [16]), where the -periodic function
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Fig. 1. Block diagram representation of the approximation operatorQT .
The boxes represent continuous-time filters characterized by their impulse
response. Sampling is modeled by a multiplication with a train of Dirac func-
tions. When~'(x) = �(x) (identity operator), the system is an interpolator.
The operator is a projector if and only if' and ~' are biorthonormal.

is defined by

(3)

From now on, we will use the termgenerating functionto
indicate that satisfies this hypothesis. Note that the Riesz
condition is not restrictive at all: It is satisfied by virtually
any interpolation function used in practice. In particular,
there is no requirement that be compactly supported. This
admissibility property is also necessarily satisfied by all scaling
functions encountered in the multiresolution theory of the
wavelet transform [11], [27], [28], [29]. These latter functions
are much more constrained because they must also be solution
of a two-scale relation: an assumption that is not made in this
paper.

C. Interpolation and Approximation Operators

The next question is how to get the coefficientsin (1) so
that is a reasonable representation of some
desired signal . The natural signal processing answer is
through sampling. However, we want our scheme to be more
general than simple interpolation, and we want it to account for
wavelet-like approximation methods that have been proposed
recently [16], [17], [27], [28]. Therefore, we include an
additional prefiltering step prior to sampling, which is also
consistent with the standard discretization procedure dictated
by Shannon’s sampling theorem. This leads to the signal
processing system that is schematically represented in Fig. 1.
Mathematically, the combination of prefiltering and sampling
is conveniently described by the inner product integral

(4)

where is the so-called analysis (or sampling) function—it is
simply the time-reversed version of the normalized impulse
response of the prefilter in Fig. 1. Combining (1) and (4),
we end up with the following definition of the approximation
operator :

(5)

Our last constraint is that its Fourier transformbe upper
bounded [25]. This gives us the flexibility of considering
non analysis functions such as the Dirac point distribution

.
A classification and summary of the different linear, integer

shift-invariant, approximation methods is given in Table I.

The most critical choice in the design of approximation
operators is the selection of because it determines the
approximation space . A key concept is the order of
approximation that requires that has some very specific
properties (cf. Section II-D). Once this choice is made, we
have some freedom in selectingsuch that the approximation
scheme performs appropriately. A design constraint found
in many recent approximation schemes is thatmust be
biorthonormal to , i.e., . The direct
implication of this property is that the operator is a
projector for it can be verified that . This means
that the operator has the desirable property of reproducing
exactly any function . The biorthonormality property
is central to the construction of wavelet bases and all the
associated multiresolution approximation operators [11], [28],
[29]. It has also been used to formulate generalized sampling
theories [16], [17].

Interestingly, the standard interpolation schemes (which use
no prefiltering at all) can also be interpreted from this newer
perspective. In this case, we have that . The
biorthonormality property is then equivalent to the standard
interpolation condition , which ensures that the
expansion coefficients in (1) are precisely the values of the
function at the grid points.

The best approximation scheme in is the one that min-
imizes the error (least-squares solution) [16]. In this case, the
optimal prefilter is uniquely specified through the biorthonor-
mality condition, along with the additional constraint

. The corresponding function is called the dual of
and is defined as

(6)

where is given by (3). This optimal scheme will
provide anorthonormal projection, which we denote by
instead of . A special case that falls into this category is

, which describes Shannon’s classical
reconstruction formula for bandlimited signals [6].

D. th-Order Approximation Operators

A crucial notion in approximation theory is the order of
approximation, which describes the rate of decay of the error
as the sampling step goes to zero. Since this is primarily
a property of the approximation space, mathematicians have
been especially interested in characterizing what happens in
the best possible case (least-squares approximation and other

norms) [18], [30], [31], [32], [33]. The basic result in this
area, due to Strang and Fix [18], is that the minimum error
has an th-order decay i.e., , if and only if

and for

(7)

This last equation imposes some strong constraints on the
Fourier transform of . It is often referred to as the Strang–Fix
conditions of order . In [18], Strang and Fix had originally as-
sumed that has compact support; their powerful equivalence
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TABLE I
LINEAR APPROXIMATION METHODS

has since then been extended for noncompactly supported
with suitable polynomial decay [34] or even less restrictions
[25], [31].

Another equivalent formulation of (7) is that all polynomials
of degree must be expressible as a linear
combination of the translates of. This connection can be
established with the help of Poisson’s summation formula; for
instance, the first-order Strang–Fix condition with is
equivalent to a partition of unity, namely, ,
which plays a crucial role in wavelet theory. In this latter
context, the Strang–Fix conditions usually appear in a more
disguised form for the order relates to the number the
vanishing moments of the analysis wavelet [11].

Although the bounds of the classical Strang–Fix theory
apply to the case of an orthonormal projection, it is not too
difficult to conceive of suboptimal schemes that achieve the
same rate of decay of the error. The better-known examples in
approximation theory are interpolators and quasi-interpolators
[19], [20], [30], [35]. By extension, we can also characterize
the most general class of linear approximation operators
that are of order . The fundamental constraint is that
must reproduce the polynomials of degree perfectly
[30], which is obviously possible only if is an th-order
subspace. For the class of “integer shift-invariant” operators
considered here, this will be the case if and only ifand
arequasibiorthonormalof order [25], which is equivalent to
the requirement that, in addition to the Strang–Fix conditions
of order on , the moments of and of be equal
up to the order (i.e., for

). This condition can also be expressed in the
condensed form of Table I. Specifically, whenand satisfy
some additional mild conditions on their decrease (which is
automatically the case when are compactly supported
[25]), we have the equivalence

and are quasibiorthonormal of order (8)

which comes as a special case of [25, Th. 3 ].
For a given , the implication of this result is that we still

have a large freedom in designing so that the operator
is well behaved. There are only linear constraints

(quasibiorthonormality conditions) that need to be satisfied
for to have an th order of approximation. This is much
less restricting than the usual biorthonormality condition since
the latter also implies the th-order property [21]. Quasi-
biorthonormality may therefore be a very relevant condition
for the design of simplified approximation algorithms such as
the quasiprojectors in [36] that provide essentially the same
type of performance as the least-squares solution (see also
[23]). Note that is the minimum requirement for the
error to vanish as tends to zero.

III. FOURIER-DOMAIN CHARACTERIZATION

OF THE APPROXIMATION ERROR

The theoretical notion of order described in Section II is still
rather qualitative. There are many applications (e.g., image
processing) for which it would be very useful to have a more
quantitative way of estimating . This would allow
for an objective comparison of the various approximation
techniques available. It would also be convenient to have error
formulæ that are simple enough so that the determination of
the optimal can be carried out using standard optimization
techniques.

We will now present a new method that has the desired
features. First, it has a very simple Fourier-domain formulation
that should be appealing to signal processors. Second, it allows
for a more accurate prediction of the approximation error
than any of the approximation theoretic estimates that have
been available so far. This claim of increased accuracy will
be further justified in Section IV. Third, the proposed form of
the error criterion is directly amenable to standard filter design
techniques: a possibility that is illustrated in Section V.

The key quantity used to characterize an approximation
operator is the frequency kernel , which is defined
as follows:

(9)

(10)
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Note that when and are exact duals (least-squares approx-
imation), this kernel reduces to .

The approximation error is simply predicted from the inte-
gral formula

(11)

which involves the spectrum of the function to approximate
and a rescaled version of the kernel. Relation (10) implies that
the criterion with a given choice of is minimized
when , that is, when, . This solution
is precisely the orthonormal projection , which is known
to minimize the true error approximation in the sense. We
will now present three arguments that justify the use of the
criterion to characterize the behavior of any approx-
imation algorithm. The first one is approximation theoretic
[e.g., is an excellent approximation of
for smooth or bandlimited functions], whereas the two others
are more pragmatic because they show that defined
by (11) represents an average measure of the error, which
is often better suited for signal processing than the exact

measure . We then conclude Section III by
applying our methodology to the comparison of interpolation
and approximation algorithms.

A. Approximation Theoretic Argument

The primary justification for the use of (11) to represent
the error is given by the main approximation theorem in [25],
which we particularize here for the case of a single generator.
To describe this result, it is useful to define : the relative
out-of-band energy of an function

(12)

This relative energy is always smaller than 1 and tends to zero
as the sampling step . Thus, we have .

Theorem 1: Let be in with ; then, the
approximation error is given by the equality

(13)

where

(14)

In addition, the second term of (13) exhibits a double aliasing
character (in and in ). In other words, it vanishes whenever
one of the following conditions is met.

• Either is bandlimited in ,
where is some positive integer, or

• and are bandlimited in .

The first term in (13), namely, , is thus the dominant
error contribution. The second term is an error correc-
tion that may take positive or negative values, depending on
the sign of , the absolute value of which is bounded by (14).
Thus, there are essentially two cases in which (11) provides
an exact measure of the error: i) when the input signal is
bandlimited and ii) when is sufficiently smooth, i.e., when

its intrinsic scale is large with respect to the sampling step
.
The regularity constraint in Theorem 1 is not

very restrictive. In particular, it is satisfied whenever
for any , which implies that should be

not much more than continuous. Note, however, that this does
not mean thatany continuous function satisfies the constraint.

A special case of this result can also be found in [31].
These authors examined the more restrictive least-squares case

and identified a quantity that is the same as the first
error term in (13). Considering only the interpolating case

, another version of the second part of Theorem
1 (restricted to Shannon bandlimited functions) also appeared
in [37] and [38].

As we have shown in [25], Theorem 1 is a quite powerful
result that has many interesting implications for approximation
theory. We will further investigate this aspect in Section IV.
In particular, we will exploit Theorem 1 to derive a variety
of very accurate error estimates that can be directly applicable
in practice. Our new results will include an exact asymptotic
expansion of the error as , as well as some upper bounds
that are asymptotically sharp. The interest for signal processors
is that all the underlying bounds constants are directly tied to
the kernel .

Although we have just seen that the second error term
in (13) vanishes provided that is sufficiently well-behaved
(smooth or bandlimited), we will now show that there is still
another much less restrictive way to let it vanish, namely,
by averaging the error over all possible sampling phases or,
similarly, over all realizations of a stationary process.

B. Average Approximation Error

In signal processing, where we often characterize signals by
their Fourier spectrum, the precise origin (i.e., starting point)
of the signal is usually irrelevant. It is, thus, of interest to find
a shift-invariant version of Theorem 1 where the error would
be averaged over all possible shifts of the input signal.

Assume that we want to approximatedefined as ,
where the sampling phaseis any real number. The amplitude
of the approximation error varies with: Obviously, it is
periodic. Thus, we can obtain a delay-independent version of
the approximation error by averaging over the
period interval .

The following result, which is remarkable for its simplicity,
was proven in [25].

Theorem 2: Under the conditions of Theorem 1 on the input
signal , the average approximation error isexactly the
same as the quantity defined by (11)

(15)

This result thus provides the expected (in a probabilistic
sense) value of the approximation error when the time of
presentation of the signal—the delay or shift—is assumed
to be random and uniformly distributed.

As a nontrivial application, we may use this result to
quantify the lack of shift-invariance of the basic representation
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space span . For this purpose, we simply
consider the orthonormal projection of onto and
average the square approximation error over

(here, we have ). Denoting this average by
, (11) yields

(16)

Note that when is bandlimited; for instance, this is
the case when .

C. Approximation Error for Random Processes

Let us now momentarily assume thatis a realization of
a zero-mean, wide-sense stationary process. Such a random
process is characterized by its autocorrelation function
whose Fourier transform is the power spectrum density (PSD)

. Under ergodicity hypothesis, the Wiener–Khinchin
theorem states that the PSD can also be obtained through the
following limit process:

This expression leads us to foresee that an estimate of the
approximation error for a random process will be obtained
merely by replacing by in (11). We give below
a formal proof of this fact.

Although we have to make sure that (4) and (1) are well
defined for the approximation scheme to preserve a meaning,
we shall not examine in details the conditions under which
such a property holds. Note, however, that this is true when

and are compactly supported.
Since is not in , we use a time averaged form of the

approximation error that is also averaged over all realizations
of the process. We thus define

(17)

where the second equality follows from the observation that
is periodic.

With this definition, the following theorem, which is proven
in Appendix A, is the exact equivalent of the deterministic
result (11).

Theorem 3: For a stationary random process with PSD
, the approximation error is given by

(18)

This result sheds a new light on the error kernel .
Indeed, if the process is convolved with an analog filter

, then the output process has an average energy
; this value coincides with

(19) when is such that . In particular, if
the process is such that its PSD is concentrated at a given

Fig. 2. Least-squares approximation error of the functions(x) = e� by
cubic splines as a function of the sampling stepT . The error estimate�s
(dashed line) is an unbiased smoothed version of the true error (solid line), as
stated in Theorem 2; the dotted line is the first order asymptoteC�

'
ksk

L
T 4,

computed according to [21].

frequency , i.e., , then we have
. Thus, we can predict the approximation error

by computing the energy of the result of prefilteringwith an
analog filter whose response is .

This interpretation is very useful since it shows how we
can adapt the sampling/generating functions to the frequency
content of the input process or, even better, how we
choose them to obtain a desired accuracy within a given
frequency band, regardless of the other parts of the spectrum.

D. Quantitative Assessment of Interpolation
and Approximation Algorithms

We now illustrate the accuracy and efficiency of our theo-
retical results by some examples. We also compare the merits
of various approximation algorithms.

1) Comparison Between the True Error and : First,
we want to demonstrate experimentally thatis a very good
indicator of the true approximation error. For this purpose, we

approximate the test function by cubic splines
with step size . The exact least-squares approximation error
as a function of is plotted in Fig. 2; it can be compared
with our calculated error estimate. The two curves are very
close to each other and almost indistinguishable for .
Moreover, for , the plot illustrates the average property
satisfied by (see Theorem 2).

2) Exact Expression of the Kernel : For B-splines of
any order, the minimal kernel (i.e., when ) and
the interpolation one can be computed exactly. This is due
to the fact that has a simple expression in the Fourier
domain given by , where is the
order of the B-spline (note that the spline order is one more
than the spline degree).

If we consider the least-squares error, we have that
, where is the autocorrela-

tion filter defined by (3). According to (10), the general
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TABLE II
APPROXIMATION KERNELS FOR THE FIRST SIX SPLINES

approximation kernel is obtained by adding a residual term
to the least-squares error. In the interpolation case,

this extra term reads , where

the interpolation filter is defined by

(19)

By definition, . One way of computing is to
use the identities when is even
and when is odd (for a
different computing method, see [39] and [40]. We thus find

if is even

if is odd

The analytical values of the kernels for the first six orders
are given in Table II. The plots of these kernels are shown
in Fig. 3. We can verify that the interpolation is always worse
than the least-squares scheme, although the difference between
both tends to become negligible as the order increases.

3) Comparison with Keys’ Interpolating Kernel:A family
of short piecewise polynomial kernels was proposed by Keys
[7] in 1981. Unlike B-splines, these functions satisfy the
interpolation property, i.e., . The family that is made
of piecewise cubic polynomials, depends on one parameter
and can be defined in the Fourier domain by

(20)

As shown in Fig. 4, for and , Keys’
functions perform significantly worse than the interpolating
splines of order 3 and 4 (i.e., quadratic and cubic splines). This
is also true asymptotically as , although it is not visible
in Fig. 4. This is an important observation because Keys’ short
cubic kernel is still considered by many to be the state-of-the
art interpolation method in image processing. Even though

Fig. 3. Least-squares (solid lines) and interpolating (dotted lines) rooted
approximation kernels for the B-splines of order 1 to 6. The kernel is all
the closer to the!-axis as the approximation order is higher.

Keys’ functions have the interpolation property, they do not
result in a faster algorithm in two dimensions if we take into
account the whole interpolation process (a timed comparison
can be found in [41]). Quadratic or cubic spline interpolators
are quite competitive computationally because the cost of
the additional prefiltering that is required is negligible; most
computational resources are spent in the kernel evaluation.
Thus, there does not appear to be any reason for not preferring
splines.

4) Oblique Projections:The best way to approximate a
function in some subspace is to compute its
least-squares approximation. Unfortunately, this requires the
computation of inner products with the dual function ;
those can be difficult to obtain in practice. Vrhelet al. [42]
have proposed to simplify the process by using the shortest
first-order analysis function, namely, the Haar function (i.e.,
a spline of order 1), while still performing a projection in
the space of (e.g., cubic splines). The key point is
that the inner products can be computed by straightforward
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Fig. 4. Comparison between the approximation kernels of Keys’ function for
different values of the parametera and interpolating splines of order 1 to 4.

Fig. 5. Comparison between an oblique projection (solid line) and an in-
terpolation (dotted line) in the space of cubic splines. The approximation
kernelsE for both methods are plotted relative to the minimal kernel, i.e.,

! 7!
E(!)

E (!)
.

integration of between two bounds. The approximation
is then computed using modified synthesis functions; these are
chosen biorthonormal to (oblique projection). These
authors found experimentally that this biorthonormal scheme
results in no more than a very slight loss of performance
when compared with the least-squares approximation. This is
confirmed by our Fourier analysis: In Fig. 5, the corresponding
rooted approximation kernel appears to be off by less than 10%
from the minimal approximation kernel. On the other hand,
the performance is by far superior to that of the corresponding
interpolator.

IV. A PPROXIMATION THEORETICAL RESULTS

In this section, we will use Theorem 1 to characterize the
behavior of the error as the sampling step gets sufficiently
small. We will also derive new error bounds and provide

sharp estimates for the leading constants that appear in the
Strang–Fix theory of approximation. In addition to those new
results, a worthwhile contribution is the simplicity of the
argument, which does not involve much more than taking
the Taylor series expansion of the symmetrical kernel
around the origin .

A. Asymptotic Error

From Theorem 1 we see that as , we have
. Since has the closed form (11), it

is possible to expand the approximation error in power series
of , which gives us the exact behavior of the error as the
sampling step becomes sufficiently small. Let us assume that

is an integer lesser than the Sobolev regularity exponent
of . Then, under the assumption that the Fourier kernel can
be developed up to the degree in Taylor series, we have

(only even powers of

are involved since is even). Recalling that is
the Fourier transform of , which is the th derivative
of , we can thus derive an asymptotic error formula

(21)

The first nonzero coefficient of the Taylor series expansion will
give the asymptotic rate of decay of the error
as a function of . Specifically, if satisfies the Strang–Fix
conditions (7) of order , and if is chosen appropriately (i.e.,
quasibiorthonormal), then the error will have the characteristic
form

as (22)

where the asymptotic error constant is . This
is precisely what is meant when we speak about anth-order
approximation scheme.

The result given by (21) constitutes quite an improvement
over the various specialized forms of (22) that can be found in
the literature [21], [22], [36]. First, it is a more general formula
with higher order terms up to . Second, the Fourier domain
derivation made possible by Theorem 1 is easier and more
direct than the time domain approaches that had been proposed
before. Based on (21), we can retrieve all previously published
asymptotic formulæ of the form of (22). For instance, if
satisfies the Strang–Fix conditions of order, and if is
biorthonormal to and satisfies as in

[21], then we find that , as
stated in [21]. This result is, in fact, the general first-order
asymptotic equivalent for the minimum approximation error.
Likewise, if we are interested in the quasi-interpolation error
as defined by [22], [36] (i.e., ), the definition (9)
of easily provides the result [22, Prop. 5.1], i.e., (22)

with .
In particular, note that if is bandlimited over

, then does not increase faster
than , where is bounded. This means that
there exists a convergence radius such that
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(21) converges (uniformly, exponentially) for all ,
whenever has a convergent MacLaurin series for .

B. Improved Upper Bound for the Error

The natural formulation of Theorem 1 is an upper bound for
the error. However, if we want to have sharper bounds, it is
better to rewrite (13) using the aliasing property shown in the
second part of the theorem. This is actually the same technique
as in [25] for the proof of Theorem 1, which amounts to
decomposing into a set of bandlimited functions satisfying
the condition of Theorem 1, i.e.,

if
elsewhere

(23)

In that case, due to Minkowski’s inequality, we have that

Thanks to the second part of Theorem 1, this decomposition
gives a closed-form expression for each term of the right-hand
side. Still, following the steps of [25], it is not difficult to find
the following result, which is more suitable for deriving upper
bounds

(24)

where . The main difference with
(13) is that the first integral term is now bandlimited and that
we have reduced the upper bound on the second term by a
factor of two.

To see how this inequality can be exploited to improve clas-
sical results, assume thatsatisfies the Strang–Fix conditions
of order and that is chosen so that its first moments are
identical to those of . Then, is bounded over .
We choose in (24) so that we can write

(25)

We have derived this expression by using the
Cauchy–Schwartz inequality ,
where are the energy of over and ,
respectively.

The qualitative form of this bound is known in approxi-
mation theory, except that no satisfactory estimates for the
leading constant were available. To illustrate the quality of the
present formula, we recall that if is compactly supported
within , then the second term in (24) cancels, and we
end up with an equality as stated in Theorem 1. In this case,
we have the same inequality as (25) with the leading constant

. For this particular setup, we can
build a sequence of signals such that the integral formula
(24) comes as close as we wish to the right-hand side of the
reduced form of (25); this sequence is concentrated around the
frequency at which achieves its supremum. Thus, the

leading constant in the reduced form of inequality (25) is the
best that can be achieved within the subclass of bandlimited
signals. This proves that the leading constant of a general upper
bound of the error cannot be smaller than . Thus, the only
possible source of degradation in (25) is the term, which
makes the inequality less sharp. In other words, (25) will be
very good as long as is small with respect to .

There are other approaches for estimating the Strang–Fix
bound. Depending on the hypotheses on the interpolation and
sampling functions, we can derive other accurate results that
are compatible with the ones provided in [22] and [36] by
including higher order terms. Examples of such bounds, all
derived from Theorem 1, can be found in [25].

Here, we propose a new upper bound that is asymptotically
exact. To this end, consider the MacLaurin series expansion
of up to the order , yielding a remainder
defined by

(26)

and such that is bounded over . An
accurate upper bound for the expansion error is

(27)

where is any positive integer strictly smaller than, which is
the Sobolev regularity of. The accuracy we claim is justified
by the fact that the first expression on the right-hand side is
exactly the asymptotic equivalent (21) of the approximation
error as , whereas the second term is of higher order in

, implying that the accuracy of (27) improves astends to
0. If, for instance, we select , where is the order
of and is chosen so that its first moments are identical
to those of , then the first term is precisely the asymptotic
error in (22). Thus, we end up with an improved bound of the
form .

C. Cubic Spline Approximation

We consider the example of a cubic spline approximation
to illustrate these various calculations. For simplicity, we
concentrate on the case of the least-squares approximation
[43]. The corresponding error kernel is given in Table II. Its
Taylor series expansion around the origin can be computed
exactly. From (21), we get

(28)
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which confirms the well-known fact that cubic splines have
a fourth order of approximation . In particular, this
yields the value of the constant , which is
precisely the figure reported in [21]. Likewise, we can also
determine the supremum of for . A direct
application of (25) yields the standard error bound

(29)

Note that the present value of the upper bound constant is
much better than the estimate reported in [22], namely 0.182.
The present bound is reasonably sharp since a minimal value
of the constant, which is obtained by setting in
(25), is . In other words, our new bound
is only 73% larger than the minimal possible value over the
subclass of Shannon bandlimited functions. This percentage
may overestimate the difference with the minimal value for
all functions.

Using (27), we obtain the asymptotically optimal bound

(30)
which, to the best of our knowledge, has no previous equiv-
alent in the literature. We shall give more general bounds for
splines of any order in the companion paper [44].

V. QUASI-INTERPOLATION (QI)

In its most general form, the approximation operator
requires an analog prefiltering of the data prior to sampling: an
operation that can be difficult to implement in practice. Most
often in digital signal processing, we make the assumption
that the sampling is ideal, in the sense that our discrete signal
values represent the true samples of some signal

that is typically assumed to be bandlimited. If we intend
to stay entirely discrete, the only sampling functions that can
be considered are a linear combination of Dirac masses

(31)

which is the continuous-time representation of the digital filter
. In the Fourier domain, we have that , where

is the -transform of . With this particular setting,
we obtain a subclass of approximation algorithms that are
commonly referred to asquasi-interpolants[36], [22].

Note that there are two equivalent ways of computing such
a quasiinterpolation operator :

• either by first prefiltering the discretized data
by , which yields a sequence , and then by
applying (1) (this is the approach that we recommend
in practice);

• simply by evaluating the interpolation formula

(32)

which uses the “quasi-interpolant” function

(33)

We mention this second possibility because it corresponds to
the more standard description of a quasi-interpolant. The term
“quasi-” is used to signify that the interpolation formula (32)
only needs to be exact for the polynomials of degree ,
i.e., for . Note that the
quasi-interpolant function generates the same subspace as

, provided that is essentially bounded from above
and below (nonvanishing), cf. [16, Prop. 6].

A. Optimal Filter

We will now consider the problem of finding the best filter
so that the quasi-interpolator (32) is as close as possible

to the original signal . The criterion that we will minimize
is the mean square error given by (11). In general, once the
generating function has been chosen, the optimal filter depends
both on the signal and the value of .

Since is a quadratic function of , the optimization
of the criterion (11) yields a linear system of equations in
terms of the coefficients of . Such a system is not difficult
to solve, especially when is FIR.

The expression (10) of suggests that the optimal
minimizes the contribution of the second term of the right-hand
side in (13), that is, .
For example, if we assume that over its bandlimited
support, then the optimal filter is given by

(34)

In other words, is chosen so that it matches
in the primary frequency band . Thus, the system
attempts to replicate the least-squares solution (orthonormal
projection).

B. Asymptotically Optimal Filter

For applications where most of the spectral energy of
the signal is concentrated in the neighborhood of
(e.g., images), it may be sufficient that the quasiinterpolation
approximation be optimal only in the limit as . This
can be achieved by requiring that the square asymptotic error
given by (21) matches the least-squares error up to some order

. Note that the prospect of finding such an asymptotically
optimal solution is new. Even though there has been a strong
interest for quasi-interpolation in the approximation theory
literature, the possibility that the asymptotic expansion error
can be arbitrarily close to the minimum error has never been
examined before, perhaps due to the absence of a formula
such as (21).

This problem is mathematically translated into the condition

(35)

We can obviously impose the constraint (35) if is rep-
resented by a trigonometric polynomial of length

. Note that apart from , we have another free integer
parameter, namely, the highest power ofin the -transform
representation of . This parameter can be adjusted in such a
way that the approximation kernel behaves well not only near

but also in the whole Shannon bandwidth. Intuitively,
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this value should be chosen in practice so that has
approximately the same phase behavior as . Moreover,
if , we can take advantage of the additional
free parameters to improve the filter response when one moves
away from the origin.

If we are interested in IIR (realizable) filters of the type
described in [39] and [40], then it is possible to have an
explicit expression for an admissible filter , provided

has compact support. The idea is to choose a compactly
supported function and to require that the developments of

and around 0 agree up to . Since
is a -periodic function, we then periodize both the numerator
and the denominator of

(36)

Of course, since and are compactly supported, the trigono-
metric polynomials that appear in the numerator and in the
denominator have a finite length (using Poisson’s summation
formula). Now, we readily check that

, if is chosen such that for
. Moreover, the right-hand side of (36) is closer to

as is more selective in the Shannon bandwidth. This
means that is not only an optimal quasi-interpolator up to
the order —which is an asymptotic property—but that it also
remains close to theideal analog sampling function within the
sampling frequency interval. This suggests that the use of this
filter should offer a smaller approximation error than an exact
interpolation scheme that uses ,
provided is chosen selective enough.

In order to minimize the degree of the filter in (36), it is
advantageous to use a very short functionof order . This
suggests the use of the B-spline of order; in particular, if
is symmetrical around 0—which implies thatis real—then
the centered B-spline

(37)

seems to be a good candidate. Note that if we choose ,
then we obtain a prefilter that corresponds to a standard
interpolator [40].

In Fig. 6, we plotted the (square root) approximation kernels
obtained using a prefilter built with (36) and (37) when
is a cubic spline and and , which means that

and , respectively. As can
be observed, even for , the kernel is very close to the
minimal kernel with an error less than 10%. As an example,
the filter for is given in (38), shown at the bottom of
the page. To obtain it, we used the induction formula and the
B-spline filters that appeared in [39] and [40].

Fig. 6. Optimal cubic spline(L = 4) quasi-interpolants: reduction of the
error as the orderN of the windowing B-spline increases (the same convention
as in Fig. 5 has been used for the plots of the kernels).

VI. CONCLUSION

In this first paper of a series, we have introduced a Fourier
method for the analysis of shift-invariant approximation
schemes. This method provides simple and direct tools for
evaluating the quality of a whole variety of approximation
algorithms. It shows in many details how to choose both the
approximating and the sampling functions. We have applied
our theoretical results to the comparison of some commonly
used algorithms for the interpolation and approximation of
images (see Sections III-D and IV-C). In particular, we
have demonstrated that spline interpolators of a degree
greater than one are always superior to short kernel cubic
convolution: a popular high-quality method used for image
interpolation. This is a result of practical relevance because
spline interpolation for degrees less than four is not more
expensive computationally. We have also used our error
formulæ to design a new type of quasi-interpolator that is
asymptotically optimal.

In a second paper [44], we will restrict somewhat the range
of admissible approximating functions by requiring that they
satisfy a two-scale relation. This further investigation will be
more oriented toward the wavelet community; in particular, we
will show how advantageous it can be to use spline wavelets
instead of Daubechies’ in applications in which approximation
power is the key factor.

APPENDIX A
PROOF OF THEOREM 3

We want to estimate . For this,
we have to compute three terms since

. We shall need the

(38)
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following results, which are easy to obtain:

(39)

(40)

• We have that

(41)

• is computed as follows:

(42)

(43)

• is computed as follows:

(44)

Putting (41), (43), and (44) together, we find the announced
result (18).
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