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Abstract—This paper introduces a new approach to or-
thonormal wavelet image denoising. Instead of postulating a
statistical model for the wavelet coefficients, we directly param-
etrize the denoising process as a sum of elementary nonlinear
processes with unknown weights. We then minimize an estimate of
the mean square error between the clean image and the denoised
one. The key point is that we have at our disposal a very accurate,
statistically unbiased, MSE estimate—Stein’s unbiased risk esti-
mate—that depends on the noisy image alone, not on the clean one.
Like the MSE, this estimate is quadratic in the unknown weights,
and its minimization amounts to solving a linear system of equa-
tions. The existence of this a priori estimate makes it unnecessary
to devise a specific statistical model for the wavelet coefficients.
Instead, and contrary to the custom in the literature, these co-
efficients are not considered random anymore. We describe an
interscale orthonormal wavelet thresholding algorithm based on
this new approach and show its near-optimal performance—both
regarding quality and CPU requirement—by comparing it with
the results of three state-of-the-art nonredundant denoising
algorithms on a large set of test images. An interesting fallout
of this study is the development of a new, group-delay-based,
parent–child prediction in a wavelet dyadic tree.

Index Terms—Image denoising, interscale dependencies, ortho-
normal wavelet transform, Stein’s unbiased risk estimate (SURE)
minimization.

I. INTRODUCTION

DURING acquisition and transmission, images are often
corrupted by additive noise that can be modeled as

Gaussian most of the time. The main aim of an image denoising
algorithm is then to reduce the noise level, while preserving
the image features. The multiresolution analysis performed by
the wavelet transform has been shown to be a powerful tool to
achieve these goals. Indeed, in the wavelet domain, the noise
is uniformly spread throughout the coefficients, while most of
the image information is concentrated in the few largest ones
(sparsity of the wavelet representation).

The most straightforward way of distinguishing information
from noise in the wavelet domain consists of thresholding the
wavelet coefficients. Of the various thresholding strategies,
soft-thresholding is the most popular and has been theoretically
justified by Donoho and Johnstone [1]. These authors have
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shown that the shrinkage rule is near-optimal in the minimax
sense and provided the expression of the optimal threshold
value —called the “universal threshold”—as a function of
the noise power when the number of samples is large:

. The use of the universal threshold to denoise
images in the wavelet domain is known as VisuShrink [2].

Yet, despite its theoretical appeal, minimax is different from
mean-squared error (MSE) as a measure of error. A lot of work
has been done to propose alternative thresholding strategies that
behave better in terms of MSE than VisuShrink [3]–[6]. Donoho
and Johnstone themselves acknowledged this flaw and sug-
gested to choose the optimal threshold value by minimizing
Stein’s unbiased risk estimator (SURE) [7] when the data fail
to be sparse enough for the minimax theory to be valid. This
hybrid approach has been coined SureShrink by their authors [1].
Without challenging the soft-thresholding strategy, alternative
threshold value selections have been proposed as well. One of
the most popular was proposed by Chang et al., who derived
their threshold in a Bayesian framework, assuming a generalized
Gaussian distribution for the wavelet coefficients. This solution
to the wavelet denoising problem is known as BayesShrink [8]
and has a better MSE performance than SureShrink.

Beyond the pointwise approach, more recent investigations
have shown that substantially larger denoising gains can be ob-
tained by considering the intra- and interscale correlations of the
wavelet coefficients. In addition, increasing the redundancy of
the wavelet transform is strongly beneficial to the denoising per-
formances, a point to which we will come back later. We have
selected three such techniques reflecting the state-of-the-art in
wavelet denoising, against which we will compare our results.

• Portilla et al. [9]:1 Their main idea is to model the neigh-
borhoods of coefficients at adjacent positions and scales as
a Gaussian scale mixture (GSM); the wavelet estimator is
then a Bayes least squares (BLS). Their denoising method,
consequently called BLS-GSM, is the most efficient up-to-
date approach.

• Pižurica et al. [10]:2 Assuming a generalized Laplacian
prior for the noise-free data, their approach called Prob-
Shrink is driven by the estimation of the probability that a
given coefficient contains significant information—notion
of “signal of interest.”

• Sendur et al. [11], [12]:3 Their method, called BiShrink,
is based on new non-Gaussian bivariate distributions

1Available at http://www.decsai.ugr.es/~javier/denoise/software/index.htm,
with a 3 � 3 neighborhood as suggested by the authors.

2Available at http://www.telin.ugent.be/~sanja/, with a 3 � 3 neighborhood
and a threshold value T = � as suggested by the authors.

3Available at http://www.taco.poly.edu/WaveletSoftware/denoise2.html,
with a 7 � 7 neighborhood as suggested by the authors.

1057-7149/$25.00 © 2007 IEEE
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Fig. 1. Principle of wavelet denoising.

to model interscale dependencies. A nonlinear bivariate
shrinkage function using the maximum a posteriori (MAP)
estimator is then derived. In a second paper, these authors
have extended their approach by taking into account the
intrascale variability of wavelet coefficients.

These techniques have been devised for both redundant and
nonredundant transforms.

Despite reports on the superior denoising performances of
redundant transforms [13], [14], we will only consider critically
sampled wavelet transforms in this paper. The rationale behind
our choice is that, since there is no added information—only
repeated information—in redundant transforms, we believe
that, eventually, a nonredundant transform may match the
performance of redundant ones. This would potentially be very
promising since the major drawback of redundant transforms
are their memory and CPU time requirements which limits their
routine use for very large images and, above all, usual volumes
of data.

More than a specific denoising algorithm, this paper is about
a powerful new method for optimizing beforehand—unaware of
the clean image—the performance of a denoising method. Here,
we want in particular to promote Stein’s unbiased risk estimate
(SURE) which is nothing less than an a priori estimation of the
MSE resulting from an arbitrary processing of noisy data. This
estimate turns out to be more accurate as more data are avail-
able, which is the case of images. Wavelet denoising methods
routinely involve a statistical description of the coefficient dis-
tribution [15], an estimation of the—always nonlinear—statis-
tical parameters and then, a search for the best denoising algo-
rithm for this type of statistics. In contrast, by taking advantage
of Stein’s MSE estimate, our method goes directly to the last
step, without caring for the statistical description: in short, we
do not make any explicit hypotheses on the clean image. In fact,
we do not consider it as a random process at all; the randomness
in our formulation follows from the Gaussian white noise alone.

Our approach consists, thus, in parametrizing the denoising
method and choosing the parameters that minimize this MSE
estimate. Previous techniques using the SURE required the min-
imization of complicated expressions for few nonlinear param-
eters [16], [17] or the use of parallel block iterative convex pro-
gramming [18]. What makes our approach more tractable and
efficient, is precisely the parametrizing method: a linear com-
bination of nonlinear denoising functions—thresholding func-
tions. Because of this “linear” choice, the minimization of the
MSE estimate merely amounts to solving a linear system of
equations, whose size is the number of weights in the linear
combination. Obviously, the number of parameters, or degrees
of freedom, is not a challenge and highly complicated thresh-
olding behaviors can be obtained this way. In the context of
image denoising, a univariate linear parametrization combined

with an implicit SURE minimization was already evoked in [19]
(sigmoidal filtering).

Because of the particular simplicity of Stein’s estimate for
pointwise denoising functions, we will not exploit the full po-
tential of the theory in this paper and will only consider inter-
scale pointwise thresholding in the orthonormal wavelet trans-
form. This excludes any intrascale considerations. Yet, we will
show that our denoising method performs better than the nonre-
dundant versions of the state-of-the-art methods [9], [10], [12]
on almost all tested images, to the noteworthy exception of Bar-
bara, which may require intrascale processing. Without any op-
timization attempts in our implementation, the comparison of
computation times already show how economical our method
is.

The paper is organized as follows. In Section II, we expose the
SURE theory for functions of one or several statistically inde-
pendent variables, and sketch the principles of our parametriza-
tion strategy. In Section III, we show how these principles can
be exploited to build an efficient pointwise thresholding func-
tion that outperforms all known pointwise techniques. In Sec-
tion IV, we extend the approach to a thresholding function that
involves coarser scale parents as well. On this occasion, we de-
velop a new formula to build a parent coefficient out of parent
subbands, and, finally, we compare our denoising method to the
best available nonredundant techniques (Section V). Both the
competitiveness and robustness of our method validate our new
approach as an attractive solution for image denoising.

II. THEORETICAL ELEMENTS

A. Problem Setting

Wavelet denoising consists of three main stages (see Fig. 1).
i) Perform a discrete wavelet transform (DWT) to the noisy

data which is the sum of the noise-free
data and the noise .

ii) Denoise noisy wavelet subimages
, by computing estimates of

the noise-free highpass subbands .
iii) Reconstruct the denoised image by applying the inverse

discrete wavelet transform (IDWT) on the processed
highpass wavelet subimages to obtain an estimate
of the noise-free data .

One can make two important remarks that set the context in
which we will develop our denoising method.

• We will only consider additive Gaussian white noise fol-
lowing a normal law defined by a zero mean and a known4

variance; i.e., .

4In practice, the noise standard deviation can be accurately estimated using a
robust median estimator [1].
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• We will only consider orthonormal wavelet transform; the
consequences are as follows.
— The mean-square error (MSE) in the space domain is a

weighted sum of the MSE of each individual subband

(1)

where we have introduced the notation

(2)

for the statistical mean estimate.
— The noise remains white and Gaussian with same sta-

tistics in the orthonormal wavelet domain, i.e.,
.

This allows us to apply a new denoising function independently
in every highpass subband, which means that our solution is
subband-adaptive like most of the successful wavelet denoising
approaches.

B. Stein’s Unbiased MSE Estimate (SURE)

In denoising applications, the performance is often measured
in terms of peak signal-to-noise ratio (PSNR), which can be
defined as follows:5

PSNR (3)

Since the noise is a random process, we introduce an expecta-
tion operator to guess the potential results obtained after
processing the noisy data . Note that the noise-free data is
not modeled as a random process; thus, .

The aim of image denoising is naturally to maximize the
PSNR and, thus, to minimize the MSE defined in (1). In this
paper, we choose to estimate each by a pointwise function
of

From now on, we will drop the subband index since a new
denoising function is independently applied in each individual
subband. Our goal is to find a function that minimizes

(4)

In practice, we only have access to the noisy signal ,
and not to the original signal . In (4), we, thus, need to remove
the explicit dependence on . Note that, since has no influ-
ence in the minimization process, we do not need to estimate it.
The remaining problematic term is only . However, the
following theorem, a version of which was proposed by Stein in
[7], allows us to overcome this difficulty.

5For 8-bit images, usually max(x ) = 255 .

Theorem 1: Let be a (weakly) differentiable
function that does not explode at infinity.6 Then, the following
random variable:

(5)

is an unbiased estimator of the MSE, i.e.

Proof: We can develop the square error between and its
estimate as

where each term is well-defined thanks to the hypothesis on .
We then use the fact that the Gaussian probability density

satisfies to evaluate

by parts

(6)

Note that the integrated part vanishes
by hypothesis. This is known as Stein’s Lemma [7] and leads to

Since the expectation of a sum is equal to the sum of the
expectations, we can deduce that

As said before, there is no need to estimate , since this
term will disappear in the minimization. So, in practice, we will
consider which is the only part of the MSE estimate that de-
pends on the choice of the denoising function .

Note that Theorem 1 is still valid if is replaced by a two-
variable denoising function where is random, but in-
dependent7 of . In particular, in an orthonormal wavelet trans-
form—which transforms Gaussian white noise into Gaussian

6Typically, such that j�(z)j � Const � exp(az ) for a < (1=2� ).
7We recall that the randomness of y = x+ b only results from the Gaussian

white noise b, because no statistical model is assumed on the noise-free data x.



596 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 3, MARCH 2007

white noise— can be any wavelet coefficients other than
itself.

The result given by Theorem 1 becomes particularly inter-
esting in image denoising applications, where the number of
samples is large. Indeed, by the law of large numbers, the stan-
dard deviation of is small; i.e., the estimate is close to its
expectation which is the MSE of the denoising procedure. As a
result, we can use as if it were the true MSE. The next section
shows how to use Theorem 1 efficiently.

C. SURE Approach to Image Denoising

Our denoising approach amounts to minimizing over a
range of reasonable denoising functions . We claim that this
will result in the minimization of the MSE over the same range
of functions, up to a small random error inversely proportional
to the square root of the number of samples. Before defining
more precisely which denoising functions we consider reason-
able, we can illustrate the search for the optimal value by
applying Theorem 1 when is the well-known soft-thresh-
olding function defined by

(7)

where .
By Theorem 1, the following expression has to be minimized

over

(8)

The last expression has its minimum exactly for the same as
the following formula:

(9)

which appears in [1].
The estimated optimal threshold value is then:

.
We must notice here that the so-called SureShrink procedure

developed by Donoho and Johnstone in [1] uses, in fact, a hybrid
scheme between the SURE theory and the universal threshold
(asymptotically optimal when the data exhibit a high level of
sparsity). Their minimization of is, thus, restricted
to , where is the universal
threshold. Our opinion, however, is that this restriction is un-
necessary—and often suboptimal—in image denoising appli-
cations where quality is measured by a mean-square criterium.
This is because, even though natural images have small wavelet
coefficients, these are not vanishing as required by the strict
sparsity results. It may even be argued that these small coef-
ficients convey important texture information and should not,
thus, be set to zero.

As we can verify in Fig. 3, the estimate of the theorem is sta-
tistically very reliable and robust, making it completely suitable
for an accurate estimation of the optimal threshold.

The soft-thresholding function (see Fig. 2) exhibits two main
drawbacks. First, it only depends on a single parameter , and,
thus, its shape is not very flexible; second, this dependency is not

Fig. 2. Soft-thresholding function.

linear. The consequence of these two remarks is that the sensi-
tivity of the soft-thresholding function with respect to the value
of is high, and that finding the optimal threshold requires a
nonlinear search algorithm.

In order to mitigate this issue, we choose to build a denoising
function that depends linearly on a set of parameters—degrees
of freedom—which we will determine exactly by minimizing .
The exact minimization is especially simple (linear) because the
MSE estimate has a quadratic form, much like the true MSE.
The key idea is, thus, to build a linearly parameterized denoising
function of the form

(10)

where is the number of parameters.
If we introduce (10) into the estimate of the MSE given in

Theorem 1 and perform differentiations over the , we obtain
for all

These equations can be summarized in matrix form as ,
where and are vectors of size

, and is a matrix of size . This
linear system is solved for by

(11)

which makes our approach very simple to implement. Note that,
since we are only interested in the minimum of , we are ensured
that there will always be a solution. When several solutions are
admissible (e.g., when ) any one of them will
be acceptable—in particular, the one provided by the pseudoin-
verse of . When this degeneracy occurs, we will conclude
that the parameters belong to some linear subspace and, thus,
that some of them are useless (the function is “over-parameter-
ized”). Of course, it is desirable to keep the number of degrees
of freedom as low as possible in order for the estimate to
keep a small variance.
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Fig. 3. Statistical accuracy of Theorem 1 illustrated with the soft-threshold: true MSE is in dashed lines, while its estimate � is in solid line. (a) N = 32 �

32 samples and � = 20. (b) N = 256� 256 samples and � = 20. The variance of the estimator decreases when the number of samples N increases, making
Theorem 1 statistically reliable for image denoising applications.

Fig. 4. Shape of our denoising function (12) in a particular subband, for various
K and optimized a ’s and T .

III. EFFICIENT SURE-BASED POINTWISE THRESHOLDING

In the previous section, we have proposed a general form of
denoising functions (10). The difficulty is now to choose suit-
able basis functions that will determine the shape of our de-
noising function. Therefore, we want the denoising function
to satisfy the following properties:

• differentiability: required to apply Theorem 1;
• anti-symmetry: the wavelet coefficients are not expected to

exhibit a sign preference;
• linear behavior for large coefficients: because should

asymptotically tend to .
After trying several types of , we have found that all of them
give quite similar results, when the above conditions are satis-
fied. We have, thus, decided to retain the following pointwise
denoising function:

(12)

We choose derivatives of Gaussians (DOG) because they decay
quite fast, which ensures a linear behavior close to the identity
for large coefficients (see Fig. 4).

In addition to the linear coefficients, our denoising function
contains two nonlinear dependencies: the number of terms
and the parameter . We will see later that they can be fixed
independently of the image.

If we consider only one parameter , our denoising
function simply becomes , which is the simplest
linear pointwise denoising function. The direct minimization of
the estimate provides

(13)

which is known as the James–Stein estimator [20].
Practical tests (with optimization over the parameter , inde-

pendently in each subband) on various images and with various
noise levels have shown that, as soon as , the results be-
come quite similar. It, thus, appears that it is sufficient to keep as
few as terms in (12). This is confirmed in Fig. 4, which
shows that the shape of our denoising function is nearly insen-
sitive to the variation of .

Moreover, the optimal value of the parameter is closely
linked to the standard deviation of the noise and in a lesser way
to the number of parameters . Its interpretation is quite similar
as in the case of the soft-threshold: It manages the transition
between low SNR to high SNR coefficients. In our case though,
the variations of the minimal (over ) when changes are
quite small (see Fig. 5), because our denoising function is much
more flexible than the soft-threshold. This sensitivity becomes
even smaller as the number of parameters increases. In fact,
this indicates that some parameters are, in that case, useless.

To summarize, we have shown that both the number of terms
and the parameter have only a minor influence on the

quality of the denoising process. This indicates that these two
parameters do not have to be optimized; instead, they can be
fixed once for all, independently of the type of image. From a
practical point of view, we suggest to use terms and

(see Fig. 5), leading to the following pointwise
thresholding function:

(14)
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Fig. 5. Sensitivity of our denoising function (14) with respect to variations of T . (a) Peppers 256 � 256. (b) MIT 256 � 256. (c) Lena 512 � 512. (d) Boat 512
� 512. We can notice that for all images and for the whole range of input PSNR the maximum of the PSNR is reached for (T =� ) ' 6.

TABLE I
COMPARISON OF OUR SUM OF DOG (14) WITH THE ORACLE SOFT-THRESHOLD (NONREDUNDANT SYM8, FOUR ITERATIONS)

Note: output PSNRs have been averaged over ten noise realizations.

Now, it is interesting to evaluate the efficiency of our denoising
function (14) and the accuracy of our minimization process
based on an estimate of the MSE. We propose to compare our
results with the best results that can be reached by the popular
soft-threshold with an optimal threshold choice (OracleShrink).
Two main observations naturally come out of Table I.

i) SURE is a reliable estimate of the MSE, since the re-
sulting average loss in PSNR is within 0.02 dB for all
images.

ii) Our sum of DOG (14) gives better PSNRs than the op-
timal soft-threshold.

IV. EFFICIENT SURE-BASED INTERSCALE THRESHOLDING

The integration of interscale information has been shown
to improve the denoising quality, both visually and in terms
of PSNR [9], [11], [21]. However, the gain brought is often
modest, especially considering the additional complications in-
volved by this processing [9]. In this section, we reformulate
the problem by first building a loose prediction of wavelet
coefficients out of a suitably filtered version of the lowpass
subband at the same scale, and then by including this predictor
in an explicit pointwise denoising function. Apart from the
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Fig. 6. Three stages of a fully decimated orthogonal wavelet transform and the
so-called parent–child relationship.

specific denoising problem addressed in this paper, we believe
more generally that other applications (e.g., compression, de-
tection, segmentation) could benefit as well from the theory
that leads to this predictor.

A. Building the Interscale Prediction

The wavelet coefficients that lie on the same dyadic tree (see
Fig. 6) are well known to be large together in the neighborhood
of image discontinuities. What can, thus, be predicted with rea-
sonably good accuracy are the position of large wavelet coef-
ficients out of parents at lower resolutions. However, getting
the actual values of the finer resolution scale coefficients seem
somewhat out of reach. This suggests that the best we can get
out of between-scale correlations is a segmentation between re-
gions of large and small coefficients. This comes back to the
idea of signal of interest proposed by Pižurica et al. in [10].

In a critically sampled orthonormal wavelet decomposition,
the parent subband is half the size of the child subband. The usual
way of putting the two subbands in correspondence is simply to
expand the parent by a factor two. Unfortunately, this approach
does not take into account the potential—noninteger— shift
caused by the filters of the DWT. We, thus, propose a more so-
phisticated solution, which addresses this issue and ensures the
alignment of image features between the child and its parent.

Our idea comes from the following observation: Let
and be, respectively, bandpass and lowpass outputs at
iteration of the filterbank. Then, if the group delay8 between
the bandpass and the lowpass filters are equal, no shift between
the features of and will occur. Of course, depending
on the amplitude response of the filters, some features may
be attenuated, blurred, or enhanced, but their location will
remain unchanged. When the group delays differ—which is the
general case—we, thus, propose to filter the lowpass subband

in order to compensate for the group delay difference with
. This operation is depicted in Fig. 7(a): is filtered in

the three bandpass “directions” by adequately designed filters
, , and , providing aligned—i.e., group delay

compensated—subbands with , , and .
Because the filters considered in this paper are separable, we

only have to consider 1-D group delay compensation (GDC).

8For example, the frequency gradient of the phase response, with a minus
sign.

Fig. 7. One way of obtaining the whole parent information out of the lowpass
subband: (a) 2-D illustration; (b) 1-D filterbank illustration.

Definition 1: We say that two filters and are group
delay compensated if and only if the group delay of the quotient
filter is zero identically; i.e., if and only if there
exists a (anti-) symmetric filter such that

.
The following result shows how to choose a GDC filter in a

standard orthonormal filterbank.
Theorem 2: For the output of the dyadic orthonormal filter-

bank of Fig. 7(b) to be group delay compensated, it is necessary
and sufficient that

(15)

where and is arbitrary.
Proof: Group delay compensation between the two filter-

bank branches is equivalent to [see Fig. 7(b)]

(16)

where is an arbitrary symmetric or
anti-symmetric filter.

Because the filters and are orthonormal, we have
, and, thus, (16) can be rearranged as

(17)



600 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 3, MARCH 2007

Fig. 8. Building an efficient interscale predictor, illustrated with a particular subband (HL ) of the noise-free Peppers image.

Fig. 9. Three-dimensional surface plot of a possible realization of our interscale thresholding function (21).

We observe that is an even polynomial because both
and are. If we denote

, then the symmetry of implies that

i.e., is and arbitrary zero-phase filter.
After substitution in (17), this finally leads us to the formu-

lation (15), as an equivalent characterization of the group delay
compensation in the filterbank of Fig. 7(b).

In addition to (15), the GDC filter has to satisfy a few
constraints:

• energy preservation, i.e., , in order for the
amplitude of the two outputs to be comparable;

• highpass behavior, in order for the filtered lowpass image
to “look like” the bandpass target;

• shortest possible response, in order to minimize the en-
largement of image features.

We can give a simple GDC filter in the case of symmetric
filters. The shortest highpass satisfying the GDC condi-
tion is in fact the simple gradient filter: . If the
symmetry is not centered at the origin but at a position , then

. This type of solution is still adequate
for near-symmetric filters such as the Daubechies symlets [22].
When the lowpass filter is not symmetric, we can simply take

in (15).
Finally, in order to increase the homogeneity inside re-

gions of similar magnitude coefficients, we apply a 2-D
smoothing filter—a normalized Gaussian kernel

—onto the absolute value of the GDC output.
In the rest of the paper, we will refer to the so-built interscale
predictor by .

B. Integrating the Interscale Predictor

Now that we have built the interscale predictor , we have
to suitably integrate it into our pointwise denoising function.
As mentioned before, this interscale predictor does not tell us
much about the actual value of its corresponding child wavelet
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TABLE II
DENOISING PERFORMANCE IMPROVEMENT BROUGHT BY OUR INTERSCALE STRATEGY (NONREDUNDANT SYM8, FOUR ITERATIONS)

Note: output PSNRs have been averaged over ten noise realizations.

TABLE III
COMPARISON OF SOME OF THE MOST EFFICIENT DENOISING METHODS (NONREDUNDANT SYM8, FOUR ITERATIONS)

Note: output PSNRs have been averaged over ten noise realizations. The best redundant results are obtained using the BLS-GSM 3 � 3 with an 8-orientations
full steerable pyramid; results slightly differ from the ones published in [9], because no boundary extension has been applied here.

coefficients. It only gives an indication on its expected mag-
nitude. Here, we, thus, propose to use the parent as a dis-
criminator between high SNR wavelet coefficients and low SNR
wavelet coefficients, leading to the following general pointwise
denoising function:

(18)

The linear parameters and are then solved for by mini-
mizing the MSE estimate defined in Theorem 1, for the linear
parameters and . The optimal coefficients are obtained in
the same way as in Section II-C and involve a solution similar
to (11).

Fig. 10. (a) Zoom at Barbara’s trousers at the finest scale of an orthonormal
wavelet transform: the stripes are clearly visible. (b) Zoom at Barbara’s trousers
at the next coarser scale: the stripes are not visible anymore.
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Fig. 11. Comparison of our interscale dependent thresholding function (21) with the best possible soft-threshold OracleShrink and with our simple univariate
denoising function (14). (a) Peppers 256 � 256. (b) House 256 � 256. (c) Lena 512 � 512. (d) Barbara 512 � 512.

A first thought choice for the function in (18) is simply the
Heaviside function

if
if

(19)

where can be interpreted as a decision factor. However, since
the classification will not be perfect (i.e., some small parent co-
efficients may correspond to high-magnitude child coefficients,
and vice versa), it is more appropriate to use a smoother deci-
sion function. Instead, we, thus, propose to use

(20)

As in the univariate case (Section III), we suggest to use a sum of
DOG with terms for each class of wavelet coefficients
and9 , leading to the following bivariate denoising
function:

(21)

Table II quantifies the improvement introduced by this new
way of integrating the interscale information, as compared to
the usual expansion of the parent subband.

9Side investigations have shown that the T needed in (20) and the one opti-
mized in Section III can be chosen identical for optimal performances and equal
to
p
6�.

V. EXPERIMENTAL RESULTS

In this section, we compare our interscale dependent thresh-
olding function (21) with some of the best state-of-the-art
techniques: Sendur’s et al. bivariate MAP estimator with local
variance estimation, Portilla’s BLS-GSM and Pižurica’s Prob-
Shrink.

In all comparisons, we use a critically sampled orthonormal
wavelet basis with eight vanishing moments (sym8) over four
decomposition stages.

A. PSNR Comparisons

We have tested the various denoising methods for a repre-
sentative set of standard 8-bit grayscale images such as Al,
Barbara, Boat, Crowd, Goldhill (size 512 512) and Pep-
pers, House, Bridge (size 256 256), corrupted by simulated
additive Gaussian white noise at eight different power levels

, which corresponds to PSNR
decibel values [34.15, 28.13, 24.61, 22.11, 20.17, 18.59, 14.15,
8.13]. The denoising process has been performed over ten
different noise realizations for each standard deviation and the
resulting PSNRs averaged over these ten runs. The parameters
of each method have been set according to the values given by
their respective authors in the corresponding referred papers.
Variations in output PSNRs are, thus, only due to the denoising
techniques themselves. This reliable comparison was only
possible thanks to the kindness of the various authors who
have provided their respective Matlab codes on their personal
websites.

Table III summarizes the results obtained. To the noteworthy
exception of Barbara, our results are already competitive with
the best techniques available that consider nonredundant or-
thonormal transforms. We stress again that our processing con-
sists of a simple pointwise threshold, driven by interscale infor-
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Fig. 12. (a) Part of the noise-free 256 � 256 House image. (b) Noisy version of it: PSNR = 18:59 dB. (c) Denoised result using the BayesShrink: PSNR =

27:57 dB. (d) Denoised result using the BiShrink 7 � 7: PSNR = 28:19 dB. (e) Denoised result using the BLS-GSM 3 � 3: PSNR = 28:73 dB. (f) Denoised
result using our interscale dependent thresholding function (21): PSNR = 28:96 dB.

mation; i.e., without taking intrascale dependencies into consid-
eration, contrary to the best performing methods (ProbShrink,
BiShrink and BLS-GSM).

When looking closer at the results, we observe the following.
• Our method outperforms the classical BayesShrink by

more than 1 dB on average.
• Our method gives better results than Sendur’s BiShrink

7 7 which integrates both the inter- and the intrascale de-
pendencies (average gain of 0.6 dB).

• Our method gives better results than Pižurica’s ProbShrink
3 3 which integrates the intrascale dependencies (av-
erage gain of 0.4 dB).

• We obtain similar or sometimes even better results than
Portilla’s BLS-GSM 3 3 for most of the images.

• For the Barbara image, our method is among the worst
performers together with the pointwise BayesShrink. Our
explanation for this is that some local information (espe-
cially the texture in Barbara’s trousers) is completely lost
at coarser scales (see Fig. 10). Interscale correlations may
be too weak for this image, which indicates that an effi-
cient denoising process may require intrascale information
as well.

• The gap between our nonredundant SURE-based approach
and the best up-to-date redundant results lies in the range
of 0.5–1 dB for most images.

It is instructive to compare the results (see Fig. 11) obtained
with our interscale dependent thresholding function (21), with
the ones obtained with our simple univariate denoising function



604 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 3, MARCH 2007

Fig. 13. (a) Part of the noise-free 512� 512 Al image. (b) Noisy version of it: PSNR = 14:15 dB. (c) Denoised result using the BayesShrink: PSNR = 26:71 dB.
(d) Denoised result using the BiShrink 7 � 7: PSNR = 27:12 dB. (e) Denoised result using the BLS-GSM 3 � 3: PSNR = 27:34 dB. (f) Denoised result using
our interscale dependent thresholding function (21): PSNR = 27:66 dB.

(14). The improvement (often more than 1 dB) is quite signifi-
cant for most standard images (see Fig. 11). Yet, for images that
have substantial high-frequency contents, the integration of in-
terscale dependencies does not lead to such an impressive gain.
On the same graphs, we have also included the results obtained
with the OracleShrink, showing a systematic underperformance
with regards to even our simple univariate denoising function.

B. Visual Quality

Although there is no consensual objective way to judge the
visual quality of a denoised image, two important criteria are

widely used: the visibility of processing artifacts and the conser-
vation of image edges. Processing artifacts usually result from
a modification of the spatial correlation between wavelet coef-
ficients (often caused by the zeroing of small neighboring co-
efficients) and are likely to be reduced by taking into account
intrascale dependencies. Instead, image edge distortions usu-
ally arise from modifications of the interscale coefficient cor-
relations. The amplitude of these modifications is likely to be
reduced by a careful consideration of interscale dependencies
in the denoising function.

Since our algorithm only includes interscale considerations,
we expect it to be specifically robust to noise with regards to
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TABLE IV
RELATIVE COMPUTATION TIME OF VARIOUS DENOISING TECHNIQUES

Note: The computation times have been averagde over twenty runs.

edge preservation. Additionally, we would like to stress that our
method exhibits the fewest number of artifacts, which we at-
tribute to the fact that we are never forcing any wavelet coef-
ficients to zero. These observations are illustrated in Figs. 12
and 13.

C. Computation Time

It is also interesting to evaluate the various denoising methods
from a practical point of view: the computation time. Indeed, the
results achieved by overcomplete representation are admittedly
superior than the ones obtained by critically sampled wavelet
transforms, but their weakness is the time they require (nearly
27 s on a Power Mac G5 workstation with 1.8-GHz PowerPC
970 CPU for 256 256 images to obtain the redundant results
reported in Table III). With our simple univariate method (14),
the whole denoising process (including four iterations of an or-
thonormal wavelet transform) lasts approximately 0.4 s for 256

256 images (1.6 s for 512 512 images), using a similar
workstation. With our interscale dependent thresholding func-
tion (21), the whole denoising task takes between 0.6–0.7 s for
256 256 images and about 2.7 s for 512 512 images. To
compare with, Portilla’s BLS-GSM with a 3 3 window size
lasts approximately 10 s for 512 512 images, using the same
orthonormal transform. Besides giving competitive results, our
method is, thus, also much faster.

Table IV summarizes the relative computation time of the var-
ious methods considered in this paper. Note that the main part
of the ProbShrink is contained in a precompiled file, making its
execution time a bit faster than the other algorithms which are
fully implemented in Matlab.

VI. CONCLUSION

We have presented a new approach to orthonormal wavelet
image denoising that does not need any prior statistical mod-
elization of the wavelet coefficients. This approach is made pos-
sible thanks to the existence of an efficient estimate of the MSE
between noisy and clean image—the SURE—that is based on
the noisy data alone. Its minimization over a set of denoising
processes automatically provides a near-optimal solution in the
sense of the a posteriori MSE. For efficiency reasons, we have
chosen this set to be a linear span of basic nonlinear mappings.

Using this approach, we have designed an image denoising al-
gorithm that takes into account interscale dependencies, but dis-
cards intrascale correlations. In order to compensate for features
misalignment, we have developed a rigorous procedure based
on the relative group delay between the scaling and wavelet fil-
ters—group delay compensation. The information brought by
this new interscale predictor is used to classify smoothly be-
tween high- and low-SNR wavelet coefficients.

The comparison of the denoising results obtained with our
algorithm, and with the best state-of-the-art nonredundant tech-
niques (that integrate both inter- and intrascale dependencies),
demonstrate the efficiency of our SURE-based approach which
gave the best output PSNRs for most of the images. The vi-
sual quality of our denoised images is moreover characterized
by fewer artifacts than the other methods.

We are currently working on an efficient integration of the
intrascale correlations within the SURE-based approach. Our
goal is to show that the consideration of inter- and intrascale
dependencies brings denoising gains that rival the quality of the
best redundant techniques such as BLS-GSM.
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