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Efficient Multidimensional Diracs Estimation With
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Abstract—Estimating Diracs in continuous two or higher dimen-
sions is a fundamental problem in imaging. Previous approaches
extended one-dimensional (1-D) methods, like the ones based on fi-
nite rate of innovation (FRI) sampling, in a separable manner, e.g.,
along the horizontal and vertical dimensions separately in 2-D.
The separate estimation leads to a sample complexity of O (

KD
)

for K Diracs in D dimensions, despite that the total degrees of
freedom only increase linearly with respect to D. We propose a
new method that enforces the continuous-domain sparsity con-
straints simultaneously along all dimensions, leading to a recon-
struction algorithm with linear sample complexity O(K), or a
gain of O (

KD−1
)

over previous FRI-based methods. The multi-
dimensional Dirac locations are subsequently determined by the
intersections of hypersurfaces (e.g., curves in 2-D), which can be
computed algebraically from the common roots of polynomials.
We first demonstrate the performance of the new multidimensional
algorithm on simulated data: multidimensional Dirac location re-
trieval under noisy measurements. Then, we show results on real
data: radio astronomy point source reconstruction (from LOFAR
telescope measurements) and the direction of arrival estimation of
acoustic signals (using Pyramic microphone arrays).

Index Terms—Finite rate of innovation (FRI), continuous-
domain sparsity, multidimension, point source reconstruction.

I. INTRODUCTION

CONTINUOUS-DOMAIN sparse recovery is a classic
problem at the heart of various applications, like point

source estimation in radio astronomy [1], and direction of ar-
rival estimation (DOA) with sensor arrays [2]. Typically, a low-
pass filtered version of the sparse signal (or equivalently its low
frequency spectrum) is observed in the measurement process. It
is often the case that only a limited number of measurements is
available—either due to the bandwidth of the instruments (as in
microscopic imaging) or because of the finite number of sensors
(as in array signal processing).
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Therefore, it is essential to devise an efficient algorithm that
estimates the sparse signal robustly from a set of discrete sam-
ples. The sampling framework for signals with finite rate of inno-
vation (FRI) [3] is a natural candidate for this task. For instance,
it has been shown that a periodic stream of Diracs in 1D, which
consists of K Diracs within each period, is reconstructed exactly
from 2K + 1 ideal samples of the Dirac stream. The key to the
FRI-based reconstruction is the annihilating filter method [3],
[4], which allows the enforcement of the continuous-domain
sparsity constraint with a discrete convolution equation (see
Section II-A). Recently, the FRI framework has been general-
ized to cope with non-uniform measurements [5], making the
framework applicable to many practical problems, such as ra-
dio astronomy [6] and DOA estimation for arbitrary array lay-
outs [7]. Previous attempts to extend the FRI-based sparse re-
covery to two dimensions led to various sampling schemes for
polygons [8], [9], and curves [10]–[12], which can be reliably
reconstructed with the recently proposed generalized FRI re-
covery framework [5].

The focus in this work is on efficiently sampling and re-
construction of a specific type of sparse signals, namely multi-
dimensional Diracs. This is directly related to point source es-
timation in various fields. Previous FRI-based approaches for
two-dimensional Diracs [13] recasts the problem as two sub-
problems, which estimate the Dirac locations along horizontal
and vertical directions separately. The separate reconstruction
approach requires an additional pairing step to combine the es-
timated Dirac coordinates. Additionally, the sample complexity
is quadratic in 2D [5], [13].

Alternatively, as we propose in this paper, we reconstruct
multi-dimensional Diracs by enforcing the annihilation con-
straints in all dimensions simultaneously. The Dirac locations
are then given by the intersections of hypersurfaces, which are
the zero-crossings of multivariate polynomials with coefficients
specified by the reconstructed annihilating filter coefficients. For
instance, in 2D, the estimation of Dirac locations amounts to
finding the intersections of two curves, which can be computed
algebraically by finding the common roots of two polynomials
(see Fig. 2 and Section II-B2). Our main contributions in this
work are:

i) The extension of the generic FRI sampling and recon-
struction framework [5] to higher dimensions (two di-
mensions and above)—the resulting sampling scheme
has linear sample complexity in signal sparsity (see e.g.,
Corollary 1). The reduced sample complexity is a signifi-
cant improvement over our previous approach, where the
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Fig. 1. Sensing sparsity through annihilation: instead of recovering the sparse signal x(t) directly, the FRI-based approach estimates a smooth function μ(t),
which vanishes at the non-zero locations of the sparse signal. The continuous-domain constraint μ(t)x(t) = 0, can be equivalently enforced with a discrete
convolution equation in Fourier domain: cm ∗ x̂m = 0, where cm is known as the “annihilating filter” (see text in Section II-A1 for details).

Fig. 2. Joint estimation of 2D Diracs based on curve intersections. The Dirac
locations are given by the intersections of two curves C1 and C2 (see text
in Section II-B2). (a) The zero-crossings of two univariate polynomials spec-
ified by two 1D annihilating filters in the separate estimation (Section II-B1).
(b) The zero-crossings of two (bivariate) polynomials specified by general
shaped 2D annihilating filters in the joint estimation.

TABLE I
SAMPLE COMPLEXITIES OF SEPARATE AND JOINT ESTIMATION APPROACHES TO

RECONSTRUCT K D-DIMENSIONAL DIRACS

multi-dimensional sparse recovery was reduced to sev-
eral one-dimensional sub-problems and where, for a fixed
number of Diracs, the minimum required sample size in-
creases exponentially with respect to the dimension. We
summarize sample complexities of the previous separate
estimation and the new joint estimation approaches in
Table I.

ii) An iterative algorithm (similar to the one in [5])
to solve the multi-dimensional FRI reconstruction1

(Section II-C3). The algorithm makes it possible to ap-
ply the multi-dimensional FRI-based sparse recovery
to practical problems, where the measurements are not

1The Python code will be available at https://github.com/hanjiepan

necessarily taken uniformly (see Section IV-A for a con-
crete example in radio astronomy).

Before proceeding, we point to literature on sparse recov-
ery in high-dimensions. Prony’s method [4], which is at the
root of the FRI-based sparse recovery, also plays an essential
role in high-resolution spectrum estimation. Various attempts
have been made to generalize the approach to high dimensions
such as matrix enhancement and matrix pencil (MEMP) [14]
and ESPRIT-like subspace methods [15]–[18]. One drawback
with MEMP is the necessity to have an additional pairing step
in order to obtain the final multi-dimensional reconstruction.
The sample complexity is quadratic in terms of signal spar-
sity in 2D [14]. In comparison, ESPRIT-like approaches exploit
the shift-invariance property of several sub-matrices, which are
jointly diagonalized, and achieve linear sample complexity [16],
[18] (albeit the requirement of having at least 4 samples along
each dimension). Recent efforts have been made to extend
Prony’s method to multi-dimensional settings. Notably [19] ex-
ploited a similar idea, which treats multi-dimensional Diracs
as common roots of several polynomials. However, the sample
complexity with the proposed approach therein scales exponen-
tially in terms of the signal dimension [20]. Other sampling
schemes with linear sample complexity have been proposed
in [21], [22]. Finally, recent work on spectral compressed sens-
ing (e.g., [23]) is not directly related with the multi-dimensional
Dirac reconstruction. Instead, the focus is on recovering the
Fourier spectrum of the sparse signal, which is partially sub-
sampled on a grid: the sparse signal parameters are retrieved with
standard spectrum estimation algorithm, such as MEMP [14],
once the full spectrum has been recovered.

The rest of the paper is organized as follows. First, we briefly
review both the methodology and reconstruction algorithm of
the FRI-based continuous-domain sparse recovery framework
in Section II-A. Then, the generic FRI reconstruction frame-
work is adapted to address the two-dimensional sparse recovery
in Section II-B. Sample complexity as well as the reconstruction
algorithm details are discussed in Section II-C. The FRI-based
2D sparse recovery is further generalized to higher dimensions
in Section II-D. Next, we validate the proposed approach with
simulations in Section III. Finally, the significance of the new
approach is highlighted with two applications on point source
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reconstruction in radio astronomy and direction of arrival esti-
mation with microphone arrays in Section IV.

II. METHODS

A. Continuous-domain Sparse Recovery with FRI Sampling

In this section, we review the general framework of FRI-based
sparse recovery. First, we highlight the methodology that FRI
adopts: a sparse signal is recovered by finding a complemen-
tary mask function that “kills” or annihilates the sparse signal
(Section II-A1). Then, we overview a generic algorithm that
recovers FRI signals robustly (Section II-A2). We will devise a
similar algorithm to solve the multi-dimensional FRI recovery
later in Section II-B.

1) Sensing Sparsity Through Annihilation: Finite rate of
innovation (FRI) sampling is a framework to reconstruct
continuous-domain sparse signals, which have finite degrees
of freedom per unit time or space. A typical FRI signal is a
τ -periodic stream of Diracs:

x(t) =
∑

k ′∈Z

K∑

k=1

αkδ(t− tk − k′τ). (1)

The goal is to estimate the Dirac locations tk and amplitudes αk

from the measurements of the sparse signal x(t), e.g., its ideally
low-pass filtered samples. Instead of directly estimating where
the sparse signal is different from zero, the FRI-based approach
aims at reconstructing a signal-dependent smooth function μ(t)
(typically a polynomial), which vanishes at the non-zero loca-
tions of the sparse signal (see Fig. 1). From this perspective,
μ(t) serves as a mask that annihilates the sparse signal x(t):

μ(t)x(t) = 0. (2)

The zero-crossings of the function μ(t) then give the Dirac
locations. Once the Dirac locations have been reconstructed,
estimating the amplitudes of the Diracs is a linear problem,
namely a least square minimization.

In general, it is challenging to enforce the continuous-domain
annihilation constraint (2) directly. However, many FRI signals
are or can be transformed into a weighted sum of sinusoids,
whose frequencies are related to the sparse signal parameters.
Thanks to a result known for more than two centuries [4], the
continuous-domain annihilation constraint can equivalently be
enforced with a discrete convolution equation: there exists a
finite-length discrete filter such that its convolution with the
uniform sinusoidal samples are zero (hence the filter is also
known as “annihilating filter”). In fact, the polynomial, whose
coefficients are specified by the discrete filter (e.g., μ(t) in (3)),
is the mask function that annihilates the sparse signal.

More concretely, take the periodic stream of Diracs (1) as an
example. Its Fourier series coefficients are

x̂m =
1
τ

K∑

k=1

αke−j 2 π m
τ tk ,

which are annihilated (i.e., cm ∗ x̂m = 0) by a (K + 1)-tap filter
[c0 , · · · , cK +1] with z-transform

C(z) =
K +1∑

k=0

ckz−k = c0

K∏

k=1

(
1− e−j 2 π

τ tk z−1
)

.

Note that C(z) is a polynomial of degree K + 1 and the mask
function μ(t) = C

(
e−j 2 π

τ t
)

vanishes precisely at the Dirac lo-
cations: μ(tk ) = 0 for k = 1, · · · ,K:

μ(t)x(t) F←→ cm ∗ x̂m . (3)

The ideally low-pass filtered samples of the sparse signal x(t)
have a one-to-one correspondence with its Fourier series coeffi-
cients x̂m . Consequently, the annihilating filter coefficients (or
equivalently the mask function) are reconstructed by enforcing
a discrete convolution equation. We illustrate the annihilating
filter based sparse recovery in Fig. 1.

2) A generic FRI Reconstruction Algorithm: In [5], a generic
FRI reconstruction problem was formulated as a constrained op-
timization. The fitting error of the re-synthesized measurements
(based on the estimated sparse signal model) to the given mea-
surements is minimized subject to the annihilation constraint:

min
c∈C,b

‖a−Gb‖22
subject to c ∗ b = 0.

(4)

Therefore, the goal is to approximate the measurements opti-
mally (in the least square sense) given that the signal follows
the sparsity model. Here

� a is the vector of the sparse signal measurements to be
reconstructed, e.g., the low-pass filtered samples.

� b is the vector of the unknown uniform sinusoidal samples,
e.g., the Fourier series coefficients of (1). The choice of b is
problem-dependent. By imposing the discrete convolution
equation in (4), the estimated signal is guaranteed to follow
the sparse signal model.

� G is the exact or approximate linear mapping from the uni-
form sinusoidal samples b to the measurements a, which
typically has a full column rank. In fact, an inexact mapping
is not detrimental to the final reconstruction quality [5], [7]
although, in general, we should not expect to achieve per-
fect reconstruction with noiseless measurements, when an
approximate linear mapping is used. However, see [6] for
a strategy to obtain the exact solution by refining the linear
mapping based on the previous reconstructions.

� c is the vector of the annihilating filter coefficients. The
feasible set C specifies a proper normalization in order
to avoid a trivial solution c ≡ 0. One choice of the fea-
sible set C, which leads to robust performance (see [5]),
is C =

{
c
∣
∣cH

0 c = 1
}

, where c0 is a random initialization
of the annihilating filter. The randomness allows the algo-
rithm to explore different feasible sets over several random
initializations.

Because of the annihilation constraint, (4) is non-convex with
respect to the (b, c)-pair. An iterative strategy in [5] finds a
valid solution, which (i) satisfies the annihilation constraint; and
(ii) has a fitting error ‖a−Gb‖22 within the noise level. This
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strategy exploits the “bi-linearity” of the annihilation constraint:
for a fixed c (respectively b), the annihilation constraint is linear
in terms of b (respectively c). Hence, with a fixed c, we have a
closed-form solution b as a function of c. Then, the original bi-
variate optimization (4) reduces to a minimization with respect
to c alone. The simplified formulation inspired the iterative
algorithm in [5].

Finally, it has been shown that the iterative algorithm can be
efficiently implemented: at each iteration, the updates of b and c
amount to solving two linear systems of equations. Readers are
referred to [5] for detailed discussions. We will adopt a similar
strategy to solve the multi-dimensional FRI reconstruction in
Section II-C3.

B. FRI Reconstruction in 2D

In our previous approach [5], the multi-dimensional prob-
lem was reduced to several sub-problems by enforcing
the annihilation constraints along each dimension separately
(Section II-B1). We discuss the limitations associated with the
separate estimation approach and propose an alternative formu-
lation, where the annihilation constraints are enforced along all
dimensions simultaneously (Section II-B2).

1) Separate Estimation Formulation: In [5], the multi-
dimensional FRI reconstruction problem was recast as sepa-
rate annihilation problems along each dimension. Take the re-
construction of K two-dimensional Diracs as an example. The
Fourier transform on a uniform grid can be annihilated by two
discrete filters of size K + 1 along rows and columns, respec-
tively:

min
c1 ∈C1 ,b

‖a−Gb‖22
subject to c1 ∗ b = 0

and
min

c2 ∈C2 ,b
‖a−Gb‖22

subject to c2 ∗ b = 0
.

(5)

Here
� a is the vector of the given measurements of the 2D Diracs,

e.g., the ideally low-pass filtered samples.
� b is the vector of the (unknown) uniformly sampled Fourier

transform, e.g., the vectorized Fourier series coefficients of
the 2D Diracs in a column-by-column order.

� G is the linear transformation that links the sinusoidal
samples b to the ideally low-pass filtered samples a, e.g.,
the inverse DFT transformation.

� c1 and c2 are the annihilating filters along the horizontal
and vertical directions, respectively. They each belong to
a certain space, e.g., C1 = {c1 ∈ CK +1

∣
∣(c(0)

1 )Hc1 = 1}
where c(0)

1 is a random initialization of c1 in the iterative
algorithm (see [5] for details). C2 is similarly defined.

The x-coordinates (respectively y-coordinates) are then given
by the roots of a univariate polynomial whose coefficients are
specified by c1 (respectively c2).

All Diracs that are located on the K2 intersections of the
reconstructed x and y coordinates (see Fig. 2(a)), satisfy the
annihilation constraints in both problems in (5). Therefore, it
is necessary to find the correct correspondence among the pos-
sible x and y locations in order to reconstruct the 2D Diracs.

The exhaustive approach amounts to considering
(
K 2

K

)
possible

combinations, which becomes computationally infeasible with
a large number of Diracs. In [5], we showed experimentally that
we can identify the (x, y)-pairs by reconstructing amplitudes of
Diracs, which are located at K2 possible x and y intersections,
all at once with least square minimization. Then, the coordi-
nates of the K Diracs (among the K2 possibilities) that have the
largest amplitudes give the Dirac locations in 2D. Finally, we
reconstruct the Dirac amplitudes with the K correctly identified
2D Dirac locations.

Despite the empirical success of such a simple strategy, there
are two noticeable drawbacks:

i) The restrictive shape of the 1D filters used in the separate
estimation approach, requires that the uniform sinusoidal
samples b should be at least K + 1 along each dimen-
sion. Therefore, the total number of samples increases
quadratically with respect to the number of Diracs. How-
ever, an optimal algorithm should only useO(K) number
of measurements. More generally, in D dimensions, the
sample complexity of the separate estimation approach
is O(KD ), i.e., a penalty of O(KD−1) over the optimal
linear sample complexity.

ii) The two 1D FRI reconstructions in (5) are solved inde-
pendently, without enforcing the estimated uniform sinu-
soidal samples b to be the same. But we know that there is
always a feasible solution (i.e., the noiseless b) that satis-
fies both annihilation constraints in the two 1D problems
and fits the given measurements up to the noise level. Ad-
ditionally, since b should be the same in both problems,
any linear combination of the two filters c1 and c2 is also
a valid solution. Therefore, instead of estimating two an-
nihilating filters separately, what we should reconstruct is
a set of (two) linearly independent vectors that spans the
null space of the convolution matrix associated with b.

Because of the constraints above, we now propose a new joint
estimation approach.

2) Joint Estimation Formulation: Instead of solving two 1D
Dirac estimations separately, a more natural choice for the 2D
FRI reconstruction is:

min
c1 , c2 ∈ C,

b

‖a−Gb‖22

subject to c1 ∗ b = 0
c2 ∗ b = 0.

(6)

The goal is to estimate a set of uniform sinusoidal samples b,
which fits the noisy measurements (up to the noise level) and two
annihilating filters c1 , c2 that form bases of the null space of the
convolution matrix specified by b. Note that here c1 and c2 are,
in general, 2D non-separable filters. Here, C specifies a few2

linear constraints such that the solution of (6) corresponds to
one (out of many possible) set of annihilating filters that spans
the null space of the convolution matrix specified by b. One
possible choice is C =

{
C
∣
∣CT

0C + CTC0 = 2I
}

, where C and

2In general, (D + 1)D/2 constraints are needed to uniquely specify a set of
orthogonal vectors that spans a vector space of dimension D.
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C0 are 2-column matrices, with columns specified by the two
annihilating filters c1 , c2 and their corresponding initializations
c(0)

1 , c(0)
2 , respectively.

A necessary condition in order to satisfy the annihilation
equations is that the DTFT of each of the two annihilating filters
c1 and c2

μ(x, y) =
∑

k,l

ck,l(e−j2πx/τ1 )k (e−j2πy/τ2 )l , (7)

should vanish at the Dirac locations (xk , yk ) for k = 1, · · · ,K:

μ(xk , yk ) = 0.

Here ck,l = [ci ]k,l for i = 1 or 2 and τ1 , τ2 are the periods of
the 2D Dirac stream along x and y directions, respectively.

The corresponding FRI signal (i.e., the zero-crossings of a bi-
variate polynomial (7) with respect to e−j2πx/τ1 and e−j2πy/τ2 )
is a curve [10]. Any Dirac located on this curve satisfies the
annihilation constraints in (6). The 2D Dirac locations are then
obtained from the intersections of the two curves (Fig. 2).

A straight-forward way to determine the intersections of
curves, is to evaluate both bivariate polynomials (with coef-
ficients specified by c1 and c2) on a grid: with a finer grid, more
accurate Dirac locations can be determined. Alternatively, we
will discuss in details an algebraic approach in Section II-C2,
which treats the curve intersections as the common roots of two
polynomials. This approach allows us to determine the curve
intersections reliably without resorting to grid search.

C. Algorithm and Implementation

We give algorithmic details related to the joint estima-
tion introduced in the previous section. We first derive the
sample complexity with respect to the number of Diracs in
Section II-C1. Next, an algebraic approach is outlined in Sec-
tion II-C2, which finds curve intersections based on the Bézout
resultant of a polynomial system. Finally, an iterative algorithm
to solve the joint annihilation problem (6) is presented in Sec-
tion II-C3.

1) Sample Complexity of 2D Dirac Estimation: Convention-
ally, a (K + 1)-tap annihilating filter is used in order to recover
K Diracs in 1D [3]. In higher dimensions, e.g., 2D, it is not al-
ways possible to have a general 2D filter with a size matched to
the number of Diracs K (except in the degenerated cases where
the 2D filter reduces to a 1D filter). We then need to specify the
support size (i.e., the number of non-zero entries) for a given
choice of a 2D filter shape.

Proposition 1 (Filter support size): Suppose the two annihi-
lating filters in (6) have the same support, then the minimum
support size is K + 2 for the estimation of K Diracs.

Proof: See Appendix A. �
Because the annihilating filter is scale-invariant with respect to
any non-zero scalar, each filter has one degree of freedom less
than the total number of non-zero elements. Consequently, at
least 2(K + 1) annihilation equations are needed to reconstruct
K Diracs.

In a typical setup, an equal number of samples is available
along each direction. Under this assumption, a filter shape,
which is as square as possible, e.g., 	√K + 2 � × 	√K + 2 �,

Fig. 3. Sample complexities (ideal low-pass filtering with equal sizes along
each dimension) of the previous separate and the proposed joint estimation
approaches (see (5) and (6), respectively). The joint estimation approach is
able to estimate K Diracs from 3K measurements if the sample sizes are not
restricted to be the same along each dimension (see Corollary 1 and Corollary 2).

allows the maximum number of annihilation equations to be
built. Since the ideally low-pass filtered samples have a direct
correspondence with the uniform sinusoidal samples, we can
derive the sample complexity by comparing the total number of
equations (from the annihilation constraint and the normaliza-
tion of the filter coefficients C1 and C2) with the unknowns (i.e.,
the filter coefficients).

Corollary 1: Assume that the ideally low-pass filtered sam-
ple size is M ×M , where M is an odd number3. In order to
reconstruct K 2D Diracs, the sample size should satisfy

M ≥ √K + 2 +
√

K − 1. (8)

Proof: See Appendix B. �
From (8), the minimum number of samples M 2 has a lin-

ear complexity O(K) with respect to the number of Diracs.
In comparison, the sample complexity is O(K2) in the previ-
ous approach, where the annihilation constraints were enforced
separately along each direction (see Section II-B1). For K 2D
Diracs, the degrees of freedom are 3K: 2K for the Dirac loca-
tions and K for the amplitudes. The total degrees of freedom
give the lowest possible sample complexity of any reconstruc-
tion algorithm. It is possible to reach this lower bound with the
proposed joint estimation if the sample sizes are not required
to be the same along each dimension. We summarize the re-
sult with a simplified setup, where uniformly sampled Fourier
transform of the Diracs are directly available.

Corollary 2: For simplicity, let the number of Diracs K be an
even number, then K 2D Diracs can be reconstructed from 2×
(K/2 + K) uniform Fourier transform samples of the Diracs.

Proof: The proof follows similarly to that of Corollary 1 by
choosing annihilating filters of size 2× (K/2 + 1). �
We show the sample complexity with the separate and the pro-
posed joint estimation approaches against the total degrees of
freedom in Fig. 3.

3The requirement that M should be an odd number is a technicality of the
ideal low-pass filtering, which has symmetric cut-off frequencies. For cases,
where direct Fourier domain measurements are available, e.g., in array signal
processing, then the number of measurements is not required to be odd.
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The merits of an algorithm with lower sample complexity
are two-fold: Not only can more Diracs be reconstructed for a
given sample size, but also a more robust reconstruction may be
expected—Because of more efficient data utilization, more an-
nihilation equations are available to further constrain the recon-
struction. We demonstrate both improvements with simulations
in Section III-A and Section III-B.

Finally, we point out that the proposed joint annihilation ap-
proach can also cope with the singular cases where some Diracs
have the same x or y coordinates. In these cases, the minimum
size of the annihilating filter is further constrained by the num-
ber of Diracs that have common x or y locations. Please refer
to Appendix C for detailed discussions and Section III-C for an
example.

2) Polynomial Common Root Finding: Instead of resorting
to grid search for finding the curve intersections, an alternative
approach is to re-cast the geometric problem as finding the
common roots of two polynomials. Since the mask function (7)
is a bivariate polynomial with respect to u = e−j2πx/τ1 and
v = e−j2πy/τ2 , the curve intersections are the solutions of:

{
0 = μ1(u, v) =

∑
k,l [c1 ]k,lu

kvl ,

0 = μ2(u, v) =
∑

k,l [c2 ]k,lu
kvl .

(9)

One way to determine the polynomial common roots is to
compute the Bézout resultant [24], [25] of the polynomial sys-
tem of equations. It is based on the following two observations:

(i) The bivariate polynomials in (9) can be rearranged with
respect to one variable, e.g., u, where the polynomial
coefficients are functions of the other variable, e.g., v:

μ1(u, v) =
K 1−1∑

k=0

pk (v)uk and μ2(u, v) =
K 2−1∑

k=0

qk (v)uk .

Here pk (·) and qk (·) are some polynomials of v, and the
filters c1 and c2 in (9) are of size L1 ×K1 and L2 ×K2 ,
respectively.

(ii) For any n ≥ 0, we have

unμ1(u, v) = unμ2(u, v) = 0.

From (i) and (ii), we can build a linear system of equations in
terms of a vector

[
u0 , · · · , uK 1 +K 2−3

]T
:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p0 · · · pK 1−1 0 · · ·
0 p0 · · · pK 1−1

. . .
...

. . .
. . .

. . .
q0 · · · qK 2−1 0 · · ·
0 q0 · · · qK 2−1

. . .
...

. . .
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
A(v )

⎡

⎢
⎣

u0

...
uK 1 +K 2−3

⎤

⎥
⎦ = 0. (10)

A necessary and sufficient condition for the polynomial sys-
tems (9) to have common roots is that the Bézout resultant
should vanish (see [26] Theorem 7):

det(A(v)) = 0. (11)

Since (11) is a polynomial equation of v with constant coeffi-

cients, the common roots vk
def= e−j 2 π

τ 2
yk are then given by the

roots of this univariate polynomial. Once we have computed

vk , uk
def= e−j 2 π

τ 1
xk is obtained from (9) with v = vk . Unlike

the separate estimation cases, an extra pairing step (see text in
Section II-B1) is no longer needed: indeed, from the common-
root-finding procedure, the Dirac locations in 2D are directly
reconstructed with the correct association.

From (10), the degree of the polynomial in (11) is:

(K2 − 1)max
k

(deg(pk (v))) + (K1 − 1)max
k

(deg(qk (v))).

(12)

Consequently, there are at least4 a number of common roots
given by (12). In general, this may be larger than the number of
Diracs K. The reason is that in the root-finding procedure, we
proceed as if the common roots were arbitrary complex numbers.
However, since our goal is to reconstruct multi-dimensional
Diracs (which have real-valued coordinates, i.e., xk , yk ∈ R),
the roots are necessarily located on the unit circle5. One way
to eliminate invalid solutions for the Dirac reconstruction (i.e.,
the uk , vk that leads to complex-valued xk , yk ) is based on the
moduli of the common roots. However, it is not always obvious
how to choose an adequate threshold level on the moduli of the
roots in noisy scenarios. Alternatively, an approach that works
empirically is as follows: all roots are first projected onto the
unit circle uk/|uk |, vk/|vk |, from which the Dirac locations are
reconstructed. Then, amplitudes for all Diracs are estimated by
minimizing the discrepancies between the re-synthesized and
given measurements in the least square sense. The valid Dirac
locations then correspond to the ones that have the K largest
amplitudes. We then solve the least square minimization once
more with the extracted K Dirac locations (see [5] for a similar
treatment in the separate annihilation of 2D Dirac cases).

3) Iterative Algorithm for the Joint Annihilation: Follow-
ing [5], let T(·) be the operator that builds the Toeplitz matrix
from the input data and the associated right dual R(·) such that
R(c)b = T(b)c, ∀c,b. Then the joint annihilation constraints
in (6) amount to vertically stacking two right dual matrices:

[
R(c1)
R(c2)

]

b = 0. (13)

For a set of uniform sinusoidal samples b with a sufficiently
large size (compared with that of the filters), it may appear that
we could have more equations than unknowns. For instance, if
the shape of both filters c1 and c2 is 2× 2 and that of the sinu-
soidal samples b is 5× 5, then the total number of annihilation
equations is 32 (i.e., 4 · 4 + 4 · 4), which is larger than the size of
b (i.e., 25 in this example). If we solve (6) with the annihilation
constraint (13) for any fixed c1 and c2 different from zero, then

4There could be multiple roots for u with a given v = vk .
5With the strategy used here, any damping factors are eliminated, which could

be important in another related (but different) spectrum estimation problem [2].
For dampened sinusoid estimation, all the common roots, which are not required
to have unitary norm, are valid solutions. Therefore, we do not need to follow
the root-eliminating procedure here, which is specific to the Dirac estimation.
Further investigation is required to apply the proposed approach to general
spectrum estimation in future work.
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it appears that b would be forced to be identically zero. But as
we will show next, the vertically stacked convolution matrices
in (13) do not have full rank.

Corollary 3: Define the joint annihilation matrix as

Rjoint
def=

[
R(c1)
R(c2)

]

,

then the null space dimension of Rjoint is at least 2(K0 −
1)(L0 − 1) for filters c1 and c2 of size L0 ×K0 .

Proof: See Appendix D. �
In terms of implementation, this requires the extraction of the

independent rows of Rjoint when (6) is minimized with respect
to b (for a certain choice of c1 and c2) at each iteration. One
possibility is to resort to the QR-decomposition6 of the joint
annihilation matrix. Let Rjoint = QU, where Q is an orthogonal
matrix and U is an upper triangle matrix, and Qsub extracts all
but the last 2(K0 − 1)(L0 − 1) columns of Q. Then, the joint
annihilation matrix Rjoint is replaced with QH

subRjoint, which is
an orthogonal projection onto the row space of Rjoint.

Similarly, we can express the two linearly independent anni-
hilating filters with their effective degrees of freedom, which are
less than their total sizes. Specifically, the iterative algorithm
(see details in Appendix E) involves the convolution between

β
def= (GHG)−1GHa and the two annihilating filters. Let the

QR-decomposition of T(β)H be Q̃Ũ, then the convolutions can
be equivalently written as:

{
T(β)c1 = 0

T(β)c2 = 0
⇔

{
T(β)Q̃1γ1 = 0

T(β)Q̃2γ2 = 0
,

for two linearly independent vectors7c1 = Q̃1γ1 and c2 =
Q̃2γ2 . Here Q̃1 = Q̃ and Q̃2 is a sub-matrix of Q̃ that con-
sists of all but one column of Q̃. In the algorithm, only γ1 and
γ2 are reconstructed.

An equivalent formulation of (6) (expressed in terms of γ1
and γ2) is derived in Appendix E, based on which an iterative
algorithm (similar to that in [5]) is proposed. For numerical sta-
bility, we may introduce auxiliary variables such that no nested
matrix inverses are involved at each iteration. It can be shown8

that at each iteration, the updated γ1 and γ2 are solutions of an
extended linear system of equations:
⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 Tjoint(β)HQsub 0 Γ∗0

QH
subTjoint(β) 0 −QH

subRjoint 0

0 −RH
jointQsub GHG 0

ΓT
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

γ
�
v
λ

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

0
0
0
ρ

⎤

⎥
⎥
⎦ ,

(14)

where �, v, λ are auxiliary variables, γ =
[
γT

1 ,γT
2
]T

and the

constant vector ρ = [1, 1, 0]T. Here Γ0 is a 3-column matrix

6Alternatively, we can use the singular value decomposition, which is com-
putationally more demanding.

7In D dimensions, D linearly independent annihilating filters are represented
as ci = Q̃iγi for i = 1, · · · , D, where Q̃i is a sub-matrix built from all but
i − 1 columns of Q̃.

8We omit the derivations for brevity, which are very similar to the ones in
Appendix A and B of [5].

specified by initializations of the two annihilating filters:

Γ0 =

[
Q̃T

1c
(0)
1 0 Q̃T

1c
(0)
2

0 Q̃T
2c

(0)
2 Q̃T

2c
(0)
1

]

,

and

Tjoint(β) =

[
T(β)Q̃1 0

0 T(β)Q̃2

]

.

The uniform sinusoidal samples b are updated as the solution
of

[
GHG RH

jointQsub

QH
subRjoint 0

] [
b
�

]
=
[
GHa
0

]
, (15)

where � is an auxiliary variable.
We emphasize that we do not aim at finding a global optimum

of (6). Instead, we only use the iterative algorithm to find a valid
solution (c1 , c2 ,b), which satisfies the annihilation constraints
and has a fitting error ‖a−Gb‖22 within the noise level (see
Section II-A2 for the same strategy used in the generic FRI
reconstruction [5]). We claim that any solution that satisfies
both criteria is equivalent up to the uncertainty due to noise.
Since any intermediate solution at each iteration already satisfies
the annihilation constraints (because of (15)), we can terminate
the iteration as soon as the objective function value is below
the noise level.

We summarize the joint estimation algorithm in Algorithm 1.
The computational complexity is determined by that of solving
linear systems of equations (14) and (15), which is cubic [27]
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with respect to the size of the uniform sinusoidal samples b. In
the joint estimation, the size of b scales linearly with respect
to the number of Diracs (compared with the quadratic scaling
in the separate estimation (5)). Therefore, we also improve the
computational complexity over the previous separate estimation
approach.

D. Generalization to Higher Dimensions

In the previous two sections, we detailed the problem for-
mulation and reconstruction algorithm for the joint annihilation
problem in 2D. The approach can be generalized to higher di-
mensions following the same line of reasoning. Specifically,
for Diracs reconstruction in D dimensions, the joint estimation
amounts to solving

min
c1 , · · · , cD ∈ C,

b

‖a−Gb‖22

subject to ci ∗ b = 0, for i = 1, · · · ,D,

(16)

where C is similarly defined as in the 2D cases. The D-
dimensional Dirac locations are the common roots of D polyno-
mials whose coefficients are specified by the annihilating filters
ci for i = 1, · · · ,D. Geometrically, the Dirac locations are the
intersections of D hypersurfaces, which are the zero-crossings
of these D-variate polynomials.

One way to compute the common roots of multiple polyno-
mials is to collect all polynomials with respect to one variable
and compute the Bézout resultants of polynomial pairs, which
themselves are polynomials of the other variables. The elimi-
nation process is then repeated by computing the resultant of
resultants (which depends on one less variable) until the resul-
tant reduces to an univariate polynomial, whose roots can be
computed directly.

Concretely, take the 3D case as an example. Let μ1(x, y, z),
μ2(x, y, z), μ3(x, y, z) be the polynomials specified by the an-
nihilating filters and ress(·, ·) be the resultant of two polyno-
mials with respect to s. Then resz (μ1 , μ2) and resz (μ2 , μ3)
are bivariate polynomials of x and y. The common roots
in x are given by the roots of the univariate polynomial
resy

(
resz (μ1 , μ2), resz (μ2 , μ3)

)
. Such a recursive approach

may not be numerically stable, especially for polynomials of
higher degree (i.e., more Diracs K). Further work is needed
to find alternatives in determining the common roots of mul-
tiple polynomials. One possible idea could be based on [28],
where the canonical polynomial basis is replaced with Cheby-
shev polynomials.

For simplicity, if we assume that the sample size is the same
along each dimension, then by choosing annihilating filters of
size9	(K + D)1/D � along each dimension, the maximum num-
ber of annihilation equations can be built from the given samples.
The sample complexity compared with the number of Diracs is
summarized as follows.

9This is because the filter support size is K + D in D dimensional Dirac
reconstruction. See Appendix A for details.

Fig. 4. Illustration of sample and annihilating filter shapes in the critical
sampling cases in 3D (see Corollary 5).

Corollary 4: Assuming that the ideally low-pass filtered
sample size is M × · · · ×M︸ ︷︷ ︸

D terms

, then M , which is an odd number,

should satisfy

M ≥ (K + D)1/D + K1/D − 1, (17)

in order to reconstruct K D-dimensional Diracs.
The minimum total number of required samples MD is linear

in terms of the number of Diracs K. For K � D, the sample
complexity can be approximated as MD ≥ 2D K. Even though
the sample complexity is still proportional to the number of
Diracs, the proportion factor grows exponentially with respect
to the dimension. In comparison, the total degrees of freedom
of K D-dimensional Diracs are10 (D + 1)K. The gap is closed
as soon as sample sizes are not required to be the same along all
dimensions. We summarize the result as follows.

Corollary 5: For simplicity, let the number of Diracs K be
an integer multiple of the dimension D, then K D-dimensional
Diracs can be reconstructed from (D + 1)K uniformly sampled
Fourier transform of the Diracs, which are supported at indices
k = (k1 , · · · , kD ) such that

� k1 = 0, · · · ,K/D + K − 1;
� kj = 0, 1 for j �= 1 and

∑D
j=2 kj ≤ 1 (i.e., at most one j

such that kj can be non-zero).
Proof: The proof is straightforward by choosing a filter

that has the same support with the Fourier samples kj for
j = 2, · · · ,D and k1 = 0, · · · ,K/D. �

Pictorially, the samples and filters consist of D parallel “lines”
along dimension k1 . We illustrate this with an exampled in 3D
(Fig. 4). Further investigation is required to design a sampling
scheme such that these uniform Fourier transforms are acces-
sible from a given set of spatial domain samples of the same
size.

The joint estimation approach in higher dimensions is exem-
plified with a 3D Dirac reconstruction example with noiseless
and noisy measurements in Section III-D.

10More precisely, it is the complex exponentials that are estimated from
the FRI reconstruction instead of the Dirac locations directly, which are real-
valued. It may be possible to enforce the Dirac locations to be real-valued in the
reconstruction by using e.g., Hermitian symmetry.
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Fig. 5. Exact reconstruction of 7 Diracs on a 2D plane from 5 × 5 ideally low-
pass filtered samples. (a) The noiseless ideally low-pass filtered samples. (b) The
exact reconstruction with the proposed joint estimation. The joint annihilation
approach utilizes the given measurements efficiently. In comparison, the separate
annihilation approach (5) fails to reconstruct any Dirac, because it requires a
minimum sample size 8 × 8 in this case.

III. SIMULATION RESULTS

In this section, we validate the proposed joint annihilation
algorithm with synthetic experiments for the reconstruction of
multi-dimensional Diracs. Diracs are ideally low-pass filtered
and uniformly sampled with equal sample sizes along each di-
mension. We first demonstrate the improvements of the joint
estimation approach in 2D (Section III-A to Section III-C). The
generality of the proposed method is further exemplified with a
3D simulation in Section III-D.

In all simulations, 50 random initializations and 20 maxi-
mum iterations per initialization are used in the joint estimation
algorithm (Algorithm 1).

A. Efficient Data Utilization

In our previous approach, where the annihilation constraints
were enforced separately, the sample size along each dimension
should at least be the size of the 1D annihilating filter. The
restrictive filter shape limits the applicability of the separate
estimation approach. Such an artificial constraint is lifted with
the new approach: as long as the sample size satisfies (8) in
2D or more generally (17) in D dimensions, Diracs can be
successfully estimated.

We demonstrate the efficiency of the joint estimation ap-
proach with a periodic stream of Diracs in 2D. Within each
period [0, 1)× [0, 1), 7 Diracs of random amplitudes and loca-
tions are ideally low-pass filtered and uniformly sampled. Even
with sample size as small as 5× 5, the joint annihilation ap-
proach manages to reconstruct Diracs exactly (Fig. 5). Both
annihilating filters used here are of size 3× 3. In comparison,
the separate estimation (5) has to use two 1D filters of length
8 and hence requires a minimum sample size 8× 8. Because
of the restriction on the filter shapes, the previous separate ap-
proach fails to reconstruct any Dirac from such a limited number
of samples.

Fig. 6. Average reconstruction error of 2D Diracs against different noise levels
with the joint and separate estimation approaches (see (6) and (5), respectively).
The joint estimation approache reaches the Cramér-Rao lower bound down to
around 10 dB. The reconstruction error at each noise level is averaged over
3000 different noise realizations (number of Diracs: 7, ideally low-pass filtered
sample size: 9 × 9).

B. Robust Reconstruction

Another improvement, as a consequence of the flexible an-
nihilating filter shapes, is that more annihilation equations can
be built from the given measurements. These extra equations
further constrain the reconstruction, leading to a more robust
estimation in the presence of noise.

To quantify these improvements experimentally, we consider
a periodic stream of Diracs, which consists of 7 Diracs with ran-
dom locations and amplitudes within each period. The ideally
low-pass filtered and uniformly sampled measurements (sam-
ple size: 9× 9) are contaminated with Gaussian white noise
such that the signal to noise ratio (SNR) varies from −10 dB to
40 dB. We measure the reconstruction quality with the average
distance11 between the estimated and ground truth Dirac loca-
tions. The performances of both the joint and separate estimation
approaches are averaged over 3000 different noise realizations
at each noise level. The joint estimation approach reaches the
Cramér-Rao lower bound (see e.g., [29]) down to around 10 dB.
In comparison, the separate estimation does not reach the lower
bound even in very high SNR cases (Fig. 6).

C. Dirac With Common x/y Coordinates

In specific cases where some Diracs share common x or y
coordinates, the annihilating filter shapes are further constrained
as a consequence of the fundamental theorem of algebra (see
details in Appendix C). Similar to examples in the previous two
sections, we consider 2D periodic stream of Diracs with unit
period. Within each period, 5 Diracs of unitary amplitudes are
simulated such that they are arranged in a dagger-shape (the
right column in Fig. 7). From our analysis in Section II-C1, the
minimum annihilating filter shape is

⌈√
7
⌉× ⌈√7

⌉
(i.e., 3× 3)

11The pairing between the reconstruction and the ground truth is identified
by permuting the Dirac locations such that the distance between the permuted
reconstruction and the ground truth Dirac locations is minimized.
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Fig. 7. Reconstruction of 2D Diracs, some of which have common x or y
coordinates, with the joint estimation (6). (a) The exact reconstruction from
the noiseless ideally low-pass filtered samples (sample size: 7 × 7). (b) Robust
estimation of 2D Diracs from noisy samples (sample size: 11 × 11, SNR =
5 dB, reconstruction error on the Dirac locations: 1.2 × 10−2 ).

in the generic cases where no Diracs share common coordinates
along any direction. However, in this specific case, there could
be up to 3 Diracs that share the same x (or y) coordinates.
From our analysis in Appendix C, the annihilating filter shape,
therefore, should be at least 4× 4. The joint estimation of the 2D
Diracs from 7× 7 noiseless ideally low-pass filtered samples,
are shown in Fig. 7(a). Additionally, we also considered the
case with noisy samples (size: 11× 11). Gaussian white noise
is added to the noiseless samples such that the signal-to-noise
ratio is 5 dB. The reconstruction error on the Dirac locations is
1.2× 10−2 .

D. Dirac Reconstruction in 3D

To demonstrate the generality of the joint estimation approach
to higher dimensions (see Section II-D), we show an example
of a periodic stream of Diracs in 3D. Within each period (1
along each dimension), 5 Diracs with random locations and
amplitudes are simulated.

In the first case, the Diracs are ideally low-pass filtered and
sampled. The joint estimation reconstructs 5 Diracs exactly from
the minimum number of noiseless samples based on Corollary 4,
i.e., 3× 3× 3 (Fig. 8(a)).

Next, we consider the same 3D Diracs but the samples are
contaminated by Gaussian white noise such that the signal-
to-noise ratio is 5 dB. In this noisy scenario, the Diracs are
over-sampled (compared with the minimum sample sizes).

The average reconstruction error on the Dirac locations from
7× 7× 7 noisy samples is 1.35× 10−2 (Fig. 8(b)).

IV. REAL APPLICATION RESULTS

Because of more efficient data utilization as well as a more
robust performance, the joint estimation approach of FRI signals
may have significant implications for many real applications. In
this section, we demonstrate the robustness of the new approach
in the challenging point source estimation problem in radio
astronomy (Section IV-A) and direction of arrival estimation
problem in acoustics (Section IV-B).

A. Point Source Estimation in Radio Astronomy

Source estimation in radio astronomy aims at reconstruct-
ting celestial sources from the electromagnetic waves collected
with antenna arrays. For example, the Low Frequency Array
(LOFAR) consists of around 20 000 dipole antennas, which are
located primarily in Netherland in addition to a few remote
sites across Europe. One commonly used source model in ra-
dioastronomy is the point source model [30], which represents
the sky image as a weighted sum of Diracs. In a far-field con-
text, all sources are assumed to be located on a hypothetical
celestial sphere (as the depth information is lost in the far-field
setting). Consequently, the electromagnetic waves arrive as par-
allel wavefronts at the antenna array. The cross-correlations of
the received signals at the two antennas are determined by the
separation of the antenna pair (i.e., the baseline) as well as the
point source locations. In narrow field-of-view cases, we can
approximate the source estimation on the sphere by projecting
the sky image in the neighborhood of the telescope focus to
the tangential plane. It can be shown that the cross-correlations
sample the Fourier transform of the two-dimensional sky im-
age projection at irregular frequencies (see [31], Chapter 3).
The Fourier transform frequencies are specified by the radio
telescope antenna layout.

To summarize, the far-field point source reconstruction within
a narrow field-of-view amounts to estimating 2D Dirac locations
from the irregularly sampled Fourier transform of the sky image.
Readers are referred to [6] for full accounts of various complica-
tions encountered when applying the joint estimation approach
to the actual observation of a radio telescope.

In Fig. 9, we demonstrate the effectiveness of the joint es-
timation approach in reconstructing point sources accurately
with actual LOFAR observation from the Boötes field. The
reconstructed source locations are compared with the cata-
log [32]. The average error on the reconstructed source locations
is 1′10.63′′. We also include the image reconstructed with the
standard CLEAN algorithm, which is widely used in the radio
astronomy community (see [30] and many of its variants [33],
[34]), from the same measurements. Contrary to the FRI-based
approach, in CLEAN-based methods, additional source detec-
tion has to be applied to the CLEAN image in order to obtain the
source locations and intensities. Consequently, CLEAN-based
methods may not always distinguish closely located sources,
which are merged within one bright blob in the estimated sky
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Fig. 8. Reconstruction of 3D periodic stream of Diracs from ideally low-pass filtered samples. (a) Exact reconstruction from the noiseless samples (sample
size: 3 × 3 × 3). (b) Robust reconstruction from noisy samples (sample size: 7 × 7 × 7, SNR = 5 dB, average reconstruction error on the Dirac locations:
1.35 × 10−2 ). Maximum intensity projection is used to project the 3D samples onto relevant planes for display. (a) Exact reconstruction from noiseless samples.
(b) Robust reconstruction from noisy samples (SNR = 5 dB).

Fig. 9. Point source estimation with the joint estimation approach from actual LOFAR observation from the Boötes field (field of view: 4◦ × 4◦, number of
sources reconstructed: 60, average reconstruction error on source locations: 1′10.63′′). The background CLEAN image (also shown separately in the right column)
is overlaid with the reconstructed point sources and the catalog data in the J2000 coordinate (horizontal axis: right ascension, vertical axis: declination). Please
refer to [6] for details related to the application of the joint estimation approach in radio astronomy.

image. The blob size is related to the telescope angular resolu-
tion limit, which is 3′23.1′′ with the setting used here.

B. Direction of Arrival Estimation with Microphone Arrays

The same principle, which was used in radio astronomy point
source reconstruction, applies to the direction of arrival (DOA)
estimation in acoustics. The goal here is to locate the direc-
tion of arrival of sound sources in 3D with microphone arrays.
In the far-field context, this boils down to identifying the az-
imuths and latitudes of the acoustic sources. However, unlike

the radio astronomy problem above, which typically considers
a small portion of the sky around the telescope focus, we can no
longer approximate the spherical reconstruction within a tan-
gential plane for the DOA problem—sources can be located in
a much wider range on the sphere. The cross-correlations of
the received signals at different microphones are related to the
Fourier domain samples at non-uniform frequencies, where the
Fourier expansion basis are specified by the spherical harmonics
(see e.g., [5], [35], [36]). We can apply the same joint estimation
technique to reconstruct sound source locations on the sphere.
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Fig. 10. Direction of arrival estimation of sound sources from actual record-
ings in an anechoic chamber (estimated SNR: 27.26 dB). The noise level is
estimated from the silence recording. (a) The Pyramic array used to collect
sound waves emitted by loudspeakers located at different locations. (b) The
reconstructed source location on the sphere (average reconstruction error on
source locations: 1.39◦, background image: the least square estimate of the
sound field). We used the Mollweide projection to map the spherical image to a
plane for display.

In the experiment, a tetrahedron-shaped microphone array
(the “Pyramic array”, see Fig. 10(a)) is used to record speech
signals from loudspeakers that are located at three different lo-
cations in an anechoic chamber. Each side of the tetrahedron
consists of 8 MEMS microphones [37]. In Fig. 10(b), we show
an example of the DOA estimation with the joint estimation
approach from the actual recordings. Two of the three loud-
speakers are closely located (great-circle distance: 12.76◦). In
the least square estimate of the sound field, both sources are
contained within one bright spot. The joint estimation approach
manages to resolve the two sources correctly. The average re-
construction error on the source locations is 1.39◦. Readers are
referred to an on-going work [38] for detailed discussions on
the exact formulations and extensive tests of the joint estimation
approach in this acoustic DOA estimation problem.

V. CONCLUSION

We have proposed an efficient FRI-based sampling scheme
for multi-dimensional Dirac estimation. The minimum sample
size required, in order to have the exact reconstruction, scales
linearly with the number of Diracs. The linear sample com-
plexity is a substantial improvement over previous separate es-
timation method, which has an exponential scaling in the space
dimension. We have adapted the algorithmic framework for the
reconstruction of FRI signals [5] to estimate multi-dimensional
Diracs reliably. The Dirac locations are determined by the inter-
sections of hypersurfaces, which are the zero-crossings of the
reconstructed mask functions. The efficiency and robustness of
the proposed approach has been validated in simulations as well
as in two applications with real data on point source estimation
in radio astronomy and acoustics.

We are currently working on the application of the multi-
dimensional Dirac estimation approach to super-resolution mi-
croscopy [39], [40]. Preliminary results indicate that we are able
to improve resolution significantly. Another future research di-
rection is on the extension of the approach to cases with damp-
ened sinusoids. This may be useful for the estimation of pulses
with variable width [41] in higher dimensions.

APPENDIX A
SUPPORT SIZE OF A 2D ANNIHILATING FILTER

For brevity of derivations, we use multi-index notation,
where z = (z1 , z2) =

(
e−j2πx/τ1 , e−j2πy/τ2

)
, k = (k, l), and

zk = (zk
1 , zl

2). Let the support size of a 2D annihilating filter
c be S and the non-zero indices in the filter be ks = (ks, ls) for
s = 1, · · · , S.

From the annihilation constraint, we have that the mask func-
tion should vanish at each one of the K Dirac locations:

μ
(
z(i)) =

S∑

s=1

(z(i))ks cks
= 0,

for i = 1, · · · ,K, i.e.,
⎡

⎢
⎣

(z(1))k1 · · · (z(1))kS

... · · · ...
(z(K ))k1 · · · (z(K ))kS

⎤

⎥
⎦

︸ ︷︷ ︸
a K×S matrix Z

⎡

⎢
⎣

ck1

...
ckS

⎤

⎥
⎦ = 0.

In general when S ≥ K, the matrix Z is of rank K (i.e., the
values z(1) , · · · , z(K ) for which this does not happen is of zero
measure). Therefore, a necessary (and sufficient) condition to
have two linearly independent solutions c1 and c2 with the same
support in (6) is S ≥ K + 2.

The derivation generalizes to higher dimensions following
the same reasoning in a straight-forward manner. Specifically,
the support size of a D-dimensional annihilating filter in a joint
estimation formation (16) is at least K + D.

APPENDIX B
SAMPLE COMPLEXITY OF DIRAC RECONSTRUCTION IN 2D

On the one hand, 2(M −√K + 2 + 1)2 annihilation equa-
tions can be built from M ×M ideally low-pass filtered sam-
ples in addition to 3 linear constraints from the normalization
C =

{
C
∣
∣CT

0C + CTC0 = 2I
}

(due to symmetry). On the other
hand, the number of unknowns is 2(K + 2)− 1, where12 −1
is a consequence of linear independence of c1 and c2 (see
Section II-C3 for implementation details). The minimum num-
ber of samples is then obtained from

2
(
M −√K + 2 + 1

)2
+ 3 ≥ 2(K + 2)− 1.

APPENDIX C
2D DIRACS WITH SHARED x OR y COORDINATES

In the particular cases, where some of the Diracs share the
same x or y coordinates, the minimum size of the annihilating
filter shape is further restricted by the number of Diracs with
common coordinates along each direction. This can be under-
stood from the fundamental theorem of algebra.

Suppose there are Ksame Diracs that have the same x coordi-
nate x0 and the shape of the filter is P ×Q. From the annihila-
tion constraint, the DTFT of the annihilating filter should vanish

12More generally in D dimensions, the degrees of freedom of D vectors are
reduced by D(D − 1)/2 because of linear independence.



4654 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 17, SEPTEMBER 1, 2018

at the Dirac locations:

μ(x0 , y) =
P −1∑

l=0

(
Q−1∑

k=0

ck,l(e−j2πx0 /τ1 )k

)

(e−j2πy/τ2 )l = 0.

(18)

Observe that (18) is a polynomial in e−j2πy/τ2 of degree P − 1.
In order to have Ksame such y-s within the period [0, τ2) that
satisfy the annihilation constraint, P − 1 ≥ Ksame. Similarly, if
there are Lsame Diracs that have the same y coordinate, then
Q− 1 ≥ Lsame.

In general, this leads to annihilating filters with different
shapes than

⌈√
K + 2

⌉× ⌈√K + 2
⌉

in the generic cases dis-
cussed in Section II-C1. Consequently, the minimum number
of samples required in order to reconstruct K Diracs, where
some of them have shared coordinates along one direction, is
also larger than that in the generic cases in Corollary 1.

APPENDIX D
NULL SPACE DIMENSION OF THE JOINT ANNIHILATION MATRIX

In order to show the null space dimension of the joint annihi-
lation matrix, we construct explicitly a non-zero vector b such
that Rjointb = 0. The number of linearly independent b-s gives
a lower bound of the null space dimension.

Construct bk,l = u−kv−k , where u, v ∈ C and are different
from zero (b is the vectorization of the 2D data block in e.g., a
column-by-column order), then

[ck,l ∗ bk,l ]m,n =
∑

k,l

ck,lbm−k,n−l = u−m v−n
∑

k,l

ck,lu
kvl .

Therefore, bk,l that satisfies the joint annihilation constraints
{

[c1 ]k,l ∗ bk,l = 0
[c2 ]k,l ∗ bk,l = 0,

can be treated as the common roots of the two polynomial
linear systems of equations (9). From (12), we know that there
are at least 2(K0 − 1)(L0 − 1) such b-s, for filters c1 , c2 of
size L0 ×K0 . Consequently, we have proved the minimum null
space dimension of the joint annihilation matrix in Corollary 3.

APPENDIX E
EQUIVALENT FORMULATION OF THE JOINT ANNIHILATION (6)

From our analysis in Section II-C3, for fixed c1 , c2 at each
iteration, (6) is equivalent to

min
b

‖a−Gb‖22
subject to QH

subRjointb = 0.

The associated Lagrangian is

L(b, �) =
1
2
‖a−Gb‖22 + �HQH

subRjointb.

From the optimality conditions, we have
{

GH(Gb− a) + RH
jointQsub� = 0,

QH
subRjointb = 0.

Hence,

b = β − (GHG)−1RH
jointQsub

· (QH
subRjoint(GHG)−1RH

jointQsub)−1QH
subRjointβ,

where β = (GHG)−1GHa. Consequently, the objective func-
tion reduces to

‖a−Gb‖22
=βHRH

jointQsub(QH
subRjoint(GHG)−1RH

jointQsub)−1QH
subRjointβ

+ terms independent of c1 and c2 .

Additionally, from the “bi-linearity” of the annihilation con-
straint, we have:

[
R(c1)

R(c2)

]

β =

[
T(β) 0

0 T(β)

][
c1

c2

]

=

[
T(β)Q̃1 0

0 T(β)Q̃2

]

︸ ︷︷ ︸
d e f= T joint(β)

[
γ1

γ2

]

.

Therefore, an equivalent form of the joint annihilation (6) is

min
γ1 ,γ2

[
γ1

γ2

]H

Λ(γ1 ,γ2)

[
γ1

γ2

]

,

subject to c1 = Q̃1γ1 ∈ C,
c2 = Q̃2γ2 ∈ C,

where

Λ(γ1 ,γ2) =

TH
joint(β)Qsub

(
QH

subRjoint(GHG)−1RH
jointQsub

)−1
QH

subTjoint(β).

The iterative strategy proposed in [5] then amounts to building
Λ(γ1 ,γ2) from the previous reconstruction and updating γ1 ,γ2
from the quadratic minimization.

Since Λ(γ1 ,γ2) contains nested matrix inverses, the direct
implementation may not be numerically stable. By introducing
auxiliary variables as in [5], it can be shown that the update
of γ1 and γ2 amounts to solving an extended linear system of
equation (14) at each iteration.
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