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ABSTRACT

This paper considers the problem of extending the single antenna
power measurements based direction finding to the two-dimensional
(2D) case, and proposes a method to estimate the azimuth-elevation
direction-of-arrival (DOA) from a matrix of received power. Exploit-
ing the fact that the azimuth-elevation antenna pattern is 2D ban-
dlimited, the problem can be transformed into a 2D spectral analysis
problem. The proposed method first decomposes the 2D spectral
analysis problem into one-dimensional case and then solved them
independently. As the solution does not ensure that the estimated
azimuth and elevation is in correct order, the solution is subjected
to permutation ambiguity. This can then be solved by finding the
permutation that best matches the 2D spectral representation. Sim-
ulation results demonstrating the high-resolution capability of the
proposed method in two-source case and the effectiveness in five-
source case are also presented in this paper.

Index Terms— array signal processing, direction-of-arrival,
single antenna direction finding, annihilating filter.

1. INTRODUCTION

Multiple source direction finding has been an active research topic
for many decades due to its wide application in the fields of radar,
sonar, and communications. Conventional and well-known methods
are based on MUltiple SIgnal Classification (MUSIC) algorithm [1].
These methods estimate the direction-of-arrival (DOA) from a vector
of received signals using an antenna array. Despite its high resolu-
tion capability of resolving two-closely spaced sources, the MUSIC-
based methods are highly sensitive to array model errors [2–4].

Recently, a novel method is introduced for AOA estimation us-
ing only single antenna from a vector of power measurements [5]. It
exploits the antenna pattern diversity of the receiving antenna that is
captured through the received power calculated when the antenna is
pointing at different directions. From sampling perspective, captur-
ing the variation in received power across space is similar to spatial
sampling sum of Diracs whose locations are the signals’ DOA.

In this paper, we consider the extension of the problem to the
two-dimensional (2D) case (e.g., azimuth and elevation angle es-
timation) and propose a method to estimate the azimuth-elevation
DOA from a matrix of power measurements as a result of spatial
sampling along azimuth-elevation plane.

Utilizing the fact that the azimuth-elevation antenna pattern is
2D bandlimited, the problem can be transformed into a 2D spectral
analysis problem. The proposed method is based on the decomposi-
tion of the 2D spectral analysis problem into one-dimensional (1D)
case and then solved the azimuth and elevation DOAs independently

using the method reported in [5]. As the solution does not guaran-
tee that the estimated azimuth and elevation is in correct order, the
solution becomes ambiguous. To solve this permutation problem,
we propose to scan over all possible permutations and identified the
permutation that best matches the 2D spectral representation.

2. BACKGROUND AND SIGNAL MODEL

Consider a single antenna receiving system, of which the antenna
spatial response is non-uniform, receiving the transmission from K
sources with its antenna pointing to direction θ̃.

x(t, θ̃) =
K∑

k=1

g(θ̃ − θk)sk(t) + η(t)

where g(θ̃ − θk) is the antenna attenuation for the signal impinging

from θk when the orientation of the antenna is at θ̃, sk(t) is the k-th
impinging signal, η(t) is the receiver’s noise and K is the number of
impinging signals.

The received power calculated over a duration T , in which sk(t)
is assumed to be stationary, can be approximated as

p(θ̃) ≈
K∑

k=1

|g(θ̃ − θk)|2︸ ︷︷ ︸
a(θ̃−θk)

rk + η(θ̃)

where rk and n(θ̃) denote the power of k-th impinging signal and
noise, respectively. This approximation holds under the assumption
that the impinging signals are uncorrelated.

Let pl ≡ p(θ̃l) denote the received power calculated when

the antenna’s orientation is at θ̃l. The problem addressed in [5]
is to estimate {θk}Kk=1 given a vector of the received power
p = [p1, · · · , pL]T . Exploiting the fact that the antenna pattern
is bandlimited, the authors in [5] models a(θ) as a sum finite com-

plex exponentials: a(θ) =
∑M

m=−M amejmθ and transforms the
problem into a frequency estimation problem. That is, solving
{y−M , · · · , yM} from the following linear systems of equation:

pl =
M∑

m=−M

K∑
k=1

rke
−jmθk

︸ ︷︷ ︸
ym

amejmθ̃l + η(θ̃l)

Hence, the annihilating filter method can be used to retrieve θk from
ym. In noisy case, the Cadzow denoising is applied prior to the
annihilating filter [6].
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In 2D case, the received power is defined as a function of the
azimuth and elevation angle (θ, γ) and the problem is now extended
to estimating the azimuth-elevation DOA {θk, γk}Kk=1 given a (L×
H) matrix of the received power P whose elements are defined as

Pl,h ≡ p(θ̃l, γ̃h)

=
∑K

k=1 |g(θ̃l − θk, γ̃h − γk)|2︸ ︷︷ ︸
a(θ̃l−θk,γ̃h−γk)

rk + η(θ̃l, γ̃h) . (1)

3. PROPOSED APPROACH

Utilizing the fact that the antenna pattern is 2D bandlimited, it can
be well approximated as a sum of finite 2D complex exponentials
according to

a(θ, γ) =

M∑
m=−M

N∑
n=−N

am,ne
jmθejnγ

(2)

where am,n is the real-valued coefficients that defines the shape of
the antenna response. Notice that because a(θ, γ) is a real-valued
function, this model is valid if the following is satisfied:

am,n = am,−n am,n = a−m,n and am,n = a−m,−n

Also, the antenna pattern is a 2D 2π-periodic non-negative function

a(θ, γ) = a(θ + 2π, γ) = a(θ, γ + 2π) = a(θ + 2π, γ + 2π)

and a(θ, γ) ≥ 0, ∀θ, γ.
Substituting (2) into the received power expression in (1), we

obtain

p(θ̃l, γ̃h) =

K∑
k=1

M∑
m=−M

N∑
n=−N

rkam,ne
jm(θ̃l−θk)ejn(γ̃h−γk)

For brevity, we ignore the noise expression η(θ̃l, γ̃h). With a simple
re-arrangement, we arrive at

p(θ̃l, γ̃h) =
∑
m

∑
n

am,n

∑
k

rke
−jmθke−jnγkejmθ̃lejnγ̃h (3)

where θ = [θ1, · · · , θK ]T and γ = [γ1, · · · , γK ]T .

3.1. Solving for Azimuth and Elevation Angles Independently

Recall that p(θ̃l, γ̃h) is the element of matrix P. Using the expres-
sion in (3), it is possible to formulate P as a matrix equation in the
following form

P = ΦY(θ,γ)Ψ

where the following matrices’ formulation are used: P is a (L×H)
matrix with its element Pl,h defined in (3); Φ and Ψ are (L×(2M+

1)) and ((2N + 1)×H) matrices with the element: Φl,m = ejmθ̃l

and Ψn,h = ejnγ̃h , respectively; and Y(θ,γ) is a ((2M + 1) ×
(2N + 1)) matrix with the element Ym,n defined as

Ym,n = am,n

∑
k

rke
−jmθke−jnγk (4)

The matrix Y(θ,γ) contains the azimuth-elevation DOA infor-
mation and can be retrieved from the matrix P, given that Φ and Ψ
are known, by solving

min
Y

‖P−ΦY(θ,γ)Ψ‖22

The solution to this optimization can be expressed as

Ŷ(θ,γ) = Φ†PΨ†
(5)

where the superscript † denotes the pseudo-inverse matrix operation.
It is worth noting that the above solution requires that the dimension-
ality of the power matrix P satisfies the following condition

L ≥ 2M + 1 and H ≥ 2N + 1

Notice that from the expression in (4), Ym,n is a sum of K
2D complex exponentials weighted by the real-valued coefficients
am,n. Although it is possible to solve for the exponent terms in one-
dimensional (1D) case using spectral analysis technique, solving the
2D case directly as spectral analysis problem is not feasible.

Instead, the azimuth and elevation angle are solved indepen-
dently. To do so, we propose to decompose Ym,n into two of similar
1D spectral analysis problem. This can be achieved using the fol-
lowing algebraic manipulation. Let ȳm(θ) denote the decomposed
1D expression associated to the azimuth angle, given by

ȳm(θ) =

N∑
n=−N

Ŷm,n

am,n
=

K∑
k=1

rke
−jmθk

N∑
n=−N

e−jnγk

=
K∑

k=1

rk

(
1 + 2

N∑
n=1

cos(nγk)

)
︸ ︷︷ ︸

ck

e−jmθk (6)

The above formulation is now a typical spectral analysis formula-
tion. It is a sum of K exponentials with the amplitude rkck and the
exponent terms θk. Thus, the elevation angle θk can be solved in the
similar way as in 1-D case [5] using the Cadzow-annihilating filter
method [6].

Likewise for the elevation angle γk, the same algebraic manipu-

lation is used ȳn(γ) =
∑

m Ŷm,n/am,n and simplified as

ȳn(γ) =
K∑

k=1

rk

(
1 +

M∑
m=1

cos(mθk)

)
e−jnγk (7)

3.2. Solving Permutation Problem

At this stage, we have obtained the estimates of θk and γk in ran-
dom order. Without the correct order, these estimates are mean-
ingless. Hence, the problem is to find the permutation that corre-
sponds to the correct match of azimuth-elevation angle. Let S =
{s1, s2, · · · , sK!} denote the set that contains all the possible per-
mutations of {γ1, γ2, · · · , γK}. Because the cardinality of S is fi-
nite (|S| = K!), it is possible to scan through all the permutations in
S and find the one that minimizes the �2-norm of the error matrix

ξ(sz,θ,γ) =

∥∥∥∥∥ 1

am,n

(
Ŷm,n − am,n

K∑
k=1

e−jmθ̂ke−jnγ̂sz(k)

)∥∥∥∥∥
2

where ‖ · ‖2 denotes the matrix �2-norm and the subscript sz(k) in
γ̂sz(k) determines the order of the estimated elevation DOA to be

matched with θ̂k. For illustration, consider K = 3 and if sz =
{2, 1, 3}, then {γ̂sz(k)}Kk=1 = {γ̂2, γ̂1, γ̂3}. Scanning for the mini-
mum ξ(sz,θ,γ) can be expressed mathematically as follows

sopt = arg min
sz∈S

ξ(sz,θ,γ) (8)

Finally, given sopt obtained from solving (8), the estimated
azimuth-elevation DOAs are

{(θ̂1, γ̂sopt(1)), (θ̂2, γ̂sopt(2)), · · · , (θ̂K , γ̂sopt(K))} (9)
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3.3. On Sampling for Multidimensional FRI signals

Note that the solution proposed here is also applicable generally to
sampling of multi-dimensional signals with finite rate of innovation
(FRI). An earlier attempt to solve the problem is reported in [7] and
the authors proposed a method that requires B-spline kernel as the
sampling kernel. On the contrary, our approach can be employed to
arbitrary kernel that satisfies the bandlimited property.

Besides solving for the location of the Diracs, a typical FRI sam-
pling [8] requires the amplitude of them to be recovered as well.
Likewise for the multidimensional sampling problem, we need to
calculate r̂k from the expression in (6). Let ψk denote the k-th co-

efficient of the exponentials (6). Given {(θ̂k, γ̂k)}Kk=1 and sopt, ψ̂k

can be calculated as the over-determined solution of the following
linear matrix equation⎡⎢⎢⎢⎢⎢⎢⎣

ȳd
−M

ȳd
−M+1

...

ȳd
M

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
u−M
1 · · · u−M

K

u−M+1
1 · · · u−M+1

K

...
. . .

...

uM
1 · · · uM

K

⎤⎥⎥⎥⎥⎥⎥⎦ψ (10)

where ψ = [ψ1, · · · , ψK ]T , uk = e−jθ̂k and the superscript d
represents ȳm(θ) after Cadzow de-noising [9]. Then, r̂k can be cal-
culated using the following relationship

r̂k = ψ̂k/
(
ĉsopt(k)(γ)

)
(11)

3.4. Algorithm Summary

To summarize the calculations proposed in this paper, a step-by-step
outline of the proposed algorithm is listed here

1. Calculate Y(θ,γ) from the power matrix P according to (5).

2. Decompose into azimuth- and elevation- only spectral formu-
lation, as given by (6), (7).

3. Solve independently θ̂k and γ̂k from ȳm(θ) and ȳn(γ), re-
spectively. This requires the Cadzow de-noising and annihi-
lating filter method described in [5].

4. Correct the order of γ̂k according to sopt obtained from (8).

5. The final azimuth-elevation DOA estimates are given by (9).

4. SIMULATION RESULTS

In this section, we consider a directional antenna with the azimuth-
elevation antenna pattern simulated using the expression in (2) with
M = N = 3 and the real-valued coefficients {am,n generated ran-
domly according to uniform distribution. Then, the a0,0 is set such
that the antenna pattern is a nonnegative function. Fig. 1 shows an
example of the azimuth-elevation antenna pattern.

Consider two uncorrelated sources emitting from azimuth-
elevation (θk, γk): (92.5790

o, 85.2080o) and (47.7191o, 53.5891o).
Without loss of generality, the signals received at the antenna are
assumed to be modeled as single-tone:

sk(tn) =
√
αk exp(j[2πfktn + ϕk])

with the parameters set as: αk = [0.9, 0.8], fk = [0.253, 0.347],
and ϕk = [0.0136, 0.8044]. The noise is modeled as complex white
Gaussian noise: η(tn) = N (0, σ2) + jN (0, σ2) where σ2 is calcu-
lated such that SNR ≡ ∑

k αk/(2σ
2) is 10 dB. As many as 512 sam-

ples of the received signal are used to compute the received power
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Fig. 1. An example of the realization of azimuth-elevation antenna
pattern simulated according to (2) with M = N = 3.
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Fig. 2. An example of the received power measurements collected
and the location of the actual and estimated azimuth-elevation DOA.

and (L×H) = (12×12) samples of the received power p(θ̃l, γ̃h) are
collected from different azimuth-elevation antenna orientation gen-
erated randomly within 0o and 359o. The mesh plot in Fig. 2 shows
the illustration of the continuous received power as a function of the
azimuth-elevation orientation of the antenna, p(θ̃, γ̃) while the stem
plot in the same figure shows the discrete (12 × 12) grid at which
the received power measurements are collected in order to form the
power matrix P in the noiseless case. Using the proposed method
summarized in Sec. 3.4, the estimated azimuth-elevation DOA are
compared with the actual one as shown in Fig. 2. From these results,
it is evident that the proposed method belongs to the high-resolution
DF method due to its ability to resolve two signal sources that are
separated less than a beamwidth apart [10].

To demonstrate the efficacy of the algorithm in more-than-two
sources case, we consider K = 5 with actual azimuth-elevation
DOAs: (θk, γk): (92.5790o, 85.2080o), (47.7191o, 53.5891o),
(314.0214o, 124.2315o), (154.1285o, 224.125o) and (247.825o,
148.2725o). To generate the received signals, we use the previous
model with the following parameters: αk = [0.9, 0.8, 1, 0.7, 0.85],
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fk = [0.253, 0.377, 0.1452, 0.465, 0.3054], ϕk = [0.0136, 0.8044,
0.2123, 0.6872, 0.5340]. The azimuth-elevation antenna pattern is
also simulated using the previous model with M = N = 6 and
(20 × 20) power measurements are collected when the azimuth-
elevation orientation of the antenna is randomly set.
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Fig. 3. Normalized inverse objective function in (8) plotted as a
function of the permutation index.

Unlike the two-source case, the number of possible permutation
has significantly increased. Fig. 3 shows the normalized inverse ob-
jective function ξ(sz,θ,γ), plotted as a function of the permutation
index z = {1, 2 · · · ,K!}. It shows that the correct permutation
can be obtained from the minimum objective function. As a result,
the correct combination of azimuth-elevation estimates matches the
actual azimuth-elevation DOAs. This is shown in Fig. 4.
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Fig. 4. Actual and estimated azimuth-elevation DOAs.

Lastly, we consider 1000 Monte-Carlo realizations for two-
source case and calculate the root mean-square error (RMSE) from
the corresponding 1000 azimuth and elevation DOA estimation
results independently. These results obtained across different SNR
values are then plotted in Fig. 5. From this Figure, it can be observed
that the performance improves as the SNR increases.

5. CONCLUSSION

This paper proposes the azimuth-elevation DOA estimation method
using power measurements from single antenna. As the antenna pat-
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Fig. 5. DOA estimation RMSEs versus SNR for two-source case.

tern is 2D bandlimited, the problem can be transformed into a 2D
spectral analysis problem. The proposed method is based on the
decomposition of the 2D spectral analysis into 1D expression, in
which the azimuth and elevation DOAs can be solved independently
using the Cadzow-annihilating filter method. Since the Cadzow-
annihilating filter method does not guarantee that the estimated az-
imuth and elevation is in correct order, the solution becomes am-
biguous. It is also shown that this ambiguity problem can be solved
by identifying the permutation that best matches the 2D spectral ex-
pression.
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