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ABSTRACT

Wavelets and radial basis functions (RBF) are two rather distinct ways of representing signals in terms of shifted

basis functions. An essential aspect of RBF, which makes the method applicable to non-uniform grids, is that

the basis functions, unlike wavelets, are non-local|in addition, they do not involve any scaling at all. Despite

these fundamental di�erences, we show that the two types of representation are closely connected. We use the

linear splines as motivating example. These can be constructed by using translates of the one-side ramp function

(which is not localized), or, more conventionally, by using the shifts of a linear B-spline. This latter function,

which is the prototypical example of a scaling function, can be obtained by localizing the one-side ramp function

using �nite di�erences. We then generalize the concept and identify the whole class of self-similar radial basis

functions that can be localized to yield conventional multiresolution wavelet bases. Conversely, we prove that, for

any compactly supported scaling function '(x), there exists a one-sided central basis function �+(x) that spans

the same multiresolution subspaces. The central property is that the multiresolution bases are generated by simple

translation of �+, without any dilation.
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1. INTRODUCTION

Radial basis functions constitute a powerful framework for interpolating or approximating data on non-uniform

grids.6 Given a set of multidimensional grid points xk 2 R
p and a suitable radial function �(r) : R+ ! R, the

generic form of the representation is

8x 2 Rp ; f(x) =
X
k

ak�(kx� xkk) (1)

where k�k denotes the Euclidean distance. The basis functions in (1) depend only on the distance to their corre-

sponding grid point xk and are thus called radial. The ak's are weighting coe�cients that are typically determined by

�tting the function to some data points yk = f(xk) (solution of a linear system of equations). Often, the formulation

also includes a regularization term which speci�es the optimal radial basis function �(r) implicitely.4

Formula (1) is reminiscent of a wavelet-like expansion in terms of translates of a scaling function '(x). However,

there are fundamental di�erences that need to be emphazised. First, (1) has no provision for scaling; the basis

functions remain the same irrespective of the distance between the data points. Since the RBF approach must be

valid for arbitrary grids, this clearly excludes the use of basis functions that are compactly supported. Second, the

basis functions in both representations are fundamentally di�erent. With wavelets, the scaling functions '(x) are well

localized (typ., compactly supported). Radial basis functions, by contrast, are typically increasing and unbounded

at in�nity and therefore not even square integrable. Third, the radial basis function framework is ideally suited to

a non-uniform multivariate setting while conventional wavelet theory is restricted to uniform grids, preferably in

1D. Thus, radial basis functions are more general than wavelets, but also more di�cult to handle because of poor

conditioning.
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It is well known in approximation theory that both formalisms are applicable to the construction of polynomial

splines. The so-called wavelet approach uses the B-splines as basis functions; it can be traced back to the pioneering

work of Schoenberg.7 The alternative representation uses non-local basis functions which are either one-sided or

radial: x
n
+ or jxjn, assuming that the degree n of the spline is even. For p = 1, the two methods are rigorously

equivalent. This equivalence and its relevance for multiresolution approximation will be explained in more details in

Section 2 using the linear splines as motivating example.

In this paper, we will show that the equivalence that holds between radial basis functions and splines can also

be established for wavelets in general. For this purpose, we will restrict ourselves to the standard univariate wavelet

setting where the grid is uniform. We will also introduce the notion of central basis function to break the symmetry

of the radial ones. We will approach the problem from its two opposite sides. First, in Section 3, we will show how

to construct scaling functions (or wavelets) starting from some central basis function, extending earlier results of

Buhmann and Utreras.3,9 In particular, we will identify a necessary self-similarity condition for �(r) and derive

a complete characterization of the relevant class of central functions. In Section 4, we will consider the converse

implication and prove that any standard multiresolution analyis of L2 can be expressed in terms of central basis

functions. In other words, we will uncover the radial basis function that lies hidden within any scaling function or

wavelet. We will also present examples to illustrate our results.

2. MOTIVATION: THE EXAMPLE OF LINEAR SPLINES

The best way to motivate our investigation is to start with a concrete example. We will thus build a multiresolution

of L2 using piecewise linear functions but we will proceed in a non-standard fashion.

2.1. Splines and one-sided power functions

function, The basic space of piecewise linear splines with knots at the integers can be speci�ed in terms of the integer
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Figure 1. The example of linear splines: (a) one-sided ramp function, (b) B-spline of degree 1. The function in (b)

is localized, while the one in (a) is not.

shifts of the one-sided linear ramp function (cf. Fig. 1a):

V0 = span f�+(x� k)gk2Z (2)

with �+(x) = x+ = maxfx; 0g. Since x+ has a single singularity at the origin, each of the basis functions is clearly

associated with one of the spline knots. The ramp function is thus well adapted to the mathematical structure

of linear splines. However, it has the disadvantage of not being local and is therefore rarely used for performing

numerical computations.

By taking the 2nd forward �nite di�erence of �+(x), one generates the hat function (or causal B-spline of degree

1)

�
1
+(x) = �2

+x+ = x+ � 2(x� 1)+ + (x� 2)+ (3)



This function, which is shown in Fig. 1b, is the more standard, compactly supported basis function for the linear

splines. Interestingly, we can also invert (3) and express the one-sided power function as a weighted sum of B-spline

basis functions

x+ =
X
k�0

(k + 1)�1+(x� k) (4)

This shows that our de�nition (2) of the basic spline space is equivalent to the standard one which involves linear

combinations of B-splines. Thus f�+(x � k)gk2Z is a valid basis for V0, albeit not a Riesz basis, since the functions

are not square-integrable.

2.2. How multiresolution becomes trivial

The present formulation makes the multiresolution structure of splines stand out quite naturally (cf. Fig. 2).

Consider the �ne-to-coarse sequence of subspaces � � �V0 � V1 � � � � Vi � � �, where Vi represents the space of linear

splines with knots at xk = 2ik, k 2 Z. These splines are generated simply by dropping all the basis functions in (2)

that are not positioned at the desired knots. Thus, we de�ne our uniform spline space are scale a = 2i as

Vi = span
�
�+(x� 2ik)

	
k2Z

(5)

It is important to note that these multiresolution basis functions are generated by translation only|no dilation is

required. Clearly, the basis functions for Vi are a subset of those of Vj for j < i, which implies that Vj � Vi, for all

j < i (multiresolution property). Since each Vi also has a B-spline Riesz basis
�
2�i=2�1+(x=2

i � k)
	
k2Z

, the whole

ladder of spline subspaces for i 2 Z generates a multiresolution of L2 as de�ned by Mallat.5 Hence, it is possible to

construct a whole variety of corresponding wavelet bases using any of the standard design techniques.

f0 ∈ V0

f1 ∈ V1

Figure 2. Multiresolution spaces using one-sided power functions.

2.3. Non-uniform linear splines

The power of the present formulation really becomes apparent if we move one step further and consider a given

non-uniform sequence of knots � � � < xk < xk+1 < � � � with k 2 Z. We then de�ne a corresponding embedded

sequence of non-uniform spline spaces

Vi = span f�+(x� x2ik)gk2Z (6)

which share the same inclusion properties as before: V0 � V1 � � � � Vi � � �. Here too, we are able to produce compactly

supported basis functions (non-uniform B-splines), except that they lose the convenient shift-invariant structure that

is inherent to standard (uniform) multiresolution analysis. They are the triangular functions that take the value one

at x = x2i(k+1) and vanish for x � x2ik and x � x2i(k+2). These can be constructed using the 2nd divided di�erences

of �+(x) rather than �nite di�erences as in (3). This non-uniform setting is also suitable for constructing wavelet

bases which span the orthogonal complement of Vi with respect to Vi�1.
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2.4. Central basis functions

Until now, we have worked with the one-sided function �+(x) = x+. Another option would have been to use

the symmetric function ��(x) = jxj; the prototypical example of a radial basis function. In the sequel, we will

consistently use the subscripts *, and +, to denote symmetric (or radial), and causal (or one-sided) generating

functions, respectively. These are all special cases of what we call central basis functions and which we denote by

the generic symbol �(x). The one-sided functions are typically simpler to work with in the univariate case. The

symmetric ones, on the other hand, are usually preferred in a multivariate setting, for they fall within the framework

of the well-developed theory of radial basis functions.4,6

3. FROM RADIAL BASIS FUNCTIONS TO WAVELETS

We will now extend what we have just done with the ramp function and show how it is possible to construct wavelets

starting from a radial (or central) basis function �(x). We will not consider wavelets literally, but rather their

associated scaling functions which are the key to the multiresolution structure of the wavelet transform. Once the

scaling function has been speci�ed, it is easy to construct a corresponding wavelet basis using standard techniques.5

3.1. Scaling functions

Often, a scaling function is de�ned indirectly through its re�nement �lter h (cf. (8) below). One then has to worry

about the delicate issues of the convergence of the iterated �lterbank and of the L2-completeness of the wavelet

expansion. Here, we propose a more explicit de�nition that avoids these problems at the onset.

Definition 3.1. '(x) is a valid scaling function if and only if it sati�es the following three conditions:

(a) Riesz basis condition

f'(x � k)gk2Z is a Riesz basis of V0 if and only if there exists two positive constants A and B such that

A �
X
k2Z

j'̂(! + 2�k)j
2
� B (7)

almost everywhere, where '̂(!) is the Fourier transform of '(x).

(b) Two-scale relation

'(x=2) =
X
k2Z

h(k)'(x � k) (8)

(c) Partition of unity X
k2Z

'(x � k) = 1, '̂(2�k) = �k (9)

We can show that these three conditions are necessary and su�cient for ' to generate a multiresolution analysis of

L2 in the sense de�ned by Mallat.5

3.2. Admissible central basis functions

What distinguishes radial basis functions from scaling functions is that they are not compactly supported and

typically unbounded at in�nity; this means that they are usually not even in L2.

We will say that a central basis function is admissible if it can reproduce the constant (�rst order of approximation)

and if it can be localized in L2 through a suitable choice of linear combinations (similar to taking the 2nd �nite

di�erence of the one-sided ramp function). The �rst condition is satis�ed if the Fourier transform of �(x) has at least

a singularity of order 1 at the origin: �̂(!) = O(!�
) with 
 � 1 as ! ! 0. (cf. the work of Buhmann1). The second

condition means that there must exist a sequence pk such that the function

'(x) =
X
k2Z

pk�(x� k) (10)

satis�es the Riesz basis condition (7).



One localization approach is the orthogonalization of �(x), which is best described in the Fourier domain:

�̂(!) =
�̂(!)pP

n2Zj�̂(! + 2�n)j2
(11)

This technique is always applicable when the function is admissible, but it is not necessarily the simplest nor the

most e�cient one.

3.3. Self-similar central basis functions

The last ingredient that is missing to construct scaling functions is the two-scale relation (8). We can now state our

�rst theoretical results.

Theorem 3.2. An admissible central basis function �(x) generates a multiresolution of L2 if

�(x) = ��(x
2
): (12)

Thus, the key property for constructing wavelets is that the central basis functions be self-similar and therefore

fractal.

A complete characterization of these functions is given by the following expansion

�(x) =
X
n2Z


nx

log �
log 2

+j 2n�
log 2

+ (13)

where the 
n can be viewed as free parameters, and where x+ is the one-sided ramp function already encountered

previously. To obtain this formula, we consider the function �0(x) = x
�

log �
log 2 �(x), and observe that �0(2

x) is 1-

periodic. Thus, we may represent �0(2
x) in the distributional sense by its Fourier series �0(2

x) =
P

n2Zcne
j2n�x

which is equivalent to (13).

Conversely, we can obtain the coe�cients 
n in (13) if we know the function �(x):


n =
1

log 2

Z 2

1

�(�)��
log �
log 2

�1�j 2n�
log 2 d�:

This last expression simply follows from the standard formula for the Fourier coe�cients of the function �0(2
x).

Formula (13) is very general but it also has its mathematical di�culties: it does not guarantee admissibility

and its Fourier transform is only de�ned in the sense of distributions. It should therefore be handled with great

precaution.

3.4. Example of fractional splines

If we limit ourselves to the �rst term of formula (13), we get a rather interesting family of functions: the fractional

splines.8 The corresponding basis functions are the one-sided power functions

�+;�(x) = x

log �
log 2

+ : (14)

which generate the fractional splines of degree � = log �
log 2

. In particular, for � = 2, we are back to our introductory

example: the piecewise linear splines. More generally, the one-side power functions x
�
+ can be localized using

fractional �nite di�erences to yield the fractional B-splines8

�
�
+(x) =

��+1
+ x

�
+

�(�+ 1)
(15)

Here, ��+1
+  ! (1� e

�j!)�+1 is the causal fractional di�erence operator, and �(�+ 1) is Euler's gamma function,

which generalizes the factorials. For � > �1=2, the fractional B-splines are perfectly valid scaling functions in the

sense of De�nition 1. Presently, the fractional splines are the only known wavelet family with a continuously-varying

order parameter �.



4. FROM WAVELETS TO CENTRAL BASIS FUNCTIONS

We now show that one can also follow the reverse path and uncover the central basis function(s) that lies hidden

within any scaling function '(x).

Theorem 4.1. Let '(x) be a compactly supported scaling function with corresponding re�nement �lter H(z) =PN
k=0 hkz

�k with h0 6= 0. Then, there exists a (non-unique) one-sided central basis function �+(x) that generates

the same multiresolution analysis. One possible solution is

�+(x) =
X
n�0

�n'(x� n) (16)

where the �n's are generated as follows

�0 = 1

�n = 1
h0

P
k hn�2k�k; 8n > 0:

(17)

It is easy to verify that �+(x) is supported in [0;+1) and that �+(x) = h
�1
0 �+(x=2).

For the linear splines, we have H(z) = (z+2+ z
�1)=2, and the application of the theorem directly yields (4). We

can also apply this result to the Daubechies wavelets which are orthogonal in addition to being compactly supported.

The scaling and one-sided basis functions for the Daubechies wavelet D2 are shown in Fig. 3.
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Figure 3. The example of Daubechies D2: (a) scaling function '(x), (b) one sided function �+(x).

When the scaling functions are symmetric, there is a similar connection with radial basis functions.

Corollary 4.1. Let '(x) be a symmetric compactly supported scaling function with corresponding re�nement �lter

H(z). Then there exists a radial basis function that generates the same multiresolution analysis: ��(x) = �+(jxj)

where �+(x) is given by (16).

5. CONCLUSION

We have presented new results that make the connection between radial basis functions and wavelets very explicit.

The fact that we can move from radial basis functions to wavelets enables us to controle some of their key

mathematical properties: order of approximation and regularity. It may also yield wavelets that have an explicit

analytical form, the fractional splines being a notable example.

The existence of a link in the reverse direction|from wavelets to central basis functions|is especially interesting

conceptually. It leads to an alternative interpretation of multiresolution: basis functions are simply removed (resp.

added) instead of being dilated (resp. contracted) as is usually the case. This opens up the door to many possible

extensions, such as wavelets on non-uniform grids.
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