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ABSTRACT

We build wavelet-like functions based on a parametrized family of pseudo-differential operators L~ν that satisfy
some admissibility and scalability conditions. The shifts of the generalized B-splines, which are localized versions
of the Green function of L~ν , generate a family of L-spline spaces. These spaces have the approximation order
equal to the order of the underlying operator. A sequence of embedded spaces is obtained by choosing a dyadic
scale progression a = 2i. The consecutive inclusion of the spaces yields the refinement equation, where the scaling
filter depends on scale. The generalized L-wavelets are then constructed as basis functions for the orthogonal
complements of spline spaces. The vanishing moment property of conventional wavelets is generalized to the
vanishing null space element property. In spite of the scale dependence of the filters, the wavelet decomposition
can be performed using an adapted version of Mallat’s filterbank algorithm.

Keywords: Wavelets, splines, differential operators, Green’s functions, continuous-time signal processing, mul-
tiresolution approximation, multiresolution analysis

1. INTRODUCTION

The wavelet transform is widely used nowadays to perform multiresolution signal analysis.1 It has applications
in numerous areas of applied mathematics such as signal processing, compression, denoising, to mention but a
few. Over the years, many wavelet bases have been designed; they were typically specified to satisfy certain
properties, such as vanishing moments, approximation order, compact support etc.

It is well known that the analysis wavelet behaves like a multi-scale version of the derivative operator of
the corresponding order; this feature is intimately related to the vanishing moment and approximation order
properties.1 Interestingly, it is the B-spline component that is present within every scaling function that induces
this special behavior; the B-spline is fundamental in this respect because it generates the same space as the
Green function of the differential operator.2

In this work we generalize the construction of wavelets starting from an arbitrary family of pseudo-differential
operators L~ν , satisfying certain admissibility and scalability conditions. The L-spline spaces spanned by dyadic
shifts of the Green functions of L~ν yield a multiresolution analysis. The approximation order turns out to be
equal to the order of the operator L~ν . The resulting wavelets are non-stationary, which means that the basis
functions at the different scales are no longer dilates of one another; however, the wavelet decomposition can
still be performed using a modification of Mallat’s filterbank algorithm with precomputed filters for each scale.

The resulting class of L-spline wavelets is quite large; it comprises the standard spline wavelets, which
correspond to the choice L = DN , where D is a derivative. Also included are the fractional wavelets,3 as well as
the generalized exponential B-spline wavelets.4, 5 Even though our construction is restricted to time-invariant
operators, we can consider rather general transfer functions, which are characterized by their order r of growth.

This paper is organized as follows. In Section 2, we introduce the key notions that are used throughout the
paper. In Section 3, we specify L-spline multiresolution analyses using generalized B-splines as basis functions. In
Section 4, we introduce the L-spline wavelets; we then study their properties in Section 5. Finally, we discuss the
implementation of the decomposition-reconstruction algorithm and study an example illustrating the concept.
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2. PRELIMINARIES

In order to simplify our derivations, we introduce the scaling operator Sa : f(·) → f(·/a) and the translation
operator Tk : f(·) → f(· − k). They satisfy the relation SaTk = TakSa. Fα is the generalized Fourier operator
Fα : f(·) →

∫∞
−∞ f(t)e−(α+jω)tdt, α ∈ C. The traditional Fourier operator F is a particular case of this definition:

namely, F = F0.

Let us consider a linear, shift-invariant operator L. This operator is characterized by its Laplace transform
L(s) or, equivalently, by its frequency response L̂(ω) = L(jω).

Definition 2.1. L is of order r if and only if, for all positive ρ < r − 1/2, we have that∑
n∈Z

|ω + 2πn|2ρ

1 + |L̂(ω + 2πn)|2
≤ Cρ <∞.

Essentially, Definition 2.1 requires the frequency response L̂(ω) of the operator to grow at the rate of ωr as
ω →∞.

Definition 2.2. L is spline-admissible of order r if and only if the following conditions are satisfied6:

1. L is a linear shift-invariant operator of smoothness order r > 1/2;

2. L has a well-defined inverse L−1 with impulse response ρ ∈ S′. Thus, ρ is a Green function of L: L{ρ} = δ;

3. There exists a localization operator ∆ =
∑

k∈Z d[k]Tk with d ∈ `1 such that the corresponding generalized
B-spline β = ∆{ρ} satisfies the Riesz basis condition.

Definition 2.3. Let L be a spline-admissible operator of order r and let β = ∆{ρ} be a corresponding B-spline.
We say that the generalized B-spline β(t) is properly localized if, for any zero α of the transfer function L(s),
∆(s) has a zero of the same order at s = α.

The localization process in 3) is illustrated in Figure 1 for the first-order differential operator L̂α(ω) = jω−α.
The Green function, which is a causal exponential, is truncated by subtracting its weighted and shifted version;
this corresponds to the choice ∆ = I−eaαTa. Note that, for α < 0, the Green function ρα itself may be considered
as a B-spline; however, the proper-localization condition is not met in this case.
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Figure 1. Localization of the Green function for a = 1.

Definition 2.4. A family of operators L~ν depending on some parameters ~ν is called pseudo-scale invariant if
for all a > 0 it satisfies

SaLa~ν = c(a)L~νSa, (1)

where c(a) is an arbitrary function of a.

The equivalent definition in the Fourier domain,

L̂a~ν = c(a)SaL̂~ν , (2)



is obtained by applying the Fourier operator F on both sides of (1) and using the relation FSa = |a|S1/aF .

For the Green function ρa~ν of a pseudo-scale invariant operator La~ν , we have La~νρa~ν = δ. By applying Sa on
both sides, we obtain c(a)L~νSaρa~ν = |a|δ; thus, the following scaling relation is satisfied:

ρ~ν =
c(a)
|a|

Saρa~ν .

Example 1. Consider the generalized fractional differential operator Lγ
α of order γ > 1

2 : L̂γ
α(ω) = (jω − α)γ .

Here ~ν = α ∈ C is a complex parameter. We readily check that the condition (2) is met:

L̂γ
a~ν = aγ(j

ω

a
− α)γ = aγSaL̂γ

~ν .

We therefore see that Lγ
α is pseudo-scale invariant with c(a) = aγ .

3. L-SPLINE MULTIRESOLUTION

A generalized L-spline s(t) for the pseudo-scale invariant, spline-admissible operator L~ν with equally spaced
knots tk = ak, a > 0, is a function that satisfies6

L~νs(t) =
∑
k∈Z

a[k]δ(t− ak).

By applying the inverse operator L−1
~ν , we get

s(t) =
∑
k∈Z

a[k]ρ~ν(t− ak) + p~ν(t), (3)

where p~ν(t) is a solution of the homogeneous equation L~ν{p~ν} = 0.

Let L~ν be a pseudo-scale invariant, spline-admissible operator of order r with localization operator ∆~ν for
each ~ν; let β~ν = ∆~νρ~ν be a properly localized B-spline. We then define the B-spline at scale a > 0 as β~ν,a =
Saβa~ν =

∑
k∈Z Sada~ν [k]Tkρa~ν = (

∑
k∈Z da~ν [k]Takρ~ν) · a/c(a). The corresponding scaled localization operator

∆~ν,a is given by ∆~ν,a =
∑

k∈Z da~ν [k]Tak.

Next, we consider the space Va spanned by the shifted B-splines, Va = {s(t) : s(t) =
∑

k∈Z c[k]β~ν,a(t −
ak), c[k] ∈ l2}. From (3), we see that any element of Va is an L-spline. To demonstrate that any square-
summable L-spline s(t) at scale a belongs to Va, we prove the two following propositions.

Proposition 1. Any function s(t) =
∑

k∈Z a[k]ρ~ν(t− ak) ∈ L2 belongs to Va.

Proof. We have that ∫ 2π

0

|A(ejωa)|2

|∆̂~ν,a(ω)|2
∑
k∈Z

|∆̂~ν,a(ω)|2

|L̂(ωa+ 2πkj)|2
dω =

∫ ∞

−∞
|ŝ(ω)|2dω <∞,

where the inner sum on the left-hand side can be estimated using the lower Riesz bound for β~ν,a. Therefore,
s(t) =

∑
k∈Z c[k]β~ν,a(t− ak) with C(ejωa) = A(ejωa)/∆̂~ν,a(ω) and c[k] ∈ l2.

This proposition allows us to express the Green-function part of an arbitrary L-spline with the help of shifted
B-splines. We will now show that the null-space element can also be represented as a weighted sum of B-spline
basis functions. In order to do so, we introduce the generalized Strang-Fix conditions for a scaling function ϕ
and an operator L.

Definition 3.1. The scaling function ϕ satisfies the generalized Strang-Fix conditions for a given operator L
if, for every α such that L(s) has a zero of some order γ at s = α, Fα{ϕ}(ω) has a zero of order γ at ω = 2πk
for all k ∈ Z, k 6= 0, and Fα{ϕ}(0) = cα 6= 0.



Using Poisson’s summation formula, one can demonstrate that the above generalized Strang-Fix conditions
for the operator L are sufficient for the null-space reconstruction property: For every p(t) such that L{p(t)} = 0,
there exist p[k] such that

p(t) =
∑

p[k]ϕ(t− k).

We now have all the ingredients to prove the announced result.

Proposition 2. Let L~ν(s) satisfy L~ν(α + 2πkj/a) 6= 0 for each α such that L~ν(α) = 0 and for all k ∈ Z. In
this case, any function p~ν such that L~ν{p~ν} = 0 can be expressed via the shifted B-splines {β~ν,a(· − ak)}k∈Z.

Proof. It suffices to demonstrate that β~ν,a satisfies the generalized Strang-Fix conditions for L~ν . In order for
β~ν,a to meet the proper-localization condition, the transfer function ∆~ν,a(s) must behave as |s− α|γ as s → α,
for all α being γ-order zeros of L~ν . As L~ν(α + 2πkj/a) 6= 0, k ∈ Z, the 2πj/a-periodicity of ∆~ν,a(s) yields the
desired result.

We have proved that for any generalized L-spline s(t) ∈ L2 there exist c[k] such that

s(t) =
+∞∑

k=−∞

c[k]β~ν,a(t− ak),

This ensures that the generalized B-splines form a complete basis of the L-spline space.

We now consider the dyadic scales a = 2i and define V(i) = V2i = {si(t) =
∑

k∈Z ckϕi(t−2ik) : c ∈ l2}, where
ϕi(t) = β2i(t)/||β2i ||L2 is the normalized scaling function.

We give in Figure 2 a diagram that summarizes the construction of the L-spline spaces.

L!νVa = span{δ(·− ak)}

Va = span{ρ!ν(·− ak)}

Va = span{β!ν,a(·− ak)}

L!ν
H!ν = L

−1

!ν

∆!ν,a∆
−1

!ν,a

Figure 2. L-spline space-construction process

As seen from (3), the space V(i) is included in V(i−1). We therefore have a ladder of spaces

· · · ⊂ V(i+1) ⊂ V(i) ⊂ V(i−1) ⊂ . . .

The following proposition gives a result on the approximation error decay rate in Va as the scale gets finer.

Proposition 3. Let Pa be the orthogonal projector into the space Va. Then, for every f ∈ L2 such that
L~νf ∈ L2, ||f − Paf ||L2 = O(ar) as a→ 0.

The proof is quite technical and will be published elsewhere. As a consequence of this proposition, we can
prove that

⋃
V(i) is dense in L2.



4. MULTIRESOLUTION BASIS FUNCTIONS

The function ϕi+1 ∈ V(i+1) ⊂ V(i) can be expressed as

ϕi+1(t) =
∑

k

hi[k]ϕi(t− 2ik),

where the filter hi ∈ l2 because ϕi+1 ∈ L2 and ϕi generates a Riesz basis. The frequency response Hi(ej2iω) is
given by

Hi(ej2iω) = ci ·
∆̂~ν,2i+1(ω)

∆̂~ν,2i(ω)
,

where ci is a normalization constant. We observe that it is possible to tune the properties of the scaling filter by
choosing the family of localization operators ∆~ν appropriately. For the case of the E-spline wavelets, where L(s) is
a rational function, the localization operator ∆~ν,a consists of the factors (1−e(αk−jω)a)mk corresponding to zeros
αk of multiplicity mk of L(s). The scaling filter Hi(ejωa) is therefore a product of the filters (1 + e(αk−jω)a)mk

for all k.4

The dual scaling function is defined by

ˆ̃ϕi(ω) = ϕ̂i(ω)/Ai(ej2iω),

with Ai(ej2iω) =
∑

k∈Z ai[k]e−j2iωk = 2−i
∑

k∈Z |ϕ̂i(ω+2πk/2i)|2, where ai[k] = 〈ϕi(·), ϕi(·−2ik)〉 is the Gram—
or autocorrelation—sequence of the basis {ϕi(t− 2ik)}k∈Z. Ai(z), the z-transform of ai[k], is also referred to as
the autocorrelation filter.

It can be proved that {ϕ̃i(· − 2ik)}is a Riesz basis of V(i). The dual scaling filter is then obtained as

H̃i(z) =
Ai(z)

Ai+1(z2)
Hi(z),

and the dual two-scale relation is
ϕ̃i+1(t) =

∑
k

h̃i[k]ϕ̃i(t− 2ik).

The wavelet function
ψi+1(t) =

∑
k

gi[k]ϕi(t− 2ik)

is obtained by solving the orthogonality relation

〈ψi+1(·), ϕi+1(· − 2i+1k)〉 = 0.

The general solution for gi[k] is given by

Gi(z) = −zQi(z2)H∗
i (−z−1)Ai(−z),

where the filter Qi(z) must be chosen to be bounded and non-vanishing on the unit circle. By imposing the
perfect-reconstruction condition, we get the dual scaling filter as well,

G̃i(z) = −z H̃∗
i (−z−1)

Ai(−z)Q∗i (z−2)
,

where g̃i[k] are the coefficients in the dual wavelet relation

ψ̃i+1(t) =
∑

k

g̃i[k]ϕ̃i(t− 2ik).

The basis functions can also be orthogonalized to yield orthonormal wavelets.



5. PROPERTIES

The new wavelet bases have the following remarkable properties, which may be useful in signal-processing
applications:

Property 1. (Reproduction of null space). Suppose that L~ν(s) has a zero α of order γ. Then, at each scale
i ∈ Z and for n = 0, . . . , dγe − 1, the exponential monomial tneαt has the scaling-function representation

tneαt =
∑
k∈Z

p[k]ϕi(t− 2ik),

where p[k] are suitable coefficients.

As ϕi satisfies the generalized Strang-Fix conditions, tneαt belongs to the null space of the operator L~ν . The
property is then a direct consequence of the null-space reproduction property of the B-splines. More generally,
any element p(t) of the null space of L~ν can be expressed via the shifts of the scaling function. The orthogonality
of the wavelet and scaling-function spaces then yields the following:

Property 2. (Vanishing null-space elements). Suppose that L~ν(s) has a zero α of order γ. Then, for each scale
i ∈ Z, shift t0 ∈ R, and degree n = 0, . . . , dγe − 1, the analysis wavelet satisfies∫ ∞

−∞
tneαtψ̃i(t− t0)dt = 0.

In other words, the scalar product with the analysis wavelet ψ̃i makes vanish any element p(t) of the null space
of L~ν .

6. IMPLEMENTATION

To perform the decomposition and the reconstruction in the new bases, we use an adapted version of Mallat’s fast
filterbank algorithm with scale-dependent filters. The filters Gi(z),Hi(z), G̃i(z), H̃i(z) should be pre-calculated
at each scale according to the formulas presented in Section 4.

To initialize the decomposition, we need to obtain the fine-scale (i = 0) projection coefficients c[k] such that
f(k0) =

∑
k∈Z c[k]ϕ0(k0 − k). We also need to calculate the autocorrelation filter A0(z), which will allow us to

determine the coarser scale ones thanks to the recurrence relation:

Ai+1(z2) =
1
2
(Ai(z)Hi(z)H∗

i (z−1) +Ai(−z)Hi(−z)H∗
i (−z−1)).

The c[k]’s can be obtained by prefiltering the function samples with P (z) = (
∑

k ϕ0(k)z−k)−1.
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(a) Wavelet ψ1, i = 1
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(b) Wavelet ψ2, i = 2

Figure 3. Wavelets at scales i = 1, i = 2; L̂~ν(ω) = −(−ω2 + ν2
1)/((−ω2 + ν2

2 )2ω2), ν1 = 5j, ν2 = 5πj/8.



7. EXAMPLES

We illustrate the construction by choosing the operator with a rational transfer function L̂~ν(ω) = − (ω2+ν2
1 )

(ω2+ν2
2 )2ω2

with ν1 = 5j and ν2 = 5πj/8. L̂~ν(ω) has Hermitian symmetry, which ensures that the corresponding time-
domain scaling functions and wavelets are real. In Figure 3, we show the wavelets ψ1 and ψ2 in the time domain;
these have a strong oscillatory character, with a larger number of lobes as the scale gets coarser. It is clearly
apparent that ψ2 is not a dilate of ψ1.

The plots in Figure 4 show the effect of the poles (± 5π
8 j, 0) and of the zeros ±5j on the frequency response

of the scaling function and of the wavelet. In Figure 4(a), the pole − 5π
8 j produces a peak of the scaling-function
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(a) Scaling-function
spectrum |ϕ̂1(ω)|, i = 1
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(b) Wavelet spectrum
|ψ̂1(ω)|, i = 1

Figure 4. The spectrum of the scaling function and the spectrum of the wavelet; L̂~ν(ω) = −(ω2 + ν2
1 )/((ω2 + ν2

2 )2ω2),
ν1 = 5j, ν2 = 5πj/8.

spectrum near ω = − 5π
8 and makes it vanish with periodicity π. There is also a peak at the origin because of

the pole at ω = 0. The zero at −5j makes the frequency response vanish at ω = −5. In contrast, the wavelet
spectrum (Figure 4(b)) vanishes at ω = ± 5π

8 and ω = 0, as a result of the vanishing null-space element property
of generalized L-spline wavelets.

8. CONCLUSION

We have introduced a general procedure for constructing wavelet-like bases of L2 based on a family of admissible
operators L~ν of order r. Remarkably, the multiresolution spaces are specified by the transfer function L~ν(s) of the
operator. We have formulated the generalized Strang-Fix conditions that a scaling function must satisfy in order
to reproduce the null space of a given operator L and have demonstrated that the generalized B-spline satisfies
it. The constructed wavelets come in different flavors: basic (B-spline), dual, and orthonormal. They have the
ability to kill the null space of L~ν , which generalizes the notion of vanishing moment found in the conventional
wavelet theory. One recovers the polynomial B-spline case by choosing L~ν(s) = sN , where the corresponding
operator is the N -th derivative.

The generalized L-spline wavelets are not dilates of a single function anymore; however, they still can be
implemented using a scale-dependent version of Mallat’s fast filterbank algorithm.

ACKNOWLEDGMENTS

This work is funded in part by grant 200020-101821 from the Swiss National Science Foundation.

REFERENCES
1. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, 1998.
2. M. Unser and T. Blu, “Wavelet theory demystified,” IEEE Trans. Signal Process. 51, pp. 470–483, Febru-

ary 2003.
3. M. Unser and T. Blu, “Fractional splines and wavelets,” SIAM Review 42, pp. 43–67, March 2000.



4. I. Khalidov and M. Unser, “From differential equations to the construction of new wavelet-like bases,” IEEE
Trans. Signal Processing , in press.

5. T. Lyche and L. L. Schumaker, “L-spline wavelets,” in Wavelets: Theory, Algorithms, and Applications,
C. K. Chui, L. Montefusco, and L. Puccio, eds., pp. 197–212, Academic Press, 1994.

6. M. Unser and T. Blu, “Generalized smoothing splines and the optimal discretization of the Wiener filter,”
IEEE Trans. Signal Process. 53, pp. 2146–2159, June 2005.


